An extended liquid drop approach Symmetry energy and neutron skin

with Piet van Isacker²

²GANIL, Caen, France

June 4, 2009

Intro

lssues

Symmetry energy

- exp value $S(\rho = \rho_0) \approx 31 \pm 3$ MeV not known very well even for $\rho < \rho_0$
- relevance: properties of neutron stars and cooling

2 Neutron distribution

- Results depend on parametrization of Skyrme forces
- relevance: fundamental symmetries in a nuclear environment Atomic pv: weak charge as test of standard model at low Q

Nuclear structure and Atomic parity violation

$$H = \frac{G}{2\sqrt{2}} \int d^3r [-N\rho_n(r) + Z(1 - 4\sin^2\theta_W)\rho_p(r)]\psi^{\dagger}\gamma_5\psi$$

 $<\psi_{s}|\gamma_{5}|\psi_{p}>=iC_{Z}^{sp}\mathcal{N}[u_{1}^{s}(r)u_{2}^{p}(r)-u_{2}^{s}(r)u_{1}^{p}(r)]/r^{2}$

factorize m.e.:
$$H_{if} \sim \frac{G_F}{2\sqrt{2}} C_{if} \mathcal{N} Q_W$$
 $\gamma = \sqrt{1 - (\alpha Z)^2}$
electr overlap for point nucleus $\mathcal{N} = \psi_s^{\dagger}(0) \gamma_5 \psi_p(0) \sim R_p^{2\gamma-2}$

Nuclear structure and Atomic parity violation

$$H = \frac{G}{2\sqrt{2}} \int d^3r \left[-N\rho_n(r) + Z(1-4\sin^2\theta_W)\rho_p(r)\right] \psi^{\dagger}\gamma_5\psi$$

 $<\psi_{s}|\gamma_{5}|\psi_{p}>=iC_{Z}^{sp}\mathcal{N}[u_{1}^{s}(r)u_{2}^{p}(r)-u_{2}^{s}(r)u_{1}^{p}(r)]/r^{2}$

factorize m.e.:
$$H_{if} \sim \frac{G_F}{2\sqrt{2}} C_{if} \mathcal{N} Q_W$$
 $\gamma = \sqrt{1 - (\alpha Z)^2}$

electr overlap for point nucleus

$$\mathcal{N} = \psi_s^{\dagger}(0)\gamma_5\psi_p(0) \sim R_p^{2\gamma}$$

Nucleus: $Q_w = -Nq_n + Zq_p(1 - 4\sin^2\theta_W) + \Delta Q_{new}$

 q_i : convolution of electr. wf with finite nucleus; expand in $(Z\alpha)^n$ $q_p = 1 - 0.26(Z\alpha)^2 + ...$ $q_n = 1 - \frac{3}{70}(Z\alpha)^2(1 + 5(\frac{R_n}{R_n})^2) + ...$ (+ corrections to sharp radius)

why large Z? since $H_{pv} \sim Z^3$ enhancement (+rel. corr) aim: for Ra (Z=88), for 0.1% measurement (to go after ΔQ_{new}) need: $R_p \approx 1\%$, $(R_n - R_p)/R_p \approx 25\%$ (at present no direct exp info) Let us see whether we can meet these requirements

present status of skin

from Brown et al PRC76.2009 based upon Skyrme EDF

depends on Skxs(15,20,25) idea: PREX@Jlab will fix that

Neutron Skins for Atomic PNC

Irregularities due to high spin intruder orbitals (i13/2)

Does not fit exp R_c very well (except ²⁰⁸Pb)

- No microscopic approach available yet that works for small A and n.m.
- Mean field does well for isoscalar properties but isovector parameters are not well determined: ρ, no pions,....
 EFT: pions, but no ρ
- Need simple model to correlate data and extrapolate:

use minimally extended LDM approach

- extended LDM; surface symmetry energy shell corrections
- symmetry energy for $A \rightarrow \infty$
- charge radii
- neutron skin
- atomic parity violation: nuclear corrections to weak charge measurements

