The New World Out There: Beyond the Two-Body Interaction in Many-Body Systems

Nuclear Models

Choice of Interaction

- The 2-body interaction problem
- QCD derived nuclear interaction to the rescue

Are A-body interactions important?

- Extended pairing interaction
- Application to heavy nuclei

• Q&A about C_D - C_E curve, Λ , and the NNN interaction terms...

Simple Models, when applicable, Help Understand Complex Systems

- **Liquid Drop Model** (key: nuclear surface R(θ,φ)=R₀(1+ $\alpha^{\lambda\mu}$ Y_{$\lambda\mu$}(θ,φ))
- Fermi Gas Model (key: particle statistics)
- Energy-Density Functional (key: framework reformulation)
- Independent Particles in a Mean Field
 - Harmonic Oscillator, Square Well (key: exactly solvable)
 - **Nilsson Model** (key: nuclear deformation & spin-orbit interaction)
 - Wood-Saxon (key: finite range, diffuse surface, spin-orbit term)
- Microscopic Shell Models "Deriving the Mean Field"
 - Self-consistent Mean Field (Hartree-Fock)
 - Algebraic Models (key: exactly solvable -- Lie algebra based)
 - Spherical Shell-Model with Realistic Interactions (key: matrix elements are adjusted to reproduce the available nuclear structure data)
 - Ab-initio No-Core Shell Model (key: highly accurate interactions fitted to nucleon-nucleon data, properties of A-body systems are derived from the few-body interactions)
 - Other methods for few- and many-body systems (Monte-Carlo methods, Coupled-clusters, cluster models ...)

Nuclear Shell-Model Hamiltonian

$$H = \sum_{i} \varepsilon_{i} a_{i}^{\dagger} a_{i} + \sum_{i, j, k, l} V_{ijkl} a_{i}^{\dagger} a_{j}^{\dagger} a_{k} a_{l}$$

where a_i^+ and a_i are fermion creation and annihilation operators, ε_i and V_{ijkl} are real and $V_{ijkl} = V_{klij} = -V_{jikl} = -V_{ijlk}$

> Spherical shell-model basis states are eigenstates of the onebody part of the Hamiltonian - **single-particle states**.

> The two-body part of the Hamiltonian H is dominated by the **quadrupole-quadrupole interaction** Q·Q ~ C_2 of SU(3).

> SU(3) basis states - collective states - are eigenstates of H for degenerate single particle energies ε and a pure Q·Q interaction.

pre-XXI century NN-Potentials

Usual NN-potentials are combination of: Central scalar potential + spin-orbit (LS) + tensor force S_{ij} Argonne V18 potential, Phys. Rev. C 51, 38 (1995), $v_{ij} = \sum_{p=1,18} v_p(r_{ij})O_{ij}^p$, $O_{ij}^{p=1,8} = 1, \tau_i \cdot \tau_j, \sigma_i \cdot \sigma_j, (\tau_i \cdot \tau_j)(\sigma_i \cdot \sigma_j), S_{ij}, S_{ij}(\tau_i \cdot \tau_j), L \cdot S, L \cdot S(\tau_i \cdot \tau_j)$ $O_{ij}^{p=9,14} = L^2, L^2(\tau_i \cdot \tau_j), L^2(\sigma_i \cdot \sigma_j), L^2(\tau_i \cdot \tau_j)(\sigma_i \cdot \sigma_j)), (L \cdot S)^2, (L \cdot S)^2(\tau_i \cdot \tau_j)$ $O_{ij}^{p=15,18} = T_{ij}, (\sigma_i \cdot \sigma_j)T_{ij}, S_{ij}T_{ij}, (\tau_{iz} + \tau_{jz})$, with isospin breaking $T_{ij} = 3\tau_{iz}\tau_{jz} - (\tau_i \cdot \tau_j)$

➢ Common phenomenological choices for $v(r_{ij})$ are of Yukawa or Gaussian form.
➢ Some Modern interaction are giving up locality, e. g. CD-Bonn is nonlocal. In general, however, the form of $v(r_{ij})$ ($v(p_{ij})$) is derived from chiral perturbation theory or meson exchange theory:

$$L_{N\pi^{i}N} = -g_{\pi^{i}}\overline{\psi}_{N}(i\gamma^{5}\tau_{i}\varphi_{\pi^{i}})\psi_{N}$$
$$v_{5}(r) = T_{m_{\pi}}(r) = \left(1 + \frac{3}{m_{\pi}r} + \frac{3}{(m_{\pi}r)^{2}}\right)\frac{\exp(-m_{\pi}r)}{m_{\pi}r}$$

The 2-body to A-body problem!

