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Motivation

Status of current EDFs
n Lack predictive power in unknown regions
n No spectroscopic-quality EDF with the standard parameterization

n What can be missing from current functionals ?

n no explicit pion physics

n unclear connection to 3-body (and higher) body forces

n pairing not treated on same footing

n no way to estimate theoretical uncertainities

n Both form and couplings might need improvement
n Partial answer: more emphasis on microscopy ?

Derive the complete EDF?



Augment and not derive!

Goal
n EDF from HF+ MBPT with χ−EFT NN/NNN (pion-phys.)

n A quasi-local/Skyrme-like EDF is required
n Connect with phenomenology
n Provide improvement to the already existing Skyrme-EDFs
n Easier to treat numerically

n Non-locality emerges as an interface problem

n At the NN HF level, non-locality due to exchange terms

n Typical exchange terms from HF (NN)
n From central

∫
d~r1 d~r2 Vc(r)ρq(~r1,~r2)ρq′ (~r2,~r1)

n From central/tensor
∫

d~r1 d~r2 Vt(r)~sq(~r1,~r2) ·~sq′ (~r2,~r1)
n From spin-orbit

∫
d~r1 d~r2 Vso(r)~sq(~r1,~r2) ·~r× ~∇2 ρq′ (~r2,~r1)

n Three body contributions (HF) typically three non-local/local densities
n A method to approximate the non-locality with local quantities
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The one-body density matrix (DM)

n The normal/anomalous parts of the generalized one-body DM

ρ(~r σ q,~r ′σ′q′) = 〈Φ |c†(~r ′σ′ q)c (~r σ q) |Φ〉
κ(~r σ q,~r ′ σ̄′q′) = 〈Φ |c(~r ′ σ̄′ q)c (~r σ q) |Φ〉

n Scalar/Vector
⊗

Isoscalar/Isovector decomposition e.g.

ρq(~r σ,~r ′σ′) = 1
4

{
ρ0(~r ,~r ′) δσσ′ +~s0(~r ,~r ′).~σσσ′ + (−1)1/2−q[0→ 1

]}
n Dominant leading order MBPT contributions

n Hartree and Fock diagrams →E
[
ρ
]

n Bogoluibov diagrams →E
[
κ,κ∗

]
n Highly nonlocal, no direct connection to local/Skyrme EDFs

Ht(~r) = h̄2

2m τt + Cρρt ρ2
t + Cρτt ρtτt + CJ2

t J2
t + Cρ∆ρt ρt∆ρt

+C∇ρ∇ρt
(
∇ρt

)2 + Cρ∇J
t ρt ~∇·Jt + CJ∇ρ

t Jt ·∇ρt
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DME objectives and PSA

n Introduced by Negele and Vautherin in 1972

DME in a nutshell
n Expand the DM (scalar/vector) in terms of factorized local densities

n ρq(~r ,~r ′) =
∑

n Πn(kFr)〈On(~R)〉

n ~sq(~r ,~r ′) =
∑

n Πn(kFr)〈On(~R)〉
n Local densities On(~R) =

[
ρq(~R), ~∇ρq(~R),∆ρq(~R), ~Jq(~R) ...

]
Phase Space Averaging

n Constructive method to fix the Πn functions

n Isolate the operator that results in the non-locality

n Average the action of the operator in a model phase space
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The challenge for the scalar part!

n A separable approximation to ρq(~r1,~r2) with ρq(~R), τq(~R), ∆ρq(~R) ...!
n Densities from converged calc. of Pb180 using Sly4 functional



PSA for scalar part

n Isolate the operator that results in the non-locality

ρq

(
~R + ~r

2 ,
~R− ~r2

)
= e~r·

(~∇1−~∇2)
2

∑
i,σ

ϕ∗i (~r1σq)ϕi(~r2σq)
∣∣∣∣
~r1=~r2=~R

n Angle-averaging over the orientation of ~r

ρq

(
~R + ~r

2 ,
~R− ~r2

)
'

sinh
[

r
∣∣ (~∇1−~∇2)

2
∣∣]

r
∣∣ (~∇1−~∇2)

2
∣∣ ρq(~r1,~r2)

∣∣∣∣
~r1=~r2=~R

n Expand operator about arbitrary −k2 rather than 0

F
(( ~∇1− ~∇2

2
)2
)

= j0(kr)+ r
2k j1(kr)

[(
~∇1− ~∇2

2

)2
+ k2

]
+ ...

n What to do with k ?



