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Motivation

Status of current EDFs
B Lack predictive power in unknown regions

B No spectroscopic-quality EDF with the standard parameterization

B What can be missing from current functionals ?
B no explicit pion physics
B unclear connection to 3-body (and higher) body forces
B pairing not treated on same footing

B no way to estimate theoretical uncertainities

B Both form and couplings might need improvement

B Partial answer: more emphasis on microscopy 7

Derive the complete EDF?




Augment and not derive!

B EDF from HF+ MBPT with x—EFT NN/NNN (pion-phys.)

B A quasi-local/Skyrme-like EDF is required

B Connect with phenomenology
B Provide improvement to the already existing Skyrme-EDFs
B Easier to treat numerically

B Non-locality emerges as an interface problem
B At the NN HF level, non-locality due to exchange terms

B Typical exchange terms from HF (NN)
W From central [ di dy Ve(r) pq(T1,72) py (T2,71)
B From central/tensor fd?l dry Vi(r)3q(T,72) - Sy (T2,71)

B From spin-orbit f dr1 d7o Vso(r)3¢(T1,72) - T X Vs Py (72,71)

B Three body contributions (HF) typically three non-local/local densities

B A method to approximate the non-locality with local quantities



DME basics PSA formulation of DME for sc

Outline

© DME
o DME basics

o PSA formulation of DME for scalar part in TRI
@ Result

@ PSA formulation of DME for vector part in TRI
@ Result
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The one-body density matrix (DM)

B The normal/anomalous parts of the generalized one-body DM

oq)|®)

pFoqi'a'd) = (@] q)c(F
c(Foq)|®

C
K(Foq,i'a'qd) = (®|c(F'5 q)c(

~

B Scalar/Vector ) Isoscalar/Isovector decomposition e.g.

L, 1 - e o _
pq(TO',T‘/O'/) = 1 {PO(Tﬂ"/) door + SO(T’T/)'UUU’ + (_1)1/2 q[0—> 1]}

B Dominant leading order MBPT contributions
B Hartree and Fock diagrams — &€ [p]

B Bogoluibov diagrams — &£ [K,K*]
B Highly nonlocal, no direct connection to local/Skyrme EDFs
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DME DME basics PSA formulation of DME for s

DME objectives and PSA

B Introduced by Negele and Vautherin in 1972

DME in a nutshell

B Expand the DM (scalar/vector) in terms of factorized local densities

W pg(7,7) = 32, Mn(kpr){On(

Isqrr ZHnF On(l_%
B Local densities O (R) = [pq(R), Vpg(R), Apg(R), Jo(R) ]

Phase Space Averaging

B Constructive method to fix the II,, functions

B Isolate the operator that results in the non-locality

B Average the action of the operator in a model phase space

v
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The challenge for the scalar part!

-

B A separable approximation to pg(71,7) with pg(R), 74(R), Apg(R) ...!
B Densities from converged calc. of Pbh'8Y using Sly4 functional
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PSA for scalar part

B Isolate the operator that results in the non-locality

L7 o7 v (91-93)
pq<R+g,R—g> = & > i (Fog) pilfaoq)

1,0

T1I=7r2=

B Angle-averaging over the orientation of 7

B Expand operator about arbitrary —k? rather than 0

o L 4 .2
F<(v12v2)2> :jo(kr)+2%j1(kr) [(W) +k2} + oo

B What to do with & 7



PSA for scalar part contd.

Phase space model of Negele and Vautherin =INM phase space

B Provides PSA formulation of the original DME (Negele-Vautherin)

= 1, = 1, = 1 - - 3 9 -
pa(Rrt 7R 0F) = TI5(Q)pg() +115(0) (zAMR) () + ngpqm))
371 (kpr 3575 (krr
Q=kpr  Tfkpr)=20E0 1 (kpr) = 70-72}%;”
B Finite Fermi systems have smeared out (diffuse) Fermi surface
(Durand. et.al.)
T (Mev) Figure: The effective Fermi energy
15 ©(R) and the temperature T(R) as
deduced by fitting the Fermi function
10 to the momentum distribution in
A=184 model nucleus. Around the
surface, T' = 7(MeV) implies a large
5 effect. .
F(R,B) = (1+exp{e, —u(R)}/ T(R))
0 R (fin) 2
0 2 4 6 8 10 12 ep =p*/(2m)



PSA for scalar part contd.