2<A<5 Nuclear Systems

The highly accurate modern NN-interactions fail for 2<A<5

TABLE V. Two- and three-nucleon bound-state properties. (Deuteron binding energy B_d ; asymptotic S state A_S ; asymptotic D/S state η ; deuteron radius r_d ; quadrupole moment Q; D-state probability P_D ; triton binding energy $B_{t'}$)

	$N^{3}LO^{a}$	CD-Bonn [10]	AV18 [22]	Empirical ^b	
Deuteron					
B_d (MeV)	2.224575	2.224575	2.224575	2.224575(9)	
$A_{\rm S}({\rm fm}^{-1/2})$	0.8843	0.8846	0.8850	0.8846(9)	
η	0.0256	0.0256	0.0250	0.0256(4)	
$r_{d}(fm)$	1.978 ^e	1.970 ^e	1.971 ^e	1.97535(85)	
$Q(\text{fm}^2)$	0.285 ^d	0.280 ^d	0.280 ^d	0.2859(3)	
$P_D(\%)$	4.51	4.85	5.76		
Triton					
B_t (MeV) ^e	7.855	8.00	7.62	8.48	
^a This work.					

^bSee Table XVIII of Ref. [10] for references.

^cWith meson-exchange currents (MEC) and relativistic corrections (RC) [42].

^dIncluding MEC and RC in the amount of 0.010 fm².

^eAs obtained in a charge-dependent 34-channel Faddeev calculation applying only 2N forces.

Entem& Machleidt, Phys. Rev. C 68, R041001(2003)

TABLE V. Binding energies of light nuclei (in MeV) for different Hamiltonians as computed by the variational Monte Carlo (VMC) method, with comparisons to relevant Green's function Monte Carlo (GFMC) results of Ref. [7] and Faddeev-Yakubovsky (FY) results of Ref. [18]. We also show FY results for the Nijmegen potential at the bottom. Different versions of the Tucson-Melbourne (TM) force are characterized by the cutoff parameter Λ shown in parentheses.

	perment	-0.402	-1.110	-20.235
Hamiltonian	Method	³ H	³ He	⁴ He
AV18	VMC	-7.50(1)	-6.77(1)	-23.70(2)
	GFMC	-7.61(1)	-6.87(1)	-24.07(4)
	FY	-7.623	-6.924	-24.28
AV18pq	VMC	-7.50(1)	-6.77(1)	-23.79(2)
AV8'	VMC	-7.65(1)	-7.01(1)	-24.69(2)
	GFMC	-7.76(1)	-7.12(1)	-25.14(2)
AV18/UIX	VMC	-8.29(1)	-7.53(1)	-27.58(2)
	GFMC	-8.46(1)	-7.71(1)	-28.33(2)
	FY	-8.478	-7.760	-28.50
AV18pq/UIX	VMC	-8.22(1)	-7.47(1)	-27.21(2)
AV8'/UIX	VMC	-8.51(1)	-7.86(1)	-29.05(2)
	GFMC	-8.68(1)	-8.03(1)	-29.82(2)
AV18/TM′(4.756)	VMC	-8.26(1)	-7.50(1)	-27.51(2)
	FY	-8.444	-7.728	-28.36
AV18pq/TM'(4.756)	VMC	-8.22(1)	-7.46(1)	-27.42(2)
AV8'/TM'(4.756)	VMC	-8.44(1)	-7.79(1)	-28.83(2)
Nijm I	FY	-7.736	-7.085	-24.98
Nijm II	FY	-7.654	-7.012	-24.56
Nijm I/TM(5.035)	FY	-8.392	-7.720	-28.60
Nijm II/TM(4.975)	FY	-8.386	-7.720	-28.54

Wiringa et. al, Phys. Rev. C 68,054006 (2003)

Nucleon Interaction from QCD (Chiral Perturbation Theory)

Chiral perturbation theory (χ PT) allows for controlled power series expansion

Would the NNN interaction be sufficient to describe nuclear structure?