PSA for scalar part contd.

Phase space model of Negele and Vautherin =INM phase space
n Provides PSA formulation of the original DME (Negele-Vautherin)

ρq(~R + 1
2~r ,

~R− 1
2~r) = Πρ0(Ω)ρq(~R)+Πρ2(Ω)

(
1
4∆ρq(~R)− τq(~R)+ 3

5k2
Fρq(~R)

)
Ω = kFr Πρ0(kFr) = 3j1(kF r)

kF r Πρ2(kFr) = 35j3(kF r)
k3

F r

n Finite Fermi systems have smeared out (diffuse) Fermi surface
(Durand. et.al.)

Figure: The effective Fermi energy
µ(R) and the temperature T(R) as
deduced by fitting the Fermi function
to the momentum distribution in
A=184 model nucleus. Around the
surface, T = 7(MeV ) implies a large
effect.
f̃ (~R,~p) =

(
1+exp{ep−µ(R)}/T(R)

)−1

ep = p2/(2m)



PSA for scalar part contd.

Phase space model for Π−DME =A diffuse Fermi surface
n Realistic phase space distribution for FFS (Fermi function)

ρq(~R + 1
2~r ,

~R− 1
2~r) = Πρ0(Ω)ρq(~R)+Πρ2(Ω)

(
1
4∆ρq(~R)− τq(~R)+ 3

5k2
Fρq(~R)

)
The various π−functions read

Πρ0 = −
(
αk2

Fr2−2β (2β+3α)
)

2β (3α+2β) e−k2
F r2/(4β)

Πρ2 = r
2kF

j1(kFr)

n Parameters α and β characterize the phase space distribution
n Very weak dependence on the number of nucleons

How do the two models compare (non/and with self-consistency)?
n Profile reproductions
n Integrated contributions
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Result for the scalar part of the DM

n Comparison of
∫

dΩr ρq(~r1,~r2)ρq(~r2,~r1)

n Densities from converged calc. of Pb180 using Sly4 functional

n Qualitatively, satisfactory agreement!
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Result for the scalar contd.

n % error for
∫

d~Rd~r V (r)ρq(~r1,~r2)ρq(~r2,~r1) and its DME
n Gogny interaction
n Cr-chain using Sly4 functional

n Slight improvement regarding the integrated contribution
n ' 6−7% residual error for NV-DME
n ' 2−3% residual error for Π−DME
n Holds throughout the nuclear mass table

Gebremariam Biruk Towards Microscopically Enriched and Constrained EDF
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Result for the scalar contd.

n % error for
∫

d~Rd~r V (r)ρq(~r1,~r2)ρq(~r2,~r1) and its DME
n Pion-exchange potential
n Cr-chain using Sly4 functional

n Slight improvement regarding the integrated contribution
n ' 6−7% residual error for NV-DME
n ' 2−3% residual error for Π−DME
n Holds throughout the nuclear mass table
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Self-consistent DME vs Exchange only DME vs Exact HF (on going!)

Table: E/A for Full DME, Exchange only DME, Exact HF (MeV) for
Brink-Boeker force (NV-DME)

element Full DME Exchange only DME Exact HF
16O -6.204 -5.600 *

40Ca -8.526 -7.516 *
48Ca -7.447 -6.625 *
90Zr -9.339 -8.388 *

n Quoting previous works Error in the binding energy ≈ 10%, in
exchange only reduces it to ≈ 2%, too large radii and smooth density

conclusion on DME
n Quite good for the scalar part (non-local) of the DM
n Not so good for the local scalar density (implication for NNN)

Ongoing work -comparison with complete/realistic interaction!
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The challenge for the vector part!

n A separable approximation to ~sq(~r1,~r2) with Jq,µν(~r1)...!
n Densities from converged calc. of Pb208 using Sly4 functional