Phase space model for II-DME =A diffuse Fermi surface
B Realistic phase space distribution for FFS (Fermi function)

. = 1 = =3 =
F) = T pg(7)+TIE(@) (Zqum) — () + gkl%“ﬂq(R))
The various m—functions read

(akEr®—26(28430)) a2 49
268 (3a+203)

1’ = o
9 2ijl(kFT)

P
Iy =

B Parameters o and 3 characterize the phase space distribution

B Very weak dependence on the number of nucleons

How do the two models compare (non/and with self-consistency)?

B Profile reproductions

B Integrated contributions




DME basics PSA formulation of DME for scalar pa

DME

Result for the scalar part of the DM

B Comparison of [ dQrpq(71,72) pe(72,71)

B Densities from converged calc. of Pbh'8Y using Sly4 functional

NVDME

Exact angle average
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00 00
B Qualitatively, satisfactory agreement! cE
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DME basics PSA formulation of DME for scalar pa

DME

Result for scalar contd.

B Comparison of [ dQrpq(71,72) pe(72,71)

B Densities from converged calc. of Pbh'8Y using Sly4 functional

Exact angle average NV—DME with fourth order
10
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B Qualitatively, satisfactory agreement! B
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DME basics PSA formulation of DME for scalar pa

DME

Result for the scalar contd.

B Comparison of [ dQrpq(71,72) pe(72,71)

B Densities from converged calc. of Pbh'8Y using Sly4 functional

Exact angle average PI-DME
10 10
8 8
£ c
6o 69
2 g
1g a8
& o
= =
[+ o]
2 2
00 00
B Qualitatively, satisfactory agreement! cE
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DME s PSA formulation of DME for scalar pa

Result for the scalar contd.

m % error for [ dR d7 V(r) pg(71,72)pe(Ta, ) and its DME
B Gogny interaction
B Cr-chain using Sly4 functional

100+
Cr chain
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Slight improvement regarding the integrated contribution
~ 6 — 7% residual error for NV-DME
~ 2 — 3% residual error for II-DME "5

o

Holds throughout the nuclear mass table s

Gebremariam Biruk Towards Microscopically Enriched and Constrained



DME

Result for the scalar contd.

B % error for fdl_% dr V(r) pe(71,72)pqe(72,71) and its DME

B Pion-exchange potential
B Cr-chain using Sly4 functional

Cr chain

Legende
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~ 6 — 7% residual error for NV-DME
~ 2 — 3% residual error for I-DME
Holds throughout the nuclear mass table

Slight improvement regarding the integrated contribution

s PSA formulation of DME for scalar pa

R
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DME DME basics PSA formulation of DME for scalar pa

Self-consistent DME vs Exchange only DME vs Exact HF (on going!)

Table: E/A for Full DME, Exchange only DME, Exact HF (MeV) for
Brink-Boeker force (NV-DME)

element Full DME Exchange only DME Exact HF

150 -6.204 -5.600 *
g -8.526 7516 *
B Cq -7.447 -6.625 *
7y -9.339 -8.388 *

B Quoting previous works Error in the binding energy ~ 10%, in
exchange only reduces it to ~ 2%, too large radii and smooth density

y

conclusion on DME

B Quite good for the scalar part (non-local) of the DM
B Not so good for the local scalar density (implication for NNN)

Ongoing work -comparison with complete/realistic interaction! ® 5
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The challenge for the vector part!

B A separable approximation to 34(71,72) with Jg 0 (71)...!

