# Nuclear Energy Density Functional Method

How to (safely...) account for correlations in ground and excited states of heavy nuclei?

T. Duguet<sup>1,2</sup>, M. Bender<sup>3</sup>, D. Lacroix<sup>4</sup>

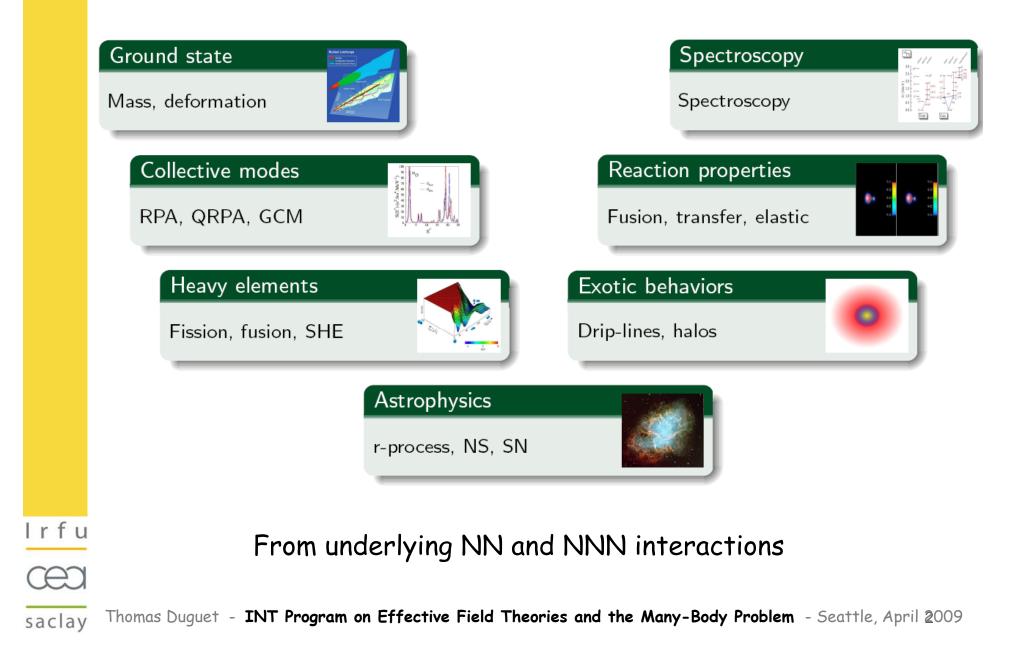
<sup>1</sup>DSM/IRFU/SPhN, CEA Saclay, France <sup>2</sup>NSCL and Department of Physics and Astronomy, MSU, USA <sup>3</sup>CENBG, Bordeaux, France <sup>4</sup>GANIL, Caen, France

Irfu CCCC saclay

| C | I | î | Ч | $\sim$ | 1    |
|---|---|---|---|--------|------|
| 0 | I | l | u | e      | . L. |

t1 tduguet, 5/21/2008

# Ultimate goals



# Nuclear EDF method: key points

#### I EDF method addresses both ground and excited states

One single energy functional Two levels of many-body implementations

- Single reference
- Multi reference

#### **II EDF method addresses both structure and reactions properties** Two different schemes

- Time independent for stucture properties
- Time dependent for structure and reaction properties

**III EDF method is currently transitioning from empirical to non/less empirical** Energy kernel(s) so far built by analogy with matrix elements of fictitious « H »

- Base-line and insights from strict « H »-based approach
- EDF extends it empirically to grasp additional necessary correlations

Accuracy/predictive power of current empirical EDFs not sufficient/satisfactory

Need to improve current phenomenology (e.g. M. Stoitsov, M. Kortelainen)

• Constrain EDF kernels from vacuum H and MBPT (e.g. T. Lesinski, B. Gebremariam) Departure from « H »-based picture is at the origin of potentially serious problems

- Need to better formulate the empirical method
  - Work needed to formulate the two-level EDF method from first principles

lrfu

 $\hat{\mathbf{P}}$ 

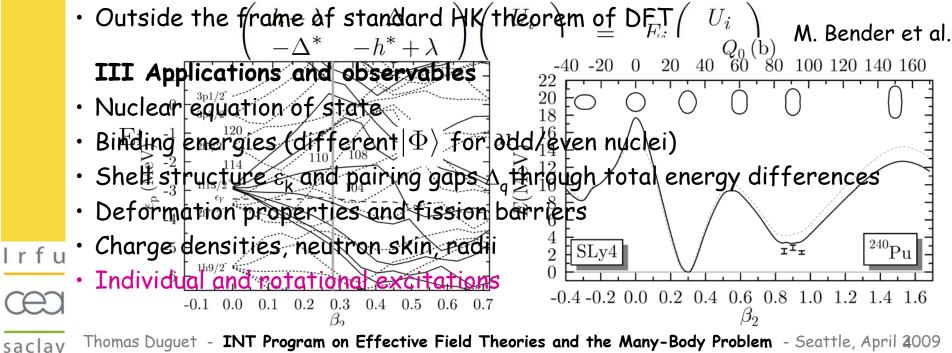
## I Formalism in a nutshell

$$\begin{split} \mathcal{E}[\rho,\kappa,\kappa^*] &= \text{functional of one-body density matrices} \\ \rho_{ji} &= \langle \Phi | c_i^{\dagger} c_j | \Phi \rangle \qquad ; \qquad \kappa_{ji} = \langle \Phi | c_i c_j | \Phi \rangle \\ \end{split}$$

 $|\Phi
angle$  = auxiliary, symmetry-breaking product state (N, Z, J<sup>2</sup>, P<sup>2</sup>,  $\Pi$ )