PSA for vector part

n The same set of steps as for the scalar part( with subtle differences)
n Isolate the operator that results in the non-locality

~sq

(
~R + ~r

2 ,
~R− ~r2

)
= ei~r·~k

∑
iσ1σ2

〈σ1|~σ|σ2〉e~r·
[

1
2 (~∇1−~∇2)−i~k

]
ϕ∗i (~r1σ1q)ϕi(~r2σ2q)

∣∣∣∣,
where ~k is an arbitrary vector.

n Expand the operator (Taylor series) and keep the first non-zero

~sq

(
~R + ~r

2 ,
~R− ~r2

)
' 1

2ei~r·~k
∑

iσ1σ2

〈σ1|~σ|σ2〉~r · (~∇1− ~∇2)ϕ∗i (~r1σ1q)ϕi(~r2σ2q)
∣∣∣∣

= i
2 ei~r·~k~r×~Jq(~R)

n What to do with ~k ?
n Different choices yield different Π~s1 functions

~sq

(
~R + ~r

2 ,
~R− ~r2

)
' i

2 Π~s1(rkF)~r×~Jq(~R)



PSA for vector part contd.

n Dominant contribution from around Fermi surface

Negele and Vautherin

n Average over the orientation of ~k
n Set k = kF (use LDA choice)

~sq

(
~R + ~r

2 ,
~R− ~r2

)
' i

2 j0(rkF)~r×~Jq(~R)

n Finite Fermi systems have anisotropic Fermi surface
(Bulgac et. al., Durand et. al.)

Figure: The anisotropy of
momenta as a function of the
R for different diffusivities of
the potential and model
nucleus A=184. Wood’s saxon
potential diffusivity a = 0.4
blue and a = 0.67 red curves.
η = ∆P‖/∆P⊥.



PSA for vector part contd.

Phase space model for Π−DME =Anisotropic Fermi surface
n Realistic phase space distribution for FFS (Fermi function)
n Anisotropy quantified by local quadrupolar deformation (P2(r))

n Use either the Husimi (Bulgac et. al.)/Wigner distributions

P2(r) =
∫

d~p
[
3(r̂ .p̂)− p̂2]H(~r ,~p)∫

d~p p̂2H(~r ,~p)
'
[3∑i,σ

∣∣(r̂ .p̂)2
ϕi(~rσq)

∣∣2∑
i,σ
∣∣~∇ϕi(~rσq)

∣∣2 −1
]

n Universal feature of P2(r) in nuclei (FFS)

Figure: The quadrupolar
deformation (blue) in the
momentum distribution of a
sample nucleus Cr66. Note the
progression from spherical to
oblate and then prolate.
Universal for all nuclei
investigated. KF (red) plotted
for comparison.
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PSA for vector part contd.

n Average ~k over a spheroid with quadrupole moment Q(R) = P2(R)
n Spheroid in ~k space with Q(R) fixed at each ~R

~sq

(
~R + ~r

2 ,
~R− ~r2

)
' i

2
3a2(~R) j1(c(~R)kF r)

c(~R)kF r
~r×~Jq(~R)

where

a(~R) = 1√
c(~R)

c(~R) =
(
2
(
1+Q(~R)

)(
2−Q(~R)

) )1/3

n If spherical Fermi surface at all ~R → Q(~R) = 0, a(~R) = 1 and c(~R) = 1

How do the models compare (non/and with self-consistency)?
n Profile reproductions
n Integrated contributions
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Result for the vector part of the DM

n Comparison of
∫

dΩr~sq(~r1,~r2) ·~sq(~r2,~r1)

n Densities from converged calc. of Pb208 with Sly4 functional

n NVDME does not work satisfactorly!
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Result for the vector part of the DM

n Comparison of
∫

dΩr~sq(~r1,~r2) ·~sq(~r2,~r1)

n Densities from converged calc. of Pb208 with Sly4 functional

n Significant improvement with INM phase space!
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Result for the vector part contd.

n Comparison of
∫

dΩr~sq(~r1,~r2) ·~sq(~r2,~r1)

n Densities from converged calc. of Pb208 with Sly4 functional

n The most significant/consistent improvement with FFS phase space
n Holds throughout the nuclear mass table

