
The New World Out There:
Beyond the Two-Body Interaction

in Many-Body Systems

• Nuclear Models
• Choice of Interaction

- The 2-body interaction problem
- QCD derived nuclear interaction to the rescue

• Are A-body interactions important?
- Extended pairing interaction
- Application to heavy nuclei

• Q&A about CD-CE curve, Λ, and the NNN
interaction terms…

Vesselin Gueorguiev UC Merced



Simple Models, when applicable, Help
Understand Complex Systems

 Liquid Drop Model (key: nuclear surface R(θ,ϕ)=R0(1+αλµYλµ(θ,ϕ))

 Fermi Gas Model (key: particle statistics)

 Energy-Density Functional (key: framework reformulation)

 Independent Particles in a Mean Field
• Harmonic Oscillator, Square Well (key: exactly solvable)

• Nilsson Model (key: nuclear deformation & spin-orbit interaction)

• Wood-Saxon (key: finite range, diffuse surface, spin-orbit term)

 Microscopic Shell Models - “Deriving the Mean Field’’
• Self-consistent Mean Field (Hartree-Fock)
• Algebraic Models (key: exactly solvable -- Lie algebra based)
• Spherical Shell-Model with Realistic Interactions (key: matrix

elements are adjusted to reproduce the available nuclear structure data)
 Ab-initio No-Core Shell Model (key: highly accurate interactions fitted

to nucleon-nucleon data, properties of A-body systems are derived from the
few-body interactions)

• Other methods for few- and many-body systems (Monte-
Carlo methods, Coupled-clusters, cluster models …)



Nuclear Shell-Model Hamiltonian
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 Spherical shell-model basis states are eigenstates of the one-
body part of the Hamiltonian - single-particle states.

 The two-body part of the Hamiltonian H is dominated by the
quadrupole-quadrupole interaction Q·Q ~  C2 of SU(3).

 SU(3) basis states - collective states - are eigenstates of H for
degenerate single particle energies ε and a pure Q·Q interaction.



pre-XXI century NN-Potentials

 Common phenomenological choices for ν(rij) are of Yukawa or Gaussian form.
 Some Modern interaction are giving up locality, e. g. CD-Bonn is non-
local. In general, however, the form of ν(rij) (ν(pij) ) is derived from chiral
perturbation theory or meson exchange theory:

Usual NN-potentials are combination of:
Central scalar potential + spin-orbit (LS) + tensor force Sij
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The 2-body to A-body
problem!



2<A<5 Nuclear Systems

Entem& Machleidt, Phys. Rev. C 68, R041001(2003)  

The highly accurate modern 
NN-interactions fail for 2<A<5

Wiringa et. al, Phys. Rev. C 68,054006 (2003)

Experiment    -8.482       -7.718     -28.295



Nucleon Interaction from QCD
(Chiral Perturbation Theory)

 R. Machleidt,  D. R. Entem, nucl-th/0503025 

Chiral perturbation theory (χPT) allows for controlled power series expansion
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Expansion parameter :  
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,  Q+momentum transfer, 

"# ,1 GeV ,  # - symmetry breaking scale

NNN - potentials such as Tucson-Melbourne & Urbana

Terms suggested within the
Chiral Perturbation Theory 

Regularization is essential, which is quite
obvious within the Harmonic Oscillator
wave function basis.



Would the NNN interaction be
sufficient to describe nuclear

structure?



NN versus NN+NNN in 10B & 11B

Petr Navratil, V. G. Gueorguiev, J. P. Vary, W. E. Ormand, and A. Nogga,

Phys. Rev. Lett. 99, 042501 (2007), (nucl-th-0701038).



NN versus NN+NNN in 12C & 13C

Petr Navratil, V. G. Gueorguiev, J. P. Vary, W. E. Ormand, and A. Nogga,

Phys. Rev. Lett. 99, 042501 (2007), (nucl-th-0701038).



What about the
A-body interaction in

heavy nuclei?
Pb

Yb

Sn

V. G. Gueorguiev, Feng Pan and J. P. Draayer, (nucl-th-0403055)

“Application of the extended pairing model to heavy isotopes”,

The European Physical Journal A, Vol. 25 No. Supplement 1 (September 2005) p.515.



Effective Interactions in a
Finite Model Space

H
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Effective Hamiltonian
in Second Quantized Form
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 Need for exactly solvable models to understand possible
implications of the A-body effective interactions!

 Calculating 3-body effective interactions is difficult, however
doable, and essential in understanding the structure of light
nuclei! P. Navratil and W. E. Ormand, Phys. Rev. C 68, 034305(2003).

 In principle, A-body effective Hamiltonians can be calculated
from realistic interactions, but their applications are yet ahead!



Extended Pairing Problem



The Standard Pairing Problem
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 Exactly solvable cases:

  Constant pairing cjj’=G with non-degenerate single particle energies
εj ≠εj’ R. W. Richardson, Phys. Lett. 5, 82 (1963).

  Separable pairing cjj’=cjcj’ with degenerate single particle energies εj
=εj’ F. Pan, J. P. Draayer, W. E. Ormand, Phys. Lett. B 422, 1 (1998).

  Arbitrary Simple Lie algebra based Richardson-Gaudin models with
non-degenerate single particle energies, including proton-neutron pairing, J.
Dukelsky, V.G. Gueorguiev, P. Van Isacker (PRL96,072503(2006)).