NN versus NN+NNN in ¹⁰B & ¹¹B

ſ	10	11		Nucleus/property	Exp	$N^{3}LO+NNN_{A}$	$\rm N^{3}LO$
	8 ²⁺ ;1 B	$1/2^{-1/2}; 3/2$		$^{10}B: E(3^+,0) [MeV]$	64.751	64.027	55.613
ł	- -	5/2		$r_p \mathrm{[fm]}$	2.30(12)	2.168	2.224
	<u>`</u>			$Q(3^+_1,0) \; [e \; { m fm}^2]$	+8.472(56)	6.104	6.665
			/2; 3/2	$B(E2;1_1^+0 \to 3_1^+0)$	4.13(6)	0.356	4.003
	3+			$B(E2;1^+_20 \to 3^+_10)$	1.71(0.26)	2.771	N/A
		-		$B(GT;2_1^+1 \to 3_1^+0)$	0.083(3)	0.061	N/A
ł				$B(GT;2_2^+1 \to 3_1^+0)$	0.95(13)	1.559	N/A
	4 ⁺ , 1 ² / 2 ⁺ , 1 ²		5/2	rms(Exp-Th) [MeV]	-	0.875	1.333
	4 , 1	5/2	5/2	$^{11}B: E(\frac{3}{2},\frac{1}{2}) [MeV]$	76.205	76.704	67.293
	2+4	8		$r_p(\frac{3}{2}\frac{1}{1}\frac{1}{2})$ [fm]	2.24(12)	2.141	2.196
	<u>4</u> <u>2</u> ⁺ ; 1		5/2	$Q(rac{3}{2}rac{1}{1}rac{1}{2}) \; [e \; { m fm}^2]$	+4.065(26)	3.085	2.989
$\left \right $	3	_		$\mu(rac{3}{2}rac{1}{1}rac{1}{2})[\mu_N]$	+2.689	2.040	2.597
	2 ⁺			$ E(\frac{1}{2},\frac{1}{2}) $ [MeV]	74.080	75.353	67.254
	4	- 7/2		$\mu(\frac{1}{2} \frac{1}{1} \frac{1}{2})[\mu_N]$	-	-0.350	-0.490
ſ				$B(E2; \frac{3}{2}_{1}^{-1} \frac{1}{2} \rightarrow \frac{1}{2}_{1}^{-1} \frac{1}{2})$	2.6(4)	1.507	0.750
		3/2	7/2	$B(GT; \frac{3}{2_1}; \frac{1}{2} \to \frac{3}{2_1}; \frac{1}{2})$	0.345	0.222	0.663
+	2+	4 5/2		$B(GT; \frac{3}{2_1}, \frac{1}{2}, \frac{1}{2_1}, \frac{1}{2}, \frac{1}{2_1}, \frac{1}{2})$	0.440	0.435	0.841
	Q ⁺ ; 1 [*] , 1 [*]			$B(GT; \frac{3}{2}_{1}^{-1} \frac{1}{2} \to \frac{5}{2}_{1}^{-1} \frac{1}{2})$	0.526	0.479	0.394
		-	5/2	$B(GT; \frac{3}{2}_{1}^{-1} \frac{1}{2} \rightarrow \frac{3}{2}_{2}^{-1} \frac{1}{2})$	0.525	0.727	0.574
	1 0';1		3/2	$B(GT; \frac{3}{2}_{1}^{-1} \frac{1}{2} \rightarrow \frac{5}{2}_{2}^{-1} \frac{1}{2})$	0.461	0.899	0.236
	0			rms(Exp-Th) [MeV]	-	0.950	1.765
┟	<u> </u>	1/2					
	3	0					
	<u></u> +	3/2	1/2				
ľ	3 1						
	N [°] LO+NNN _A Exp N3LO	N ³ LO+NNN _A Exp N3LO					

Petr Navratil, V. G. Gueorguiev, J. P. Vary, W. E. Ormand, and A. Nogga, Phys. Rev. Lett. **99**, 042501 (2007), (nucl-th-0701038).