B Densities from converged calc. of P

Exact angle average
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-
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using Sly4 functional
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PSA for vector part

B The same set of steps as for the scalar part( with subtle differences)

B Isolate the operator that results in the non-locality

R+ g R-7

2 .
10102

L P 7 7 =18 ST
( r 7“) _ ezr~k Z <0’1|5"|0'2>6T [Q(VI Va) Zk] %?(Flalq)@i(FQUZQ)

where k is an arbitrary vector.
B Expand the operator (Taylor series) and keep the first non-zero

(7

B What to do with & ?
B Different choices yield different Hf functions

gq(ﬁc+ ) ~ 2115 (rkp) 7 x J4(R)
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yR—
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PSA for vector part contd.

B Dominant contribution from around Fermi surface

B Average over the orientation of 1_5
B Set k= kp (use LDA choice)

A (f%+

B Finite Fermi systems have anisotropic Fermi surface
(Bulgac et. al., Durand et. al.)

N3y

,R_g) = L jo(rke) 7 Ty )

n

3.0
Figure: The anisotropy of

2.5 momenta as a function of the
R for different diffusivities of

2.0 the potential and model
nucleus A=184. Wood’s saxon

L5 potential diffusivity a = 0.4
blue and a = 0.67 red curves.

Lo T]ZAPH/APL

0.5 o R (fm)



PSA for vector part contd.

Phase space model for [I-DME =Anisotropic Fermi surface

B Realistic phase space distribution for FFS (Fermi function)
B Anisotropy quantified by local quadrupolar deformation (Pa(r))

B Use either the Husimi (Bulgac et. al.)/Wigner distributions

J dB[3-5) ~ ] H(7.5) _ {32@0 (75)"¢i(Foq)
Jasrn@n Ly, [Veiioq)|

‘ 2

Py(r) = -1

B Universal feature of P2(r) in nuclei (FFS)

| I [
P{r} and Kf for Cr&6 ,’__,...-
=~ Figure: The quadrupolar

1.5
N‘\ deformation (blue) in the
N momentum distribution of a
sample nucleus Cr%. Note the
progression from spherical to

05 oblate and then prolate.
/ N Universal for all nuclei
) \\‘-\M investigated. Kp (red) plotted
0.0 for comparison.
R (fm)
0 2 4 6 8




DME DME basics PSA formulation of DME fo

PSA for vector part contd.

B Average k over a spheroid with quadrupole moment Q(R) = P2(R)
B Spheroid in k space with Q(R) fixed at each R

-

iR N . 2,3 .
. . i (B kwr ..
5, R+T7R—T> NEELRCF (CCIL PN -5
272) T2 (ker
where
i) = —=
c(R)

. 2(1+Q(é)))1/3
c¢(R) = _
() ( (2-Q(R))

W If spherical Fermi surface at all R — Q(R) =0, a(R) = 1and ¢(R) = 1

How do the models compare (non/and with self-consistency)?

B Profile reproductions @
B Integrated contributions [
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DME basics PSA formulation of DME for s

DME

Result for the vector part of the DM

B Comparison of fer 3q(71,72) - Sq(72,71)

B Densities from converged calc. of Pb2%® with Sly4 functional

Exact Angle Avg. NV-DME
10 10 10
8 8
= £
65 66
o )
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4 4y
o o
o Y
2 2
0 0
4 ,
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B NVDME does not work satisfactorly! /5
R
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DME basics PSA formulation of DME for sc

DME

Result for the vector part of the DM

B Comparison of fer 3q(71,72) - Sq(72,71)

B Densities from converged calc. of Pb2%® with Sly4 functional

Exact Angle Avg. INM Avg.
10 10
8 8
= £
=] g
6;3 E 6&»
R R
48 = 1¥
W ]
[ =
o 1
2 2
0 0
6 4 3]
R (fm) R (fm)
B Significant improvement with INM phase space! .
R
s
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s PSA formulation of DME for s

DME

Result for the vector part contd.