LDM

Conventional Bethe-von Weizsäcker (liquid drop) formula

$$E_A = -a_B A + a_{surf} A^{2/3} + S_{vol} (N-Z)^2 / A + a_C \frac{Z^2}{A^{1/3}} + E_{pair}$$

- Incomplete form of symmetry energy Need to introduce volume and surface symmetry energy
- Coulomb need to be refined $(R_c(N,Z) \neq r_0 A^{1/3})$
- shell corrections need to be added

Extended Liquid Drop Model

• Improved BW:
$$E_{sym} = E(vol, surf)$$

Decompose asymmetry $N - Z = N_s - Z_s + N_v - Z_v$ surface+ volume
 $E_{vol}^A = a_B A + S_{vol} \frac{(N_v - Z_v)^2}{A}$
 $E_{surf}^A = E_{surf}^0 + S_{surf} (N_s - Z_s)^2 / A^{2/3}$
minimize under fixed $N - Z$:
 $\frac{N_s - Z_s}{N - Z} = \frac{1}{1 + y^{-1} A^{1/3}}$ $y \equiv S_v / S_S$
 $E_A = -a_B A + a_{surf} A^{2/3} + \frac{S_v}{1 + y A^{-1/3}} (N - Z)^2 / A + ...$

< m

Extended Liquid Drop Model

• Improved BW:
$$E_{sym} = E(vol, surf)$$

Decompose asymmetry $N - Z = N_s - Z_s + N_v - Z_v$ surface+ volume
 $E_{vol}^A = a_B A + S_{vol} \frac{(N_v - Z_v)^2}{A}$
 $E_{surf}^A = E_{surf}^0 + S_{surf} (N_s - Z_s)^2 / A^{2/3}$
minimize under fixed $N - Z$:
 $\frac{N_s - Z_s}{N - Z} = \frac{1}{1 + y^{-1} A^{1/3}}$ $y \equiv S_v / S_S$
 $E_A = -a_B A + a_{surf} A^{2/3} + \frac{S_v}{1 + yA^{-1/3}} (N - Z)^2 / A + ...$
• LDM yields also relation between skin and S_s, S_v $(N_s - Z_s \ll A)$
 $\frac{N}{N_v} = (\frac{R_n}{R_0})^3 \rightarrow \frac{R_n - R_0}{R_0} \approx \frac{N_s}{3N}, \qquad \frac{R_p - R_0}{R_0} \approx \frac{Z_s}{3Z},$
 $\frac{R_n - R_p}{R} = \frac{A(N_s - Z_s)}{6NZ} \approx \frac{A}{6NZ} \frac{N - Z - a_c ZA^{2/3} / S_v}{1 + A^{1/3} / y}$ Coulomb term: for $N = Z$ $R_p > R_n$

Danielewicz, NPA 727(2003)233; Steiner et al, Phys. Rep. 411,325 differ in the choice of condition $N_s + Z_s = 0$, or $Z_s = 0$.

several methods have been proposed, e.g. in microscopic mass model of Duflo-Zuker rms dev \approx 500 keV, 14-28 parameters

simplest idea: count number of valence particles (holes) with respect to closed shells

 n_v, z_v

$$E_{sh}(N,Z) = a_1(n_v + z_v) + a_2(n_v + z_v)^2 + a_3n_v.z_v + \dots$$

however, violates Pauli, midshell cusp

improve: monopole force in single j-shell with degeneracy $D_j = 2j + 1$ $E_{pair}(n_v) = \frac{g}{D}n_v(D - n_v + 2) \equiv g'n_v.\bar{n}_v + gn_v$ seniority v = 0 $\bar{n}_v \equiv D - n_v$ =number of holes absorb in core

shell corrections(2)