NN versus NN+NNN in ¹²C & ¹³C

Petr Navratil, V. G. Gueorguiev, J. P. Vary, W. E. Ormand, and A. Nogga, Phys. Rev. Lett. **99**, 042501 (2007), (nucl-th-0701038).

What about the A-body interaction in heavy nuclei?

V. G. Gueorguiev, Feng Pan and J. P. Draayer, (nucl-th-0403055)

"Application of the extended pairing model to heavy isotopes",

The European Physical Journal A, Vol. 25 No. Supplement 1 (September 2005) p.515.

Effective Hamiltonian in Second Quantized Form

$$H_{eff} = \sum_{\alpha} \varepsilon_{\alpha} a_{\alpha}^{\dagger} a_{\alpha} + \dots + \sum_{k=1}^{A} \frac{1}{(k!)^{2}} \sum_{\substack{\alpha_{1} \neq \dots \neq \alpha_{k} \\ \alpha_{k+1} \neq \dots \neq \alpha_{2k}}} V_{\alpha_{1} \dots \alpha_{2k}} a_{\alpha_{1}}^{\dagger} \dots a_{\alpha_{k}}^{\dagger} a_{\alpha_{k+1}} \dots a_{\alpha_{2k}}$$

Calculating 3-body effective interactions is difficult, however doable, and essential in understanding the structure of light nuclei! P. Navratil and W. E. Ormand, Phys. Rev. C 68, 034305(2003).

➢ In principle, A-body effective Hamiltonians can be calculated from realistic interactions, but their applications are yet ahead!

Need for exactly solvable models to understand possible implications of the A-body effective interactions!

Extended Pairing Problem

The Standard Pairing Problem $\hat{H} = \sum_{j} \varepsilon_{j} n_{j} - \sum_{jj'} c_{jj'} A_{j}^{+} A_{j'}^{-},$ $A_{j}^{+} = \sum_{m>0} (-)^{j-m} a_{jm}^{+} a_{j-m}^{+}.$

Exactly solvable cases:

- Constant pairing $c_{jj'}=G$ with non-degenerate single particle energies $\varepsilon_j \neq \varepsilon_{j'}$ R. W. Richardson, *Phys. Lett.* 5, 82 (1963).
- Separable pairing $c_{jj'}=c_jc_{j'}$ with degenerate single particle energies $\varepsilon_j = \varepsilon_{j'}$ F. Pan, J. P. Draayer, W. E. Ormand, *Phys. Lett.* B 422, 1 (1998).
- Arbitrary Simple Lie algebra based Richardson-Gaudin models with non-degenerate single particle energies, including proton-neutron pairing, J. Dukelsky, V.G. Gueorguiev, P. Van Isacker (PRL96,072503(2006)).

Algebraic Models

- Standard pairing is actually an SU(2) RG-model.
- Proton-neutron T=1 pairing is SO(5) RG-model.
- > One can "easily" solve such RG-models exactly.
- > Possible **applications**:
 - Nuclear physics,
 - Condensed matter (superconductivity),
 - High energy physics (pairing in quarks).
- Generalized Richardson-Gaudin models are new interesting set of exactly solvable algebraic models.

rank	<i>A_n su</i> (n+1)	<i>B_n</i> so(2n+1)	<i>C_n sp</i> (2n)	<i>D_n</i> so(2n)
1	<i>su</i> (2) pairing	so(3)~su(2)	sp(2) ~su(2)	so(2) ~u(1)
2	<i>su</i> (3) Elliott	so(5) pn- pairing	sp(4) ~so(5)	so(4) ~su(2)⊕su(2)
3	<i>su</i> (4) Wigner	so(7)⊂so(8) FDSM	<i>sp</i> (6) Rowe & Rosensteel	so(6)~su(4)
4	<i>su</i> (5)	so(9)	<i>sp</i> (8)	<i>so</i> (8) Evans, FDSM