B Comparison of fdQT 3¢(71,72) - 3q(72,71)
B Densities from converged calc. of Pb2%® with Sly4 functional

Exact Angle Avg. PI-DME
10 10 10
8 8
£ 2
= ]
: °¢ 7 °8
ha’ Som 5]
H 4 :-{‘ = 4 ;:?
2 2,
° o
2 2
0 0
4 6 4 8 10
R (fm) R (fm)
B The most significant/consistent improvement with FFS phase space
R B

S,

B Holds throughout the nuclear mass table
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DME DME basics PSA formulation of DME for s

Result for the vector part contd.

B % error for fdf% d7 V(r)3q(71,72) - 3¢(72,71) and its DME

B Gogny interaction

~—

B Cr-chain using Sly4

50.0- ' i ' i ' i ' i ' -

o] Cr chain

40.0- ] - — Legende
1\ o —e— NV
. ¢ t| —~— PIDME

Percentage Error
= o W
o o ©O
o o o
; ; ;

B Significant improvement regarding the integrated contribution
RE

B Holds throughout the nuclear mass table
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DME DME basics PSA formulation of DME for s

Result for the vector part contd.

m % error for [ dR d7t V(1) 34(71,72) - 34(72,71) and its DME
B Pion-exchange potential

B Cr-chain using Sly4

50.0- g@’e 6\) [ Cr chain
- Q g A
= \ oo Legende
S 400- M‘//M N S
s 1 — 4 PIDME
30.0- r
Q
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00—+F
1Y
—10.0~ — e
8 26 34 50 58

B Significant improvement regarding the integrated contribution
RE

B Holds throughout the nuclear mass table
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Application to x-  Application to x—EET NN (N“LO) Applics

Outline

© Application to y—EFT NN + NNN (N2LO)
o Application to x—EFT NN (N2LO)
e Application to y—EFT NNN (N2LO)

R

R
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Application to x- Application to x— EET NN (N“LO) Applics

Basic points and hypothesis

B Long-range part of the interaction unmodified by RG evolution
B Add long-range physics using MBPT to existing functionals
B Currently derived lowest order (HF) from NN+NNN at N2LO

Hartree-Fock NN

Hartree-Fock NNN Figure: The set of diagrams

O currently calculated. Hartree
o me 6_0 and Fock from NN + NNN.

PR

SS—

Basic hypothesis (yet to be tested!)
R
B Functionals with explicit long-range physics >> current functionals :__
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Application to y—EFT NN (N2LO)

B x—EFT interactions: V = Veont + Var
B EFT NN interaction at N2LO

Ve = Vc+7'1~T2Wc+[
+rma W61 GG G+ i [ Vis+mm2 Wis] (61 +62) (4 xk)

)
s

Vg+11-m2 Ws]51’52+ [VT
(

B (O|V:|®) a functional of pg(#,7) and 5q(7,
B Direct application of the DME possible (in
B Resulting Skyrme-like functional for TRI

7
7 space)

ex [p] = Z / dR {App03 + AP pgg + AP pg Apg + AVPVP N pg Vg
— - 2 o -
+ AVP p, - Ty 4+ A7 Jq-Jq}
> / aR {Bpppqpq + BT pgrg + B” pg Apg + BV NV pg-Vpy
979

- - 2 5 -
+BY?'Vp, - Jy+ B’ Jq~J¢—1}



Application to x—EFT NN (N?LO) contd.