Gebremariam Biruk Towards Microscopically Enriched and Constrained EDF
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Result for the vector part contd.

n % error for
∫

d~Rd~r V (r)~sq(~r1,~r2) ·~sq(~r2,~r1) and its DME
n Gogny interaction
n Cr-chain using Sly4

n Significant improvement regarding the integrated contribution
n Holds throughout the nuclear mass table
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Result for the vector part contd.

n % error for
∫

d~Rd~r V (r)~sq(~r1,~r2) ·~sq(~r2,~r1) and its DME
n Pion-exchange potential
n Cr-chain using Sly4

n Significant improvement regarding the integrated contribution
n Holds throughout the nuclear mass table
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Basic points and hypothesis

n Long-range part of the interaction unmodified by RG evolution
n Add long-range physics using MBPT to existing functionals
n Currently derived lowest order (HF) from NN+NNN at N2LO

Figure: The set of diagrams
currently calculated. Hartree
and Fock from NN + NNN.

Basic hypothesis (yet to be tested!)
n Functionals with explicit long-range physics >> current functionals
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Application to χ−EFT NN (N2LO)
n χ−EFT interactions: V = Vcont +Vπ
n EFT NN interaction at N2LO

Vπ = VC + τ1 · τ2WC +
[

VS + τ1 · τ2 WS
]
~σ1 ·~σ2 +

[
VT

+τ1 · τ2 WT
]
~σ1 ·~q ~σ2 ·~q + i

[
VLS + τ1 · τ2 WLS

](
~σ1 + ~σ2

)
·
(
~q ×~k

)
n 〈Φ|Vπ|Φ〉 a functional of ρq(~r ,~r ′) and ~sq(~r ,~r ′)
n Direct application of the DME possible (in ~p space)
n Resulting Skyrme-like functional for TRI

επ
[
ρ
]

=
∑

q

∫
d~R
{

Aρρ ρ2
q + Aρτ ρq τq + Aρ∆ρ ρq ∆ρq + A∇ρ∇ρ ~∇ρq · ~∇ρq

+ A∇ρJ ~∇ρq · ~Jq + AJ2
~Jq ·~Jq

}
+
∑
q 6=q̄

∫
d~R
{

Bρρ ρq ρq̄ + Bρτ ρq τq̄ + Bρ∆ρ ρq ∆ρq̄ + B∇ρ∇ρ ~∇ρq · ~∇ρq̄

+ B∇ρJ ~∇ρq · ~Jq̄ + BJ2
~Jq ·~Jq̄

}



Application to χ−EFT NN (N2LO) contd.



Application to χ−EFT NNN (N2LO)

n EFT NNN (N2LO) contains E , D and C terms

V̂E ≡ E
(
~τ1 ·~τ2 +~τ2 ·~τ3 +~τ3 ·~τ1

)
V̂D ≡ − gA

4f 2
π

CD
f 2
πΛχ

(
σ1 ·~q2σ2 ·~q2

q2
2 +m2

π
τ1 · τ2 + σ2 ·~q3σ3 ·~q3

q2
3 +m2

π
τ2 · τ3

+ σ3 ·~q1σ1 ·~q1
q2

1 +m2
π

τ3 · τ1

)
V̂C ≡

(
gA
2fπ

)2(
σ1 ·~q1σ2 ·~q2

(q2
1 +m2

π)(q2
2 +m2

π)
Fαβ123τ

α
1 τ

β
2

+ σ2 ·~q2σ3 ·~q3
(q2

2 +m2
π)(q2

3 +m2
π)

Fαβ231τ
α
2 τ

β
3 + σ3 ·~q3σ1 ·~q1

(q2
3 +m2

π)(q2
1 +m2

π)
Fαβ312τ

α
3 τ

β
1

)
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Application to χ−EFT NNN (N2LO) contd.

n V̂3N symmetrical w.r.t exchange of two particles
n 〈Φ|V HF

3N |Φ〉 ≡〈Φ|V
HF,dir
3N |Φ〉+〈Φ|V HF,1x

3N |Φ〉+〈Φ|V HF,2x
3N |Φ〉

n Using a generalized density matrix: %i(~X , ~X ′) ≡ %(~rσiqi ,~r ′σiqi)