Algebraic Models
 Standard pairing is actually an SU(2) RG-model.
 Proton-neutron T=1 pairing is SO(5) RG-model.
 One can “easily” solve such RG-models exactly.
 Possible applications:

 Nuclear physics,
 Condensed matter (superconductivity),
 High energy physics (pairing in quarks).

 Generalized Richardson-Gaudin models are new interesting set of
exactly solvable algebraic models.

so(8) Evans,
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T=1 Proton-Neutron Pairing
SO(5) RG-model

 Nucleon pairs:

 u(1)xsuT(2) algebra:

 Pairing Hamiltonian:

 Generalized Richarsdon equations:
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Extended Pairing Model

 Nilsson single particle energies εjm play the role of 1-body
effective Hamiltonian that takes into account the nuclear
deformation due to the Q·Q interaction.

  

! 

V"
1
"
2

=V"
1
"
2
"
3
"
4

=V"
1
K"

2A

=G

Simplifying assumption:  equal coupling between different
configurations:

 The RESULT is Exactly solvable Hamiltonian:
F. Pan, V. G. Gueorguiev, J. P. Draayer, Phys. Rev. Lett. 92, 112503 (2004).
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Bethe Ansatz
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Solving the Equations
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e1=1.179
e2=2.650
e3=3.162
e4=4.588
e5=5.006
e6=6.969
e7=7.262
e8=8.687
e9=9.899
e10=10.20

5 pairs in
10 levels



Extended Pairing for Nuclei

Pb

Yb

Sn

Zero BE Reference

Zero BE Reference

• Nilsson levels using nuclear deformation (Audi & Wapstra (1995)).
• Pauli blocking for odd A nuclei.
• Set the scale of the single particle energies from near closed
shell system… (Nilsson BE is 3/4 E filling, Ring & Schuck)



Binding Energy of the Yb Isotopes
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even A : G(A) = exp 662.2247 " 7.7912A + 0.0226A2( )
odd A :G(A) = exp 716.3279 " 8.4049A + 0.0244A2( )



Binding Energy of the Sn Isotopes
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even A : G(A) = exp 365.0584 " 6.4836A + 0.0284A2( )
odd A :G(A) = exp 398.2277 " 7.0349A + 0.0307A2( )



Binding Energy of the Pb Isotopes
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even A : G(A) = exp 382.3502 " 4.1375A + 0.0111A2( )
odd A :G(A) = exp 391.6113" 4.2374A + 0.0114A2( )



Binding Energy of the Pb Isotopes
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G(A) =
366.7702

Dim(A)
0.9972



Binding Energy of the Sn Isotopes
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Extended Pairing
Pb

Yb

Sn
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G(A) ~
"

Dim(A)

! 

log(G(A))

 Has nice and interesting systematic behavior!

The Extended Pairing model gives reasonable results…

Many-body interactions beyond two- & three- body!



A-body interaction in nuclei

 Start getting used to the idea that we may
need A-body interactions to understand nuclear
properties across the nuclear chart…

Write your codes with A-body interactions in
mind!



Q&A about CD-CE curve, Λ, and the
NNN interaction terms…



Nucleon Interaction from QCD
(Chiral Perturbation Theory)

 R. Machleidt,  D. R. Entem, nucl-th/0503025 

Chiral perturbation theory (χPT) allows for controlled power series expansion
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Expansion parameter :  
Q

"#

$ 

% 
& & 

' 

( 
) ) 

*

,  Q+momentum transfer, 

"# ,1 GeV ,  # - symmetry breaking scale

NNN - potentials such as Tucson-Melbourne & Urbana

Terms suggested within the
Chiral Perturbation Theory 

Regularization is essential, which is quite
obvious within the Harmonic Oscillator
wave function basis.









Lambda=550 MeV



Lambda=500 MeV



3H, 3He, and 4He Binding Energy

Along the appropriate curve, all CD-CE points reproduce BE of 3H & 3He
within 0.1 keV. Our {CD,CE} points for N3LO were deduced in Nmax=16 model
space for 4He: {0.476,-0.167}A and {7.686,-0.949 }B.

A

B

First values for {CD,CE}=({-1.11,-0.66}, {8.14,-2.02}) by A. Nogga et al, Nucl. Phys. A737, 236 (2004)
in momentum space with Exp[-((p2+q2)/Λ2)2]  cut-off function. We keep the same regulator for the
contact terms but use Exp[-((Q2)/Λ2)2] cut-off function for the V2π and work in coordinate space.

A B



Along the CD-CE Curve (average)
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"T = T
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m
# 26keV (# 37 $ 0.7 $10

%3
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BE deviation is within the accuracy
of the kinetic energy for equal mass
nucleons mn=mp=2µpn.

3N-contact 〈VE〉 >0 (less binding)

2N contact 1π−exchange, 〈VD〉 {-,+,-}

2π−exchange 〈 � �V2π〉 < 0 (more binding)

T=3/2 channel has been neglected in the calculations.



3H and 3He Charge Radii
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4He Charge Radius

 Point A gives definitely better charge radius for 4He.

A
B



Along the CD-CE Curve (average)
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BE deviation is within the accuracy
of the kinetic energy for equal mass
nucleons mn=mp.

T=3/2 channel has been neglected in the calculations.

m=(Zmp+(A-Z)mn)/A

PRC60, 044304(1999) G. P. Kamuntavicius, P.
Navratil, B. R. Barrett,G. Sapragonaite, and R.
K. Kalinauskas



ab-initio no core with
QCD derived nuclear

interaction
• Pushing the limits using the full N3LO,
• We may need codes with explicit mp & mn.
• We will need efficient A-body codes.