Long-range pion exchange contributions to the EDF

‘“JU m ! TTTf
— oa™
& 150 —— LoAF
3 — NLOA™
| Lo 100 - NLo AT
: £ — NNLOA™
3 » -= N bl
E z 5 NNLO A .
= 200 g sor T _—
E N :::::::;"“:::::jiz:_::.
. ]
3% 1% s -
2
& -
L 100 /—\
U_ -
1
150 Sk . -
P

Longest range ¥V <==> Strongest density dependence in EDF

Movel density-dependencies in EDF from 1m and 21 exchanges:

B R | -
pf)?'“%, 104;d$ pﬁf‘i’ Fﬁfog(l-l_cpzfj):




Application to x—EFT NNN (N2LO)

B EFT NNN (N2LO) contains E, D and C terms

(]

Vg = E(fi-fa+7-T3+73-71)
o= (M e T
n 03q'%qio;lg(h P )
o = (8) (bt
+ @ i 2mf2) (0;3 z3 5 F;‘fl T2 T?)ﬂ + @ i 37;1% (0(]1% j]:lm,%) g‘lgrg Tlﬂ

)



Application to x- Application to x—EFT NN (N“LO) Application to

Application to x—EFT NNN (N2LO) contd.

B V;y symmetrical w.r.t exchange of two particles
HF,di HF,1 HF 2
(O VAY|®) = (@ V@) + (@] Vi |9) + (2] Vi |®)

B Using a generalized density matrix: gi()_f7)_f/) = o(7oiqi, 7' 05q;)

. 1 Lo R o o
<V3HI§"d1r> = §T1“1Tr2Tr3/dT1dT‘2d7"3 gl(Xl)QQ(XQ)QB(Xg)Vzg
(V;{]\I;’lx> = —TrlTrgTrg/d?lngdi"ggl()_f'37)?1)92(}?2)93()?1,)?3)V23Pf§—

1 . Lo Lo
—§Tr1Tr2Tr3/dT1d7“2d7”3 o' (X1) 0% (X3, X2) 0® (X2, X3) Vo3 PS5

(Van ) = TrlTrzTTB/d?1d?2d?'391(5(27)?1)92()?37)?2)93()?1,)?3)
Va3 P33 Pig .

R
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Application to x—EFT NNN (N?LO) contd.

B Calculating (9| ngﬁr |®) involves tremendous spin-isospin algebra

B Well suited for automation with Mathematica

Three challenges for Mathematica automation

B Automating the spin-isospin algebra
B Rewriting interms of scalar/vector-isoscalar/isovector for DME
B Application of the DME itself

B e.g. Contribution to the exact HF from a piece of the C-term

2
HF,CR1,2x ga '\ <@t o 1 iG.(Fa—T)
= (24) 22 [ ardid ———djad
(Van ) <2f7r> fT?S/ T1dT 7“3/(%)6 G2dgse
B B
« ¢ld3-(Ta—T1) Q21q22q§1q§2 [eﬁwuu(_% S it
(g5 +m3) (g3 +m3) s

+5ﬁ2/£2 5’}’2/‘3 + 6ﬁ2;,b35'72/1‘2) (Sfl (?27 ?1)'-9’1112 (F37 @)553 (?1 ) ?3)

—si (o, 71 shy? (75, T )siLS(?l,Fg,)) + :|



Application to x—EFT NNN (N2LO) contd.

Complexities of DME for NNN
B Deal with three non-local/local densities (unlike NN)
B A host of coordinate choices available with differences
B Up to sixth order terms result from the DME

B Exponential increase in the number of terms to simplify

Strategy for coordinate choice

B A coordinate system with known DME expansion
B Avoid expansion of local densities (different length scale than kp)

B Easier for automation

Not all coordinates are equal!

Ty = To—n
s = T713—71

n o= n




Application to x—EFT NNN (N?LO) contd.

B Nonlocal densities with three coordinate dependencies appear
e.g. pq(71+3,71 + o), 8q(71 + 3,71 + 12)
B A generic ansatz for the DME of these densities e.g.