## **II** Included correlations

- « Builk miting the short  $\mathcal{E}[\rho,\kappa,\kappa^*]$  s(to Hart dep MBP Binsplitcher Hibelean antionter)
- « Static » collective ones through symmetry breaking (p and  $\kappa$ )



# Standard energy functionals

# I Functional form

- Skyrme is quasi-local / Gogny is non-local
- Skyrme's basic structure is bilinear in the following local densities

$$\begin{aligned} \rho_{q}(\vec{r}) &\equiv \sum_{\sigma} \rho_{q}(\vec{r}\sigma,\vec{r}\sigma) & \text{Matter density} \\ \tau_{q}(\vec{r}) &\equiv \sum_{\sigma} \nabla \cdot \nabla' \rho_{q}(\vec{r}\sigma,\vec{r}'\sigma)|_{\vec{r}=\vec{r}'} & \text{Kinetic density} \\ \vec{s}_{q}(\vec{r}) &\equiv \sum_{\sigma\sigma'} \rho_{q}(\vec{r}\sigma,\vec{r}'\sigma) \vec{\sigma}_{\sigma'\sigma} & \text{Spin density} \\ \vec{j}_{q}(\vec{r}) &\equiv \sum_{\sigma} i/2 (\nabla' - \nabla) \rho_{q}(\vec{r}\sigma,\vec{r}'\sigma)|_{\vec{r}=\vec{r}'} & \text{Current density} \\ \tilde{\rho}_{q}(\vec{r}) &\equiv \sum_{\sigma} \kappa_{q}(\vec{r}\sigma,\vec{r}\sigma) \bar{\sigma} & \text{Pair density} \end{aligned}$$

# **II** Basic features

- Symmetry rules to build allowed terms
- Simplistic density-dependent couplings at this point
- $\mathcal{E}[\rho,\kappa,\kappa^*] = \langle \Phi | H^* | \Phi \rangle / \langle \Phi | \Phi \rangle$  would tie Cs together/forbid dens.-dep. Cs
- Universal = applicable to *all nuclei* without local adjustment
- CEI · Empirical = no link to NN/NNN + fitted to experimental data

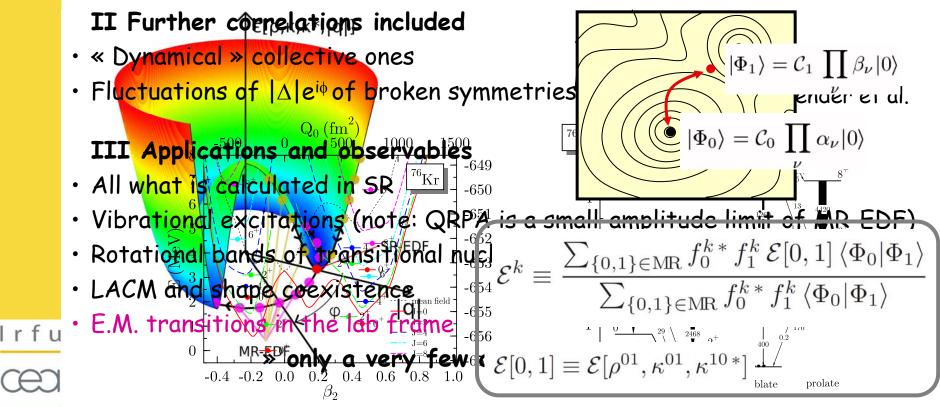
# Multi-Reference = « Beyond mean-field »

#### I Formalism in a nutshell

 $\mathcal{E}[\rho^{01}, \kappa^{01}, \kappa^{10*}]$  = functional of one-body *transition* density matrices

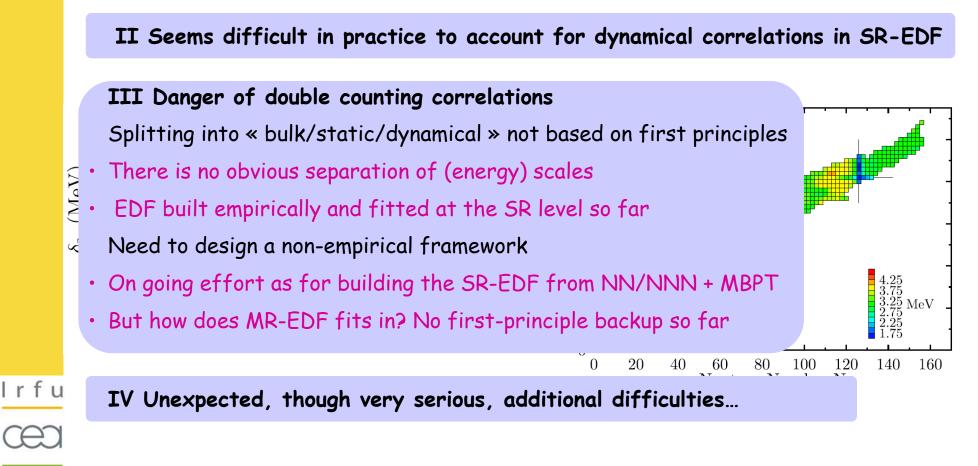
$$\rho_{ij}^{01} \equiv \frac{\langle \Phi_0 | a_j^+ a_i | \Phi_1 \rangle}{\langle \Phi_0 | \Phi_1 \rangle} \qquad \kappa_{ij}^{01} \equiv \frac{\langle \Phi_0 | a_j a_i | \Phi_1 \rangle}{\langle \Phi_0 | \Phi_1 \rangle}$$

 $\{|\Phi_0\rangle; |\Phi_1\rangle\}$  = MR set of auxiliary, symmetry-breaking product states



## Some tricky points

- I Should SR-EDF be final for gs and MR-EDF left for excited states? Some practitioners believe so by analogy with DFT
- Symmetry breaking/restoring?
- Intrinsic DFT [J. Messud et al., arXiv:0904.0162]? For all symmetries? Is that convenient?