〈V HF,dir
3N 〉 = 1

2 Tr1Tr2Tr3

∫
d~r1d~r2d~r3 %

1(~X1)%2(~X2)%3(~X3)V23

〈V HF,1x
3N 〉 = −Tr1Tr2Tr3

∫
d~r1d~r2d~r3 %

1(~X3, ~X1)%2(~X2)%3(~X1, ~X3)V23Pστ13

− 1
2 Tr1Tr2Tr3

∫
d~r1d~r2d~r3 %

1(~X1)%2(~X3, ~X2)%3(~X2, ~X3)V23Pστ23

〈V HF,2x
3N 〉 = Tr1Tr2Tr3

∫
d~r1d~r2d~r3 %

1(~X2, ~X1)%2(~X3, ~X2)%3(~X1, ~X3)

V23Pστ23 Pστ12 .
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Application to χ−EFT NNN (N2LO) contd.

n Calculating 〈Φ|V HF
3N |Φ〉 involves tremendous spin-isospin algebra

n Well suited for automation with Mathematica

Three challenges for Mathematica automation
n Automating the spin-isospin algebra
n Rewriting interms of scalar/vector-isoscalar/isovector for DME
n Application of the DME itself

n e.g. Contribution to the exact HF from a piece of the C-term

〈V HF,CR1,2x
3N 〉 =

(
gA
2fπ

)2 c4
f 2
π

i
8

∫
d~r1d~r2d~r3

∫
1

(2π)6 d~q2d~q3 ei~q2.(~r2−~r1)

×ei~q3.(~r3−~r1) qβ1
2 qβ2

2 qγ1
3 qγ2

3
(q2

2 +m2
π)(q2

3 +m2
π)

[
εβ1γ1µ1

(
−δβ2γ2δµ2µ3

+δβ2µ2δγ2µ3 + δβ2µ3δγ2µ2

)(
sµ1
1 (~r2,~r1)sµ2

1 (~r3,~r2)sµ3
0 (~r1,~r3)

−sµ1
1 (~r2,~r1)sµ2

0 (~r3,~r2)sµ3
1 (~r1,~r3)

)
+ ....

]



Application to χ−EFT NNN (N2LO) contd.

Complexities of DME for NNN
n Deal with three non-local/local densities (unlike NN)

n A host of coordinate choices available with differences

n Up to sixth order terms result from the DME

n Exponential increase in the number of terms to simplify

Strategy for coordinate choice
n A coordinate system with known DME expansion

n Avoid expansion of local densities (different length scale than kF)

n Easier for automation

Not all coordinates are equal!

~x2 = ~r2−~r1

~x3 = ~r3−~r1

~r1 = ~r1



Application to χ−EFT NNN (N2LO) contd.

n Nonlocal densities with three coordinate dependencies appear
e.g. ρq(~r1 +~x3,~r1 +~x2), ~sq(~r1 +~x3,~r1 +~x2)

n A generic ansatz for the DME of these densities e.g.

~s0/1(~r1 +~x3,~r1 +~x2) ' iΠ~s1,fr (k,x2,x3)
(
1+a2(x̂2 · x̂3)2 +a4(x̂2 · x̂3)4

)
(~x3−~x2)⊗

[
~J0/1(~r1)+ 1

2 (~x2 +~x3) · ~∇~J0/1(~r1)

+ 1
8

(
(~x2 +~x3) · ~∇

)2
~J0/1(~r1)

]
n Π−DME + Taylor series to fix the various functions of this ansatz
n The most important bottleneck to the accuracy of the whole method



Sample EDF from NNN for TRI (N2LO)

n Even for TRI, a complex/rich function with analytical couplings
e.g.