So/1(F1+ 33,71 +3) =~ iﬂifr(k,mwa)(lﬁ-az(iz-53)2—5-114(»%2-?33)4)
L < 1, . a3
(T3 —12)® {J0/1(T‘1)+§(I2+I3)'VJ0/1(7"1)
1 2
t3 <(52+53)'V> J0/1(F1)}

B II-DME + Taylor series to fix the various functions of this ansatz

B The most important bottleneck to the accuracy of the whole method



Sample EDF from NNN for TRI (N2LO)

B Even for TRI, a complex/rich function with analytical couplings
e.g.

3 2 2
b = / d?{c{“p%(f)+Cf°”1po<f)p%(ﬁ>+cf°f°p%<f)rom

+CJT0 p3(F) 70 (F) + T o )pl( ) 71(7)

+CPTON oy () To(7) - T1(7) + €2°7F po((#) Ty () Tu(7)
0000 o () Ty (7) - Ado(7) + €A oy (7) Ty (7) - ATo (7)
+CP VY oo (7) [V ()] + PR 1 (7) To(7) - AT (7)

v

B Density dependencies from both the three-body and long-range effects



Application to x—EFT NNN (N?LO) contd.

A few propaganda statements on the Mathematica code
B Modular Mathematica code
B DME ansatz can be improved independently (accuracy only on DME)
B Complete automation starting from the exact to the DME
B All the resulting terms (up to sixth order) can be accessed
B Easily extensible to both higher order and body x—EFT interactions

B Makes heavy use of Mathematica’s rule processing
(if anybody is interested!)




Outline

© Implementation

R

R
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First round implementation-TRI systems

B Constrain form along the standard Skyrme Functional

B Motivated by truncation
B Second order in derivatives

-

B Using kr e.g. p, J, 7 — third, fourth and fifth orders

. h? . .
H(F) = %TovLHo(T) + Ha(7),
2
Ho(7) = Gpi + G pere + G JF

2 -
+ngthAPt + gtVPVp (Vor)” + Q'fVJPtV- Ji + QtJVth'th

where t =0, 1.
B All DME-modified couplings - two terms

G5y = C 4 g5
B g;° analytical - completely fixed by the interaction + DME

Absorb remaining physics with C*°¢

B Higher order Correlations

B Short-range physics




Example-couplings from y—EFT NN at LO

B One-pion exchange - the only finite range at LO

2 1
w0 = _(gAy_ L
T ( 2 fﬂ_ ) q2 + m%_
B DME length scale set with isoscalar LDA approximation to the
Fermi-Momentum

32 13
Kp(7) = (Tpo(F)>

B The non-zero DME-EDF couplings at LO (u = kp/mx)

2
pp ga 2 4 6 2
AR = —W{(—21+498u +64u” —16u”) — 12u(35+4u”) arctan(2u)
3 2 2 2
—|—m(7+16u (8—9u”)) log(1+4u )}
op pp
Boy = 240
APAP _%{ (—3+72u2 +4u4) — 60uarctan(2u)
(0) 3072f2m2 u8

1 2 4 2
+m(3+54u —72u") log(1+4u )}



Example-couplings contd.

pT . _ 4 2PAp

Ay = —44

pT pT

By = 24

2 2

2 A { 5120 4 ) }
Aoy = 48f2m2 (1+4u2)2+u2 log(1+4u")
BY = 247

0 = 240

B No new isovector density dependence from rearrangement terms
B For NN at N2LO, spin-orbit as contact term
B Long-range spin-orbit from two-pion exchange (of NNN)
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Ongoing/Outlook/conclusion

B A DME for both scalar and vector (DM) with comparable accuracy
B EDF from HF of NN + NNN (at N2LO)

Ongoing and on the table

B Complete self-consistent test of the DME using local y—interactions
B Application of the DME to Bogoluibov/pairing contribution

B DME for higher order diagrams, specifically, second order

B Analysis of the couplings

Conclusion

B DME essential for the explicit addition of long-range physics
B Resulting functional the same computational cost as Skyrme
B Adding more diagrams for ever closer to fully microscopic functional

H A long way to go before deriving the functional (if at all!)

B Systematic investigation of DME-enriched functionals required
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