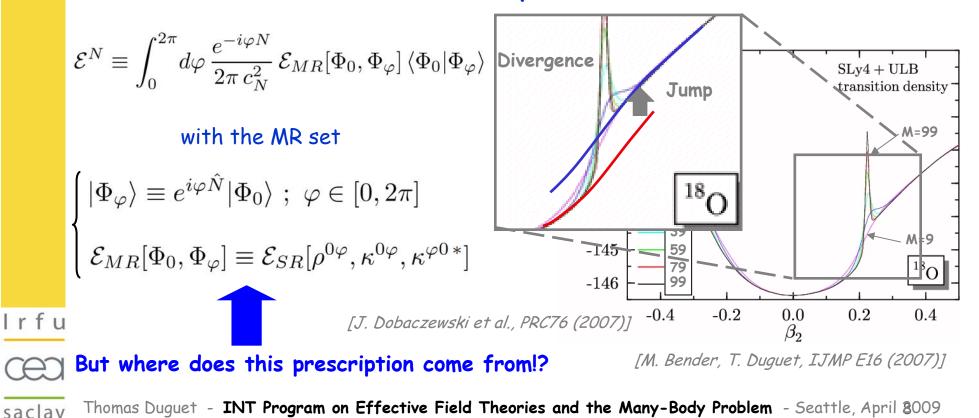


#### Spurious divergencies and steps in PNR calculations

#### I Given the SR EDF

$$\mathcal{E}_{SR}[\rho^{00}, \kappa^{00}, \kappa^{00*}] = \sum_{ij} t_{ij} \,\rho_{ji}^{00} + \frac{1}{2} \sum_{ijkl} \bar{v}_{ijkl}^{\rho\rho} \,\rho_{ki}^{00} \,\rho_{lj}^{00} + \frac{1}{4} \sum_{ijkl} \bar{v}_{ijkl}^{\kappa\kappa} \,\kappa_{ij}^{00*} \,\kappa_{kl}^{00} \\ + \frac{1}{6} \sum_{ijklmn} \bar{v}_{ijklmn}^{\rho\rho\rho} \,\rho_{li}^{00} \,\rho_{mj}^{00} \,\rho_{nk}^{00} + \frac{1}{4} \sum_{ijklmn} \bar{v}_{ijklmn}^{\rho\kappa\kappa} \,\rho_{li}^{00} \,\kappa_{jk}^{00*} \,\kappa_{mn}^{00} + \dots$$

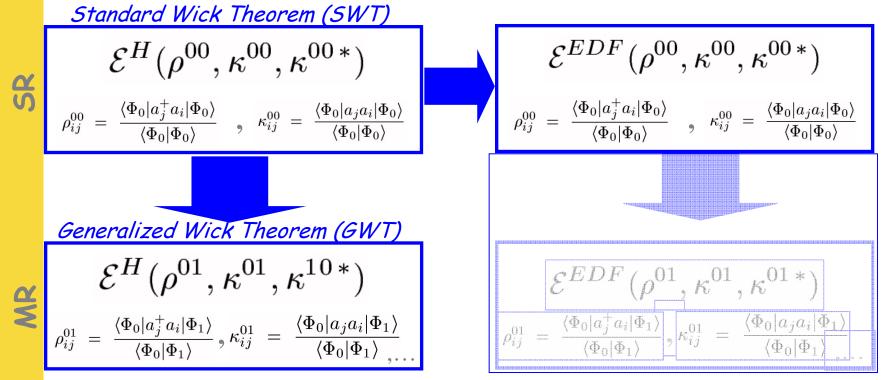
#### II Particle Number Restoration: one particular MR mode



# Definition of non-diagonal EDF kernels for MR calculations the "nuclear physics strategy"

# Hamiltonian based

**EDF** case



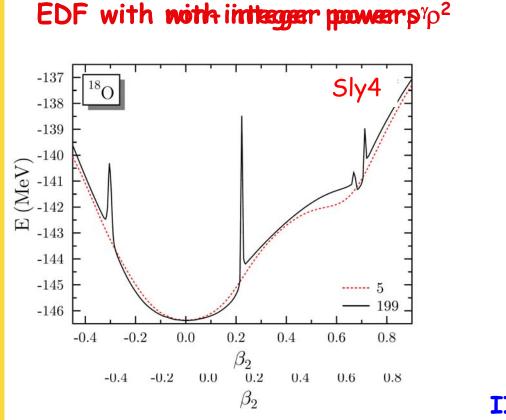
[B. Balian, E. Brezin, Nuovo Cimento 64 (1969))

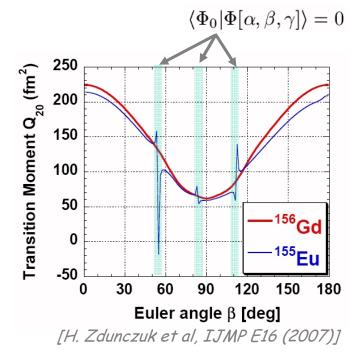
Is the GWT-based extension procedure to be questioned in the EDF context?
 If it is so, all MR modes and not only PNR should be compromised
 Is there a safe and motivated alternative?