T=1 Proton-Neutron Pairing SO(5) RG-model

- Nucleon pairs: $b_{-1}^+ = n^+ \overline{n}^+, \ b_{+1}^+ = p^+ \overline{p}^+, \ b_0^+ = (n^+ \overline{p}^+ + p^+ \overline{n}^+)/\sqrt{2}$
- u(1)xsu_T(2) algebra:

$$\begin{split} T_{+1} &= (p^{+}n + \overline{p}^{+}\overline{n})/\sqrt{2}, \ T_{-1} &= (n^{+}p + \overline{n}^{+}\overline{p})/\sqrt{2} \\ T_{0} &= (p^{+}p + \overline{p}^{+}\overline{p})/2 - (n^{+}n + \overline{n}^{+}\overline{n})/2 \\ N &= p^{+}p + \overline{p}^{+}\overline{p} + n^{+}n + \overline{n}^{+}\overline{n} \end{split}$$

Pairing Hamiltonian:

$$H = \sum_{\rho=p,n} \sum_{jm} \varepsilon_j (\rho_{jm}^+ \rho_{jm} + \overline{\rho}_{jm}^+ \overline{\rho}_{jm}) - g \sum_{\mu=-1,0,1} \sum_{j,m} b_{\mu,jm}^+ b_{\mu,jm}$$

Generalized Richarsdon equations:

$$\frac{1}{g} = \sum_{i} \frac{\Omega^{i}}{z_{i} - e_{\alpha}} + 2\sum_{\beta(\neq\alpha)}^{N} \frac{1}{e_{\alpha} - e_{\beta}} + \sum_{\gamma=1}^{N-T} \frac{1}{w_{\gamma} - e_{\alpha}},$$
$$0 = \sum_{\alpha=1}^{N} \frac{1}{e_{\alpha} - w_{\gamma}} + \sum_{\delta(\neq\gamma)}^{N-T} \frac{1}{w_{\gamma} - w_{\delta}}, E = \sum_{\alpha=1}^{N} e_{\alpha}$$

Extended Pairing Model
$$H_{eff} = \underbrace{\sum_{\alpha} \varepsilon_{\alpha} a}_{\alpha} a_{\alpha} + \dots + \sum_{k=1}^{A} \frac{1}{(k!)^{2}} \underbrace{\sum_{\alpha_{1} \neq \dots \neq \alpha_{k}} V_{\alpha_{1} \dots \alpha_{2k}}}_{\alpha_{k+1} \neq \dots \neq \alpha_{2k}} a_{\alpha_{1}}^{+} \dots a_{\alpha_{k}}^{+} a_{\alpha_{k+1}} \dots a_{\alpha_{2k}}$$

> Nilsson single particle energies ε_{jm} play the role of 1-body effective Hamiltonian that takes into account the nuclear deformation due to the Q·Q interaction.

 $\succ Simplifying assumption: equal coupling between <u>different</u>$ <u>configurations</u>: <math display="block">V = V = V

$$V_{\alpha_1\alpha_2} = V_{\alpha_1\alpha_2\alpha_3\alpha_4} = V_{\alpha_1\dots\alpha_{2A}} = G$$

> The RESULT is Exactly solvable Hamiltonian:

F. Pan, V. G. Gueorguiev, J. P. Draayer, Phys. Rev. Lett. 92, 112503 (2004).

$$\hat{H} = \sum_{i} \varepsilon_{i} n_{i} - G \sum_{ij} b_{i}^{\dagger} b_{j} - G \sum_{k=2}^{A} \frac{1}{(k!)^{2}} \sum_{i_{1} \neq \dots \neq i_{2k}} b_{i_{1}}^{\dagger} \dots b_{i_{k}}^{\dagger} b_{i_{k+1}} \dots b_{i_{2k}}, \quad b_{i}^{\dagger} = a_{i\uparrow}^{\dagger} a_{i\downarrow}^{\dagger}$$

Bethe Ansatz,

Wavefunction: $|k,\varsigma;j_1...j_m\rangle \propto \sum_{i_1 < \cdots < i_k} C^{(\varsigma)}_{i_1i_2...i_k} b^+_{i_1} \dots b^+_{i_k} |j_1,j_2...j_m\rangle$

$$C_{i_1\dots i_k}^{(\varsigma)} = \frac{1}{z^{(\varsigma)} - 2\sum_{n=1}^k \varepsilon_{i_n}} \qquad b_i |j_1\dots j_m\rangle = 0 \text{ if } i \neq j_s$$
$$b_i^+ |j_1\dots j_m\rangle = 0 \text{ if } i = j_s$$