ED =
∫

d~r
{
Cρ

3
0

1 ρ3
0(~r) + Cρ0ρ

2
1

1 ρ0(~r)ρ2
1(~r) + Cρ

2
0τ0

1 ρ2
0(~r)τ0(~r)

+Cρ
2
1τ0

1 ρ2
1(~r)τ0(~r) + Cρ0ρ1τ1

1 ρ0(~r)ρ1(~r)τ1(~r)

+Cρ1J0J1
1 ρ1(~r)~J0(~r) ·~J1(~r) + Cρ0J2

1
1 ρ0(~r)~J1(~r) ·~J1(~r)

+Cρ0J0∆J0
1 ρ0(~r)~J0(~r) ·∆~J0(~r) + Cρ1J1∆J0

1 ρ1(~r)~J1(~r) ·∆~J0(~r)

+Cρ0∇J1∇J1
1 ρ0(~r)

[
~∇·~J1(~r)

]2 + Cρ1J0∆J1
1 ρ1(~r)~J0(~r) ·∆~J1(~r)

+ ...
}

n Density dependencies from both the three-body and long-range effects



Application to χ−EFT NNN (N2LO) contd.

A few propaganda statements on the Mathematica code
n Modular Mathematica code

n DME ansatz can be improved independently (accuracy only on DME)

n Complete automation starting from the exact to the DME

n All the resulting terms (up to sixth order) can be accessed

n Easily extensible to both higher order and body χ−EFT interactions

n Makes heavy use of Mathematica’s rule processing
(if anybody is interested!)
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First round implementation-TRI systems
n Constrain form along the standard Skyrme Functional
n Motivated by truncation

n Second order in derivatives
n Using kF e.g. ρ, ~J , τ → third, fourth and fifth orders

H(~r) = h̄2

2m τ0 +H0(~r) +H1(~r),

Ht(~r) = Gρρt ρ2
t + Gρτt ρtτt + GJ2

t J2
t

+Gρ∆ρt ρt∆ρt + G∇ρ∇ρt
(
∇ρt

)2 + Gρ∇J
t ρt ~∇·Jt + GJ∇ρ

t Jt ·∇ρt

where t = 0, 1.
n All DME-modified couplings - two terms

Gςς t = Cςς t + gςςt

n gςςt analytical - completely fixed by the interaction + DME

Absorb remaining physics with Cςς t

n Higher order Correlations

n Short-range physics



Example-couplings from χ−EFT NN at LO
n One-pion exchange - the only finite range at LO

W (0)
T = −

( gA
2fπ
)2 1

q2 +m2
π

n DME length scale set with isoscalar LDA approximation to the
Fermi-Momentum

KF(~r) =
(
3π2

2 ρ0(~r)
)1/3

n The non-zero DME-EDF couplings at LO (u ≡ kF/mπ)

Aρρ(0) = −
g2

A
256f 2

πu6

{(
−21+498u2 +64u4−16u6)−12u

(
35+4u2)arctan(2u)

+ 3
4u2
(
7+16u2(8−9u2)

)
log(1+4u2)

}
Bρρ(0) = 2Aρρ(0)

Aρ∆ρ(0) = −
35g2

A
3072f 2

πm2
πu8

{(
−3+72u2 +4u4)−60u arctan(2u)

+ 1
4u2
(
3+54u2−72u4) log(1+4u2)

}
Bρ∆ρ(0) = 2Aρ∆ρ(0)



Example-couplings contd.

Aρτ(0) = −4Aρ∆ρ(0)

Bρτ(0) = 2Aρτ(0)

AJ2

(0) =
g2

A
48f 2

πm2
π

{ 5+12u2

(1+4u2)2 + 4
u2 log(1+4u2)

}
BJ2

(0) = 2AJ2

(0)

n No new isovector density dependence from rearrangement terms
n For NN at N2LO, spin-orbit as contact term
n Long-range spin-orbit from two-pion exchange (of NNN)
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Ongoing/Outlook/conclusion

Ready
n A DME for both scalar and vector (DM) with comparable accuracy
n EDF from HF of NN + NNN (at N2LO)

Ongoing and on the table
n Complete self-consistent test of the DME using local χ−interactions
n Application of the DME to Bogoluibov/pairing contribution
n DME for higher order diagrams, specifically, second order
n Analysis of the couplings

Conclusion
n DME essential for the explicit addition of long-range physics
n Resulting functional the same computational cost as Skyrme
n Adding more diagrams for ever closer to fully microscopic functional
n A long way to go before deriving the functional (if at all!)
n Systematic investigation of DME-enriched functionals required
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