The problem is indeed not specific to PNR



II Angular momentum restoration





**III Shape mixing** To be studied

lrfu

P.

saclay

# Pathologies due to departure from "H"-based picture

(I) [D. Lacroix, T. Duguet, M. Bender, to appear in PRC; arXiv:0809.2041]

#### I Sources of pathologies

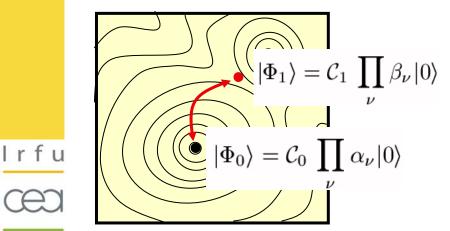
- Self-Interaction (SR+MR)
  - Not dramatic a priori
  - Need to be characterized

# •Self-Pairing (SR+MR)

- Not dramatic a priori
- Need to be characterized

• GWT-motivated procedure within EDF framework (MR only)

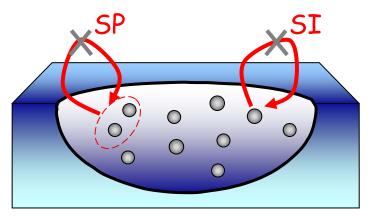
Divergences, sharp steps, smooth steps plus kink



## II Cure MR EDF kernels first

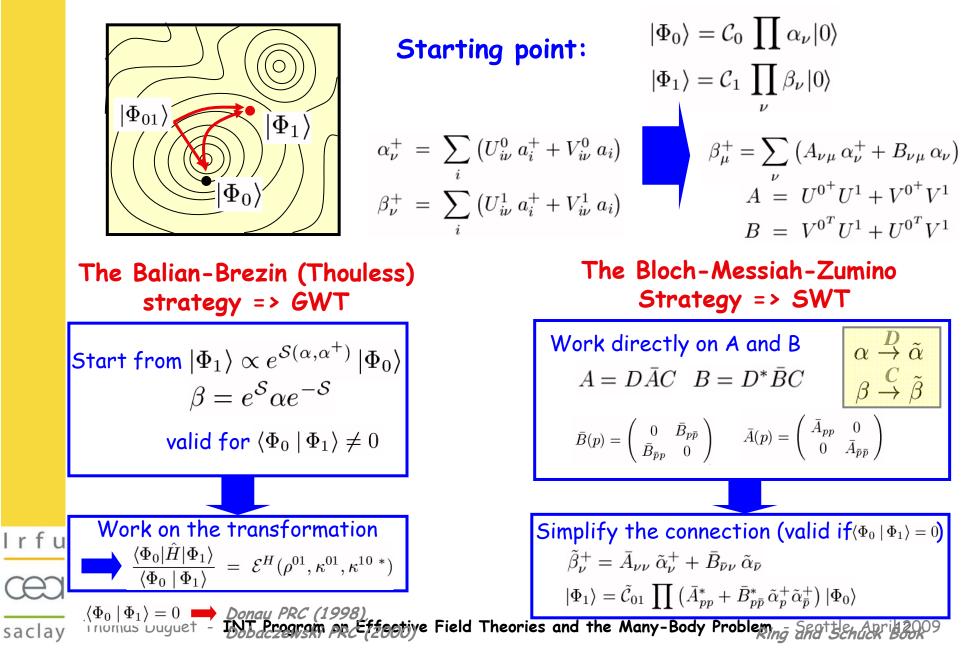
- Find alternative to GWT
- → Identify critical terms
- Remove pathologies in EDF case

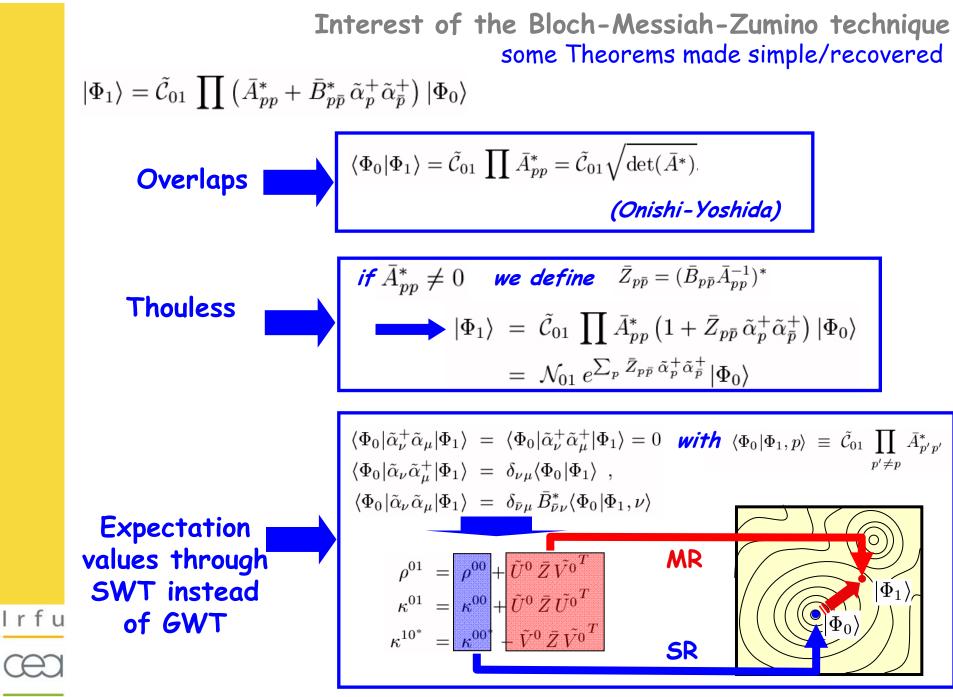
saclay



#### Methods for connecting different quasi-particle vacua

(I) [D. Lacroix, T. Duguet, M. Bender, to appear in PRC; arXiv:0809.2041]





saclay

Thomas Duguet - INT Program on Effective Field Theories and the Many-Body Problem - Seattle, April 3009