Bethe Ansatz Equation:

$$\sum_{i_1 < \dots < i_k} \frac{G}{2\sum_{n=1}^k \varepsilon_{i_n} - z^{(\varsigma)}} = 1$$

Eigenenergy:
$$E_{k}^{(\varsigma)} = z^{(\varsigma)} - G(k-1)$$

Solving the Equations

Extended Pairing for Nuclei

- Nilsson levels using nuclear deformation (Audi & Wapstra (1995)).
- Pauli blocking for odd A nuclei.
- Set the scale of the single particle energies from near closed shell system... (Nilsson BE is 3/4 E filling, *Ring & Schuck*)

Binding Energy of the Yb Isotopes

Binding Energy of the Sn Isotopes

Binding Energy of the Pb Isotopes

Binding Energy of the Pb Isotopes

Binding Energy of the Sn Isotopes

>The Extended Pairing model gives reasonable results...

Many-body interactions beyond two- & three- body!

A-body interaction in nuclei

Start getting used to the idea that we may need A-body interactions to understand nuclear properties across the nuclear chart...

Write your codes with A-body interactions in mind!

Q&A about C_D - C_E curve, Λ , and the NNN interaction terms...

Nucleon Interaction from QCD (Chiral Perturbation Theory)

Chiral perturbation theory (χ PT) allows for controlled power series expansion

Lambda=550 MeV

Lambda=500 MeV

³H, ³He, and ⁴He Binding Energy

First values for {C_D,C_E}=({-1.11,-0.66}, {8.14,-2.02}) by A. Nogga et al, Nucl. Phys. A737, 236 (2004) in momentum space with Exp[-((p^2+q^2)/ Λ^2)²] cut-off function. We keep the same regulator for the contact terms but use Exp[-((Q^2)/ Λ^2)²] cut-off function for the V_{2 π} and work in coordinate space.

Along the appropriate curve, all C_D-C_E points reproduce BE of ³H & ³He within 0.1 keV. Our { C_D,C_E } points for N3LO were deduced in N_{max}=16 model space for ⁴He: {0.476,-0.167}_A and {7.686,-0.949}_B.

Along the C_D-C_E Curve (average)

BE deviation is within the accuracy of the kinetic energy for equal mass nucleons $m_n = m_p = 2\mu_{pn}$.

$$\delta T = T \frac{\delta m}{m} \approx 26 keV (\approx 37 \times 0.7 \times 10^{-3})$$

3N-contact $\langle V_F \rangle > 0$ (less binding)

2N contact 1 π -exchange, $\langle V_D \rangle$ {-,+,-}

 2π -exchange $\langle V_{2\pi} \rangle < 0$ (more binding)

T=3/2 channel has been neglected in the calculations.

³H and ³He Charge Radii

$$R_{ch}^{2} = r_{p}^{2} + R_{p}^{2} + \left(\frac{N}{Z}\right)R_{n}^{2}$$

 $R_p = \{0.854, 0.875, 0.895\}$ [fm] $R_n^2 = \{-0.12, -0.11\}$ [fm²] Relating the theoretical point proton radius r_p to the experimental charge radius R_{ch} is very sensitive to the chosen proton charge radius R_p .

⁴He Charge Radius

Point A gives definitely better charge radius for ⁴He.

Along the C_D-C_E Curve (average)

BE deviation is within the accuracy of the kinetic energy for equal mass nucleons $m_n = m_p$.

$$\delta T = T \frac{\delta m}{m} \approx 26 keV (\approx 37 \times 0.7 \times 10^{-3})$$

$$m=(Zm_p+(A-Z)m_n)/A$$

PRC60, 044304(1999) G. P. Kamuntavicius, P. Navratil, B. R. Barrett,G. Sapragonaite, and R. K. Kalinauskas

T=3/2 channel has been neglected in the calculations.

ab-initio no core with QCD derived nuclear interaction

- Pushing the limits using the full N³LO,
- We may need codes with explicit $m_p \& m_n$.
- We will need efficient A-body codes.