$$E_{\rm shell}(N,Z) = a_1 S_2 + a_2 (S_2)^2 + a_3 S_3 + a_{\rm np} S_{\rm np}$$

$$\begin{split} S_2 &= \frac{n_v \bar{n}_v}{D_n} + \frac{z_v \bar{z}_v}{D_z}, \\ S_3 &= \frac{n_v \bar{n}_v (n_v - \bar{n}_v)}{D_n} + \frac{z_v \bar{z}_v (z_v - \bar{z}_v)}{D_z}, \\ S_{np} &= \frac{n_v \bar{n}_v z_v \bar{z}_v}{D_n D_z}, \end{split}$$

with $\bar{n}_{\rm v} \equiv D_n - n_{\rm v}$

Magic numbers: 6, 14, 28, 50, 82, 126, 184

similar to terms in microscopic mass formula of Duflo and Zuker they refer to S_3 as "monopole drift" (changes sign midshell)

examples

rms deviation 2.4 MeV

0.8 MeV (mostly due to light A)

Illustration: neutron separation energies

Often convenient to consider relative quantities,

e.g. neutron separation energies $S_{2n} = E(N, Z) - E(N - 2, Z)$ vs Z

also δ_{2n} is reproduced rather well (talk of Paul Heenen) relevance: extrapolation, e.g. is $\frac{70}{20}Ca_{50}$ stable??

n-p separation energies and Symmetry energy

LDM:
$$E \approx -a_B A + a_{surf} A^{2/3} + \frac{(N-Z)^2}{A} S_A + a_C \frac{Z(Z-1)}{A^{1/3}} + E_{pair} + E_{shell}$$

 \downarrow
 $\frac{\downarrow}{\frac{S_v}{1+yA^{-1/3}}}, \quad y = S_v/S_s$
aim: determine S_v, y in isolation of other LDM parameters

Consider isovector chemical pot. $\mu_a = \frac{1}{2}(\mu_n - \mu_p) = \frac{1}{2}(\frac{dE}{dN} - \frac{dE}{dZ})$ = $\frac{1}{4}[B(N-1,Z) - B(N,Z-1) + B(N,Z+1) + B(N+1,Z)]$

Symmetrize removal and addition

from
$$E(N,Z)$$
: $\mu_a(N,Z) = \frac{N-Z}{A}S_A + a_c \frac{Z}{A^{1/3}} + \delta E_{shell}$

invert
$$(N \neq Z)$$
 $S_A = \frac{A}{N-Z}(\mu_a - \delta E_C - \delta E_{shell})$

independent of a_B , a_{surf}

イロト イポト イヨト イヨト

Symmetry energy from exp n-p sep energies

$$S_A = \frac{A}{N-Z} (\mu_a + \delta E_C)$$

Note: the regularity of shell effects (up/down sloping)

Symmetry energy from exp n-p sep energies

Note: the regularity of shell effects (up/down sloping) particle-particle: $E_{sh} \sim n_v + z_v - [(n_v + 1) + (z_v - 1)] = 0$ particle-hole (or h-p) : $E_{sh} \sim \pm (n_v - z_v - [(n_z + 1) - (z_v - 1)]) = \pm 2$ problem at N = 40, Z = 38 (midshell in 28-50)

Symmetry energy for nuclear matter

$$\mathcal{S}_{\mathcal{A}}(\mathcal{N},Z)=rac{\mathcal{S}_{v}}{1+y\mathcal{A}^{-1/3}}$$
, $y=\mathcal{S}_{v}/\mathcal{S}_{s}$

fit in isolation of other parameters Leads to 2-par fit: $S_A^{-1} = \frac{1+yA^{-1/3}}{S_v}$

extrapolation to $A \to \infty$

fit values $S_v = 32.5$ MeV y = 2.95compare with Danielewicz (using IAS) $S_v = 29 \pm 2$, $y = 2.4 \pm 0.4$ (without) $S_v = 32.8$ y=2.8 with shell corr

Note correlation between S_v and y

Can be converted to nuclear matter $S(\rho)$: $S(\rho_0) \equiv S_v$ and S_s related to some $S(\rho < \rho_0)$