Correct GWT-based definition of MR kernels Strategy: compare SWT to GWT for MR kernel from "H" + extend to EDF Notations  $\langle \Phi_0 | \Phi_1 \rangle = \bar{A}_{\nu\nu} \langle \Phi_0 | \Phi_1, \nu \rangle = \bar{A}_{\nu\nu} \bar{A}_{\mu\nu} \langle \Phi_0 | \Phi_1, \nu, \mu \rangle$ with  $\langle \Phi_0 | \Phi_1, \nu \rangle = \langle \Phi_0 | \Phi_1, \bar{\nu} \rangle$  and  $\langle \Phi_0 | \Phi_1, \nu, \nu \rangle = \langle \Phi_0 | \Phi_1, \nu, \bar{\nu} \rangle = 0$  $\langle \Phi_0 | \hat{V}_{12} | \Phi_1 \rangle_{Direct}$ Summary of pathologies  $+\frac{1}{2}\sum_{\nu\mu ijkl}\tilde{V}^{0}_{i\nu}\tilde{V}^{0}_{jk}\tilde{\boldsymbol{\mathcal{F}}}^{0}_{\boldsymbol{\mathcal{F}}}\tilde{\boldsymbol{\mathcal{F}}}^{0*}_{\boldsymbol{k}\nu}\bar{\boldsymbol{v}}^{\rho\rho}_{ijkl}\langle\Phi_{0}|\Phi_{1}\rangle$ SR- self-interaction  $+\frac{1}{2}\sum_{\nu\mu ijkl}\tilde{V}^{0}_{i\nu}\tilde{V}^{0}_{j\mu}\tilde{V}^{0*}_{l\mu}\tilde{U}^{0}_{k\bar{\nu}}\bar{v}^{\rho\rho}_{ijkl}\bar{B}^{*}_{\bar{\nu}\nu}\langle\Phi_{0}|\Phi_{1},\nu\rangle$  $+\frac{1}{2} \sum_{i\nu} \tilde{V}^0_{i\nu} \tilde{V}^0_{j\nu} \tilde{P}^{0*}_{i\nu} \bar{V}^{\rho\rho}_{ijkl} \bar{B}^*_{\bar{\mu}\mu} \langle \Phi_0 | \Phi_1, \mu \rangle$ **MR** self-inter /self-pairing  $+\frac{1}{2} \sum \tilde{V}^{0}_{i\nu} \tilde{V}^{0}_{j\mu} \tilde{U}^{0}_{l\bar{\mu}} \tilde{U}^{0}_{k\bar{\nu}} \bar{v}^{\rho\rho}_{ijkl} \bar{B}^{*}_{\bar{\nu}\nu} \bar{B}^{*}_{\bar{\mu}\mu} \langle \Phi_{0} | \Phi_{1}, \nu, \mu \rangle$ Diverg/ step  $+\frac{1}{4}\sum_{\nu\nu iikl}\tilde{V}^{0}_{i\nu}\tilde{U}^{0}_{j\nu}\tilde{V}^{0*}_{k\mu}\tilde{v}^{\kappa\kappa}_{ijkl}\langle\Phi_{0}|\Phi_{1}\rangle$ SR-self-inter /self-pairing  $+\frac{1}{4}\sum_{i\nu\nu ijkl}\tilde{V}^{0}_{i\nu}\tilde{V}^{0}_{j\bar{\nu}}\tilde{U}^{0}_{l\mu}\tilde{V}^{0*}_{k\mu}\left|\bar{v}^{\kappa\kappa}_{ijkl}\bar{B}^{*}_{\bar{\nu}\nu}\langle\Phi_{0}|\Phi_{1},\nu\rangle\right.$  $\frac{\mathbf{I} \mathbf{r} \mathbf{f} \mathbf{u}}{\mathbf{r} \mathbf{f} \mathbf{u}} + \frac{1}{4} \sum_{\nu \mu i j k l} \tilde{V}_{i\nu}^{0} \tilde{U}_{i\nu}^{0} \mathbf{A}_{\mathbf{k} \bar{\mu}}^{0} \mathbf{\bar{V}}_{ijkl}^{\kappa \kappa} \bar{B}_{\bar{\mu} \mu}^{\kappa} \langle \Phi_{0} | \Phi_{1}, \mu \rangle$ **MR** self-inter /self-pairing  $\bigoplus_{\substack{\mu \neq j \\ \mu \neq \mu}} \frac{1}{4} \sum_{\nu} \tilde{V}^0_{i\nu} \tilde{V}^0_{j\bar{\nu}} \tilde{U}^0_{l\mu} \tilde{U}^0_{k\bar{\mu}} \bar{v}^{\kappa\kappa}_{ijkl} \bar{B}^*_{\bar{\nu}\nu} \bar{B}^*_{\bar{\mu}\mu} \langle \Phi_0 | \Phi_1, \nu, \mu \rangle$ Diverg/ saclav step

Practical regularization procedure

(I) [D. Lacroix, T. Duguet, M. Bender, to appear in PRC; arXiv:0809.2041]

I Start from a given SR EDF  $\mathcal{E}_{SR}[\rho^{00}, \kappa^{00}, \kappa^{00*}]$ Can only depend on integer powers of the density *matrices* 

II Consider a MR mode Can be any combination modes allowed by the code

III Given  $\{|\Phi_0\rangle; |\Phi_1\rangle\}$  proceed to BMZ decomposition of Bogoliubov transfo To be done for each pair of reference states

IV Define  $\mathcal{E}_{MR}[\Phi_0, \Phi_1] \equiv \mathcal{E}_{SR}[\rho^{01}, \kappa^{01}, \kappa^{10*}]$  and subtract spurious terms Leaves SR EDF untouched

First application: particle number restoration

(II) [M. Bender, T. Duguet, D. Lacroix, to appear in PRC, arXiv:0809.2045]

I Step III above is trivial in this particular case II Terms to be removed from  $\mathcal{E}_{MR}[\Phi_0, \Phi_{\varphi}]$ 

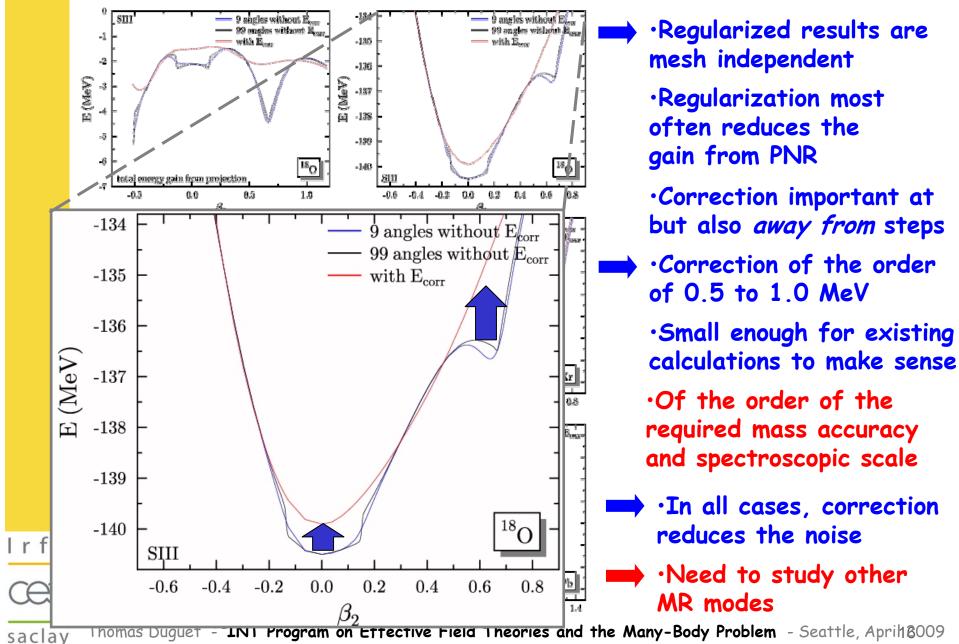
lrfu

 $\hat{\mathbf{P}}$ 

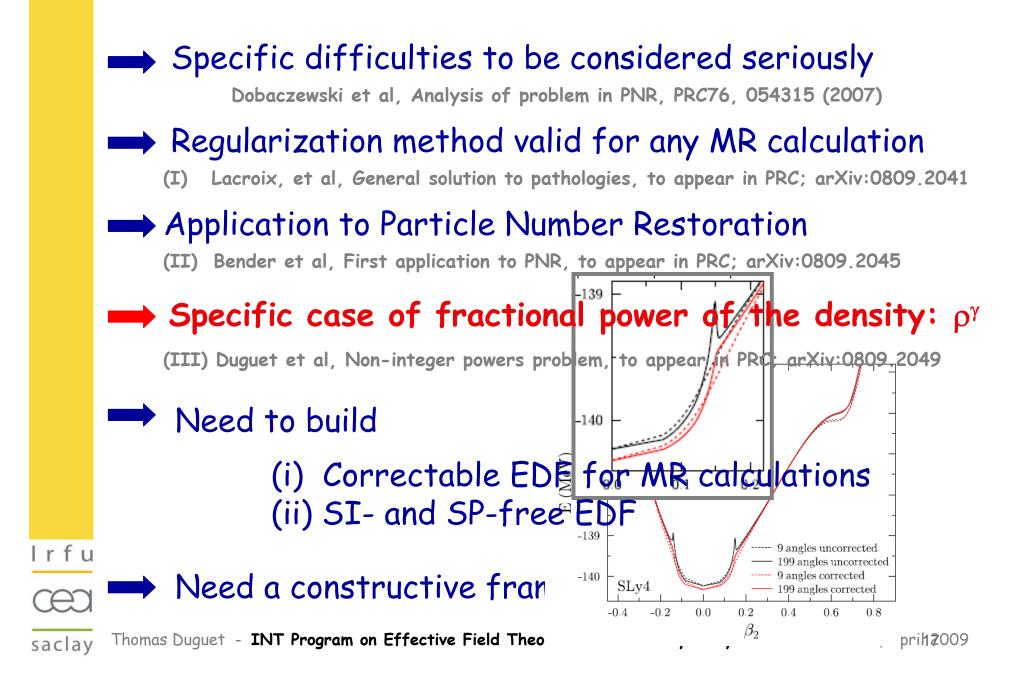
 $\begin{array}{ll} \rho\rho \\ \textit{term} \end{array} \ \ \, \mathcal{E}_{CG}^{\rho\rho}[0,\varphi] \ = \ \, \frac{1}{2} \sum_{p} \left\{ \bar{v}_{pppp}^{\rho\rho} + \bar{v}_{\bar{p}\bar{p}\bar{p}\bar{p}\bar{p}}^{\rho\rho} + \bar{v}_{\bar{p}\bar{p}\bar{p}\bar{p}\bar{p}}^{\rho\rho} + \bar{v}_{\bar{p}\bar{p}\bar{p}\bar{p}\bar{p}}^{\rho\rho} \right\} (u_{p}v_{p})^{4} \ \, \frac{(e^{2i\varphi}-1)^{2}}{(u_{p}^{2}+v_{p}^{2}e^{2i\varphi})^{2}} \\ \\ \begin{array}{ll} {}^{\textit{KK}} \\ \textit{term} \end{array} \ \ \, \mathcal{E}_{CG}^{\kappa\kappa}[0,\varphi] \ = \ \, -\sum_{p} \bar{v}_{p\bar{p}\bar{p}\bar{p}\bar{p}}^{\kappa\kappa} (u_{p}v_{p})^{4} \ \, \frac{(e^{2i\varphi}-1)^{2}}{(u_{p}^{2}+v_{p}^{2}e^{2i\varphi})^{2}} \ , \end{array}$ 

#### First application: particle number restoration

(II) [M. Bender, T. Duguet, D. Lacroix, to appear in PRC, arXiv:0809.2045]