Using Thomas-Fermi:
$$E_a = \frac{\mu_a^2}{4} \int dr \frac{\rho(r)}{S}$$

 $S_v/S_s = \frac{3}{r_0} \int dr \frac{\rho(r)}{\rho_0} (\frac{S_v}{S(\rho)} - 1)$

simplest case: take $S(
ho)=S_{
m v}.(
ho/
ho_0)^{m \gamma}$

note
$$m{\gamma} = m{1} o S(
ho) = {\sf constant} o S_{\sf s} = \infty$$

we find $\gamma \approx 0.7 \pm 0.1$ Danielewicz $\gamma = 0.65 \pm 0.1$ soft EOS

radii

express in terms of iso-scalar/vector $\begin{aligned}
R_i(N,Z) &= R_0(N,Z) \pm \frac{N-Z}{2A} R_1(N,Z) \quad (i=n,p) \\
R_{0,1} \text{ depend only weakly on } N - Z \\
\text{mass radius: } R_0 &= r_0 A^{1/3} + a A^{-2/3} + c \frac{(N-Z)^2}{A^2}, \quad \text{in practice } c \approx 0 \\
\text{isovecor radius } R_1 &= b
\end{aligned}$

by charge symmetry: $R_{\rho}(N, Z)$ determines R_{ρ}

however there are Coulomb effects

- in case of sharp radius: $\frac{\delta R_c}{R_0} = -\frac{a_c}{144S_v} \frac{A^{8/3}}{NZ(1+y^{-1}A^{1/3})}$ i.e. for N = Z $R_p > R_n$
- **2** polarization correction (if *R* is converted to rms radius): since $\rho_p(r) \neq \rho_n(r)$ in interior

Closed shells: Strong binding \leftrightarrow small *R* near closed shells: decrease of binding, increase of *R* midshell: deformation: increase of binding, increase *R*

rms dev= 0.036 fm

charge radii, shell corrections

Closed shells: Strong binding \leftrightarrow small *R* near closed shells: decrease of binding, increase of *R* midshell: deformation: increase of binding, increase *R*

rms dev = 0.036 fm

Try: $\delta R_{shell}/R = a_2(n_v \bar{n}_v + z_v \bar{z}_v) + a_{pn}(n_v \bar{n}_v \cdot z_v \bar{z}_v)$ $R_c(N, Z) = R_0(A) + \frac{N-Z}{A}R_1 + \delta R_c + \delta R_{shell}$

charge radii, shell corrections

Closed shells: Strong binding \leftrightarrow small *R* near closed shells: decrease of binding, increase of *R* midshell: deformation: increase of binding, increase *R*

isotope shifts for Ce

isotope shifts $\langle r^2 \rangle_N - \langle r^2 \rangle_{N=82}$

June 4, 2009 19 / 26

isotope shifts for Ce

Dieperink (KVI)

June 4, 2009 19 / 26

Away from closed shells with say n_v , z_v deformation of the ground state occurs: increase of binding, increase of radius

$$R(\theta) = R_0(1 + \beta_2 Y_{20}(\theta) + \beta_4 Y_{40}(\theta))$$

then $R^2 = R_{spher}^2(1 + \frac{5}{4\pi}\beta_2^2 + ..)$

Simplest: take β_2 from exp BE(2) or Q-moments We are working on a dynamic approach using a collective H to describe excited states.

isotope shifts for Ra

June 4, 2009 21 / 26

э

isotope shifts for Ra

Deformation effect is substantial

options:

• from isovector term in R: $\Delta R = \frac{N-Z}{A}R_1 + \delta R_C$ provides global trend

in $^{208}\mbox{Pb}$ reduction of skin by 30%

options:

• from isovector term in R: $\Delta R = \frac{N-Z}{A}R_1 + \delta R_C$ provides global trend

in $^{208}\mbox{Pb}$ reduction of skin by 30%

(i) $\frac{R_n - R_p}{R} = \frac{A(N_S - Z_S)}{6NZ} \approx \frac{A}{6NZ} \frac{N - Z - a_c Z A^{2/3} / S_v}{1 + A^{1/3} / y}$ (ii) $\mu_a(N, Z) = \frac{2(N - Z)}{A} \frac{S_v}{1 + y A^{-1/3}} - \frac{5a_c}{6} \frac{Z}{A^{1/3}}$ from (i)+(ii) $\frac{\Delta \overline{R}}{D} = \frac{\mu_a}{12S} \frac{A^{5/3}}{NZ} + \frac{5a_c}{72S_c} \frac{A^{4/3}}{N}$

 μ_a from exp, shell effects implicitly included

Results for ΔR

 $\begin{array}{l} {}^{208} {\rm Pb} \mbox{ exp: } \Delta R = 0.20 \pm 0.04 \pm 0.05 \mbox{ fm (anti-protonic atoms)} \\ {\rm present: method(1): } 0.19 \mbox{ fm; method(2): } 0.20 \mbox{ fm} \\ {\rm Brown: } 0.15\mbox{-} 0.25 \mbox{ fm, Piekarewicz } 0.22 \mbox{ fm} \end{array}$

present 0.12 fm

 $\frac{\Delta R(^{222} \text{Ra}-^{210} \text{Ra})}{\text{Dieperink} (KVI)}$

LDM

Brown 0.084 fm

June 4, 2009 23 / 26

neutron skin $\Delta R = R_n - R_p$

present info on skin

anti-protonic atoms: model dependent (Brown et al, PRC76,034305) e.g. 208 Pb: $\Delta R = 0.20 \pm 0.04 \pm 0.05$ fm also restricted to stable nuclei

- Can one rely on calculations of R_p and ΔR ?? ²⁰⁸Pb: predictions vary $\Delta R = 0.10...0.30$ fm
- Can one determine neutron skin in atomic PNC?
 - PREX@Jlab : pv electon scattering on Pb
 - isotopic chain measurements?

use isotopic chain

Two strategies

• measure neutron skin using standard model as a tool ratio $\mathcal{R} = \frac{E'_{PNC}}{E_{PNC}} = \frac{Q'_W}{Q_W} (\frac{R'_p}{R_p})^{2\gamma-2}$ $\sim \frac{N'}{N} (\frac{R'_p}{R_p})^{2\gamma-2} (1 + f_n(\frac{R_n}{R_p}) - f_n(\frac{R'_n}{R'_p})) \quad f(x) \approx (\alpha Z)^2 (1 + 5x^2)$ compare neutron-rich with neutron-depleted isotope

use isotopic chain

Two strategies

- measure neutron skin using standard model as a tool ratio $\mathcal{R} = \frac{E'_{PNC}}{E_{PNC}} = \frac{Q'_W}{Q_W} (\frac{R'_p}{R_p})^{2\gamma-2}$ $\sim \frac{N'}{N} (\frac{R'_p}{R_p})^{2\gamma-2} (1 + f_n(\frac{R_n}{R_p}) - f_n(\frac{R'_n}{R'_p})) \quad f(x) \approx (\alpha Z)^2 (1 + 5x^2)$ compare neutron-rich with neutron-depleted isotope
- get rid of skin

suppose new physics $\tilde{Q}_W = Nh_0 + Zg_p + Ng_n$ sensitivity to new physics $F = g_p/h_0 = (\frac{\mathcal{R}}{\mathcal{R}_0} - 1)\frac{NN'}{Z\Delta N}$ Skin uncertainty: $\delta F \sim \frac{NN'}{Z\Delta N}\delta(f_n(x) - f_n(x')) \sim \delta[\frac{R'_n^2}{R'_p^2} - \frac{R^2_n}{R^2_p}]$ Idea : neutron skins of different N are correlated

- Extended LDM for masses and radii with simple shell corrections
- Symmetry energy $S_{
 m v}=30\pm2{
 m MeV},\ S_{
 m v}/S_{
 m s}=3.0\pm0.3$
- Radii *R_c* can be described by similar shell corrections; for a quantitative fit need deformation