## Conclusions



# Extra material



# Addition

# I TDDFT accounts for excited states

- Linear response = extended RPA
- Adiabatic approximation  $\Leftrightarrow$  Residual interaction =  $\delta^2 \mathcal{E} / \delta^2 \rho$
- Looks like nuclear RPA but NO feedback onto g.s. energy
- Excitation in odd nuclei include fractionation of strength



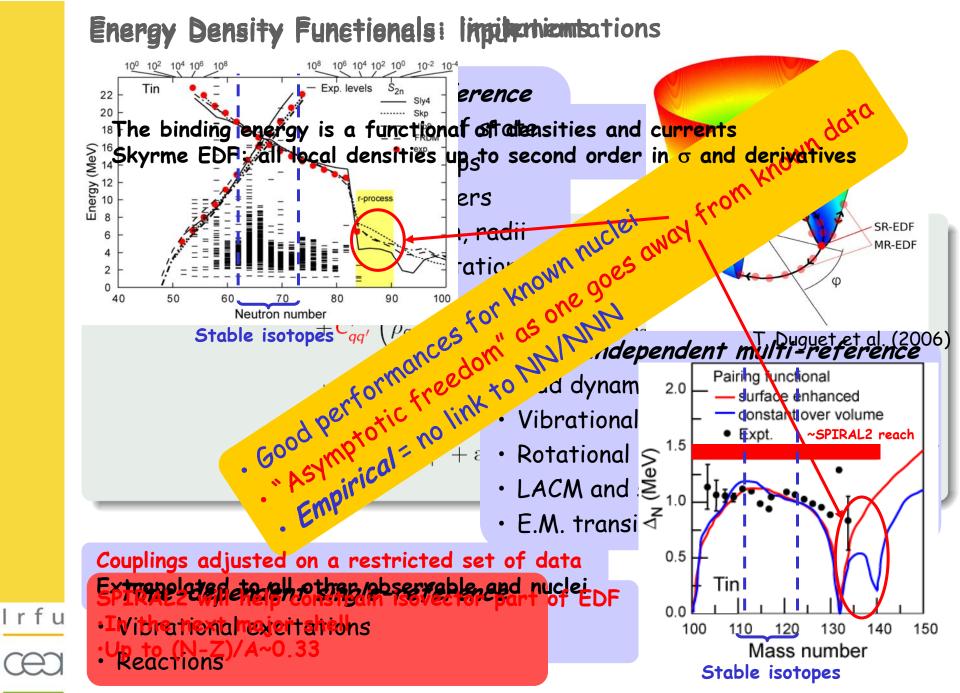
# Energy Density Functional method: as practitioners use it

#### Basic elements

- Approaches not based on a correlated wave-function
- Energy is postulated to be a functional of one-body density (matrices)  $\mathcal{E}[
  ho,\kappa,\kappa^*]$
- Symmetry breaking is at the heart of the method
- Two formulations (i) Single-Reference (ii) Multi-Reference

| Pros                                                     | Difficulties                                                             |  |  |
|----------------------------------------------------------|--------------------------------------------------------------------------|--|--|
| <ul> <li>Use of full single-particle space</li> </ul>    | ■ No universal parametrization                                           |  |  |
| <ul> <li>Collective picture but fully quantal</li> </ul> | $\blacksquare \text{ Empirical} \neq \text{predictive power}$            |  |  |
| • Universality of the EDF (A $\gtrsim$ 16)               | Spectroscopy / odd nuclei                                                |  |  |
| <ul> <li>Ground-state description</li> </ul>             | ■ Dynamical (fluctuating) correlations                                   |  |  |
| <ul> <li>Static (smooth) correlations</li> </ul>         | <b>Limited accuracy</b> $(\sigma_{2135}^{mass} \approx 700 \text{ keV})$ |  |  |

- Skyrme = quasi-local / Gogny = non-local
- Parameters adjusted on a set of data (bias on bulk properties so far)
- Irfu Good performances for properties of known nuclei
  - "Asymptotic freedom" as one jumps into the *next major shell*



Thomas Duguet - INT Program on Effective Field Theories and the Many-Body Problem - Seattle, April2009

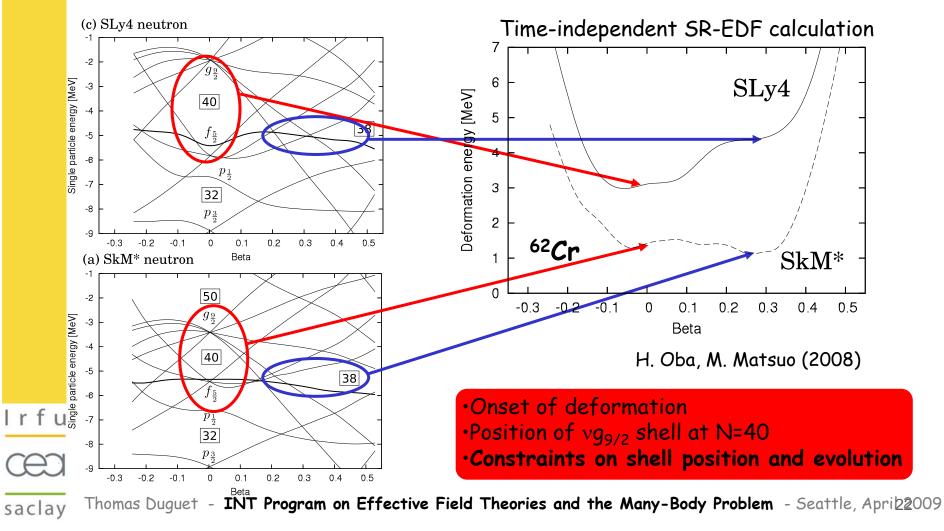
saclay

# Limitations of current EDFs: one specific example

#### Shell evolution with N-Z

Opening and closing of shell gaps not under control Impact the balance between spherical and deformed configurations

Weakening of N=40 shell gap in neutron-rich Cr isotopes



# Implementations: limitations

## Quantum collective fluctuations in reactions

Impossibility to account for tunneling in sub-barrier fusion

#### Fusion cross section

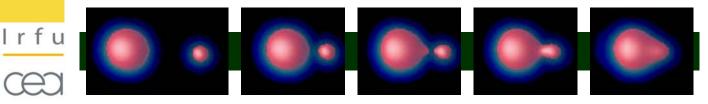
Time-dependent SR-EDF calculation

Very satisfactory fusion barriers
Wide range of reaction partners
Above-threshold cross section
No adjustment whatsoever

Sub-barrier fusion
Quantum tunneling
Time-dependent MR-EDF formalism



C. Simenel (2007)



# Construction of the EDF: Single-Ref. The "nuclear physics strategy"

Hamiltonian case

$$\hat{H} = \sum_{ij} t_{ij} a_i^+ a_j + \frac{1}{4} \sum_{ijkl} \bar{v}_{ijkl} a_i^+ a_j^+ a_l a_k + \cdots$$

## Standard Wick Theorem

$$\frac{\langle \Phi_0 | \hat{H} | \Phi_0 \rangle}{\langle \Phi_0 | \Phi_0 \rangle} = \sum_{ij} t_{ij} \, \rho_{ji}^{00} + \frac{1}{2} \sum_{ijkl} \bar{v}_{ijkl} \, \rho_{ki}^{00} \, \rho_{lj}^{00} + \frac{1}{4} \sum_{ijkl} \bar{v}_{ijkl} \, \kappa_{ij}^{00*} \, \kappa_{kl}^{00}$$
$$\equiv \mathcal{E}^H(\rho^{00}, \kappa^{00}, \kappa^{00*})$$

$$\rho_{ij}^{00} = \frac{\langle \Phi_0 | a_j^+ a_i | \Phi_0 \rangle}{\langle \Phi_0 | \Phi_0 \rangle}$$
$$\kappa_{ij}^{00} = \frac{\langle \Phi_0 | a_j a_i | \Phi_0 \rangle}{\langle \Phi_0 | \Phi_0 \rangle}$$



– Introduction of new terms  $~
ho^{\gamma}$ 

-Different interactions in ph and pp channels  $\bar{v}^{\rho\rho}\!\!\neq\!\bar{v}^{\kappa\kappa}$ 

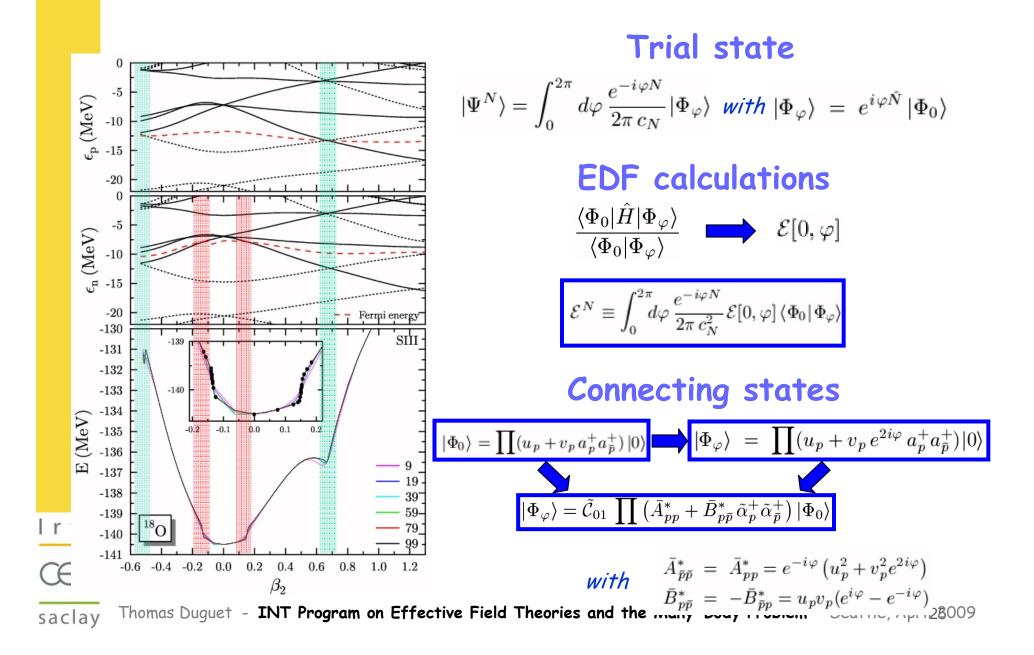
-Technical issues: coulomb, exchange...

# Energy Density Functional case

$$\underbrace{\mathsf{EDF}}_{(\rho^{00},\kappa^{00},\kappa^{00},\kappa^{00})} = \sum_{ij} t_{ij} \rho_{ji}^{00} + \frac{1}{2} \sum_{ijkl} \bar{v}_{ijkl}^{\rho\rho} \rho_{ki}^{00} \rho_{lj}^{00} + \frac{1}{4} \sum_{ijkl} \bar{v}_{ijkl}^{\kappa\kappa} \kappa_{ij}^{00*} \kappa_{kl}^{00}$$

# **Particle Number Restoration**

(II) Bender et al, First application to PNR, arXiv/0809.2045



# Correction of spurious contributions

(I) Lacroix, et al, General solution to MR pathologies, arXiv/0809.2041

# Identify problems and correct MR calculations without modifying current EDF strategy

Limited to integer power of densities (Generalization to k-body interactions)

## > Valid also for mixing Slater Determinants

Should correct divergences observed in Zdunczuk et al, nucl-th/0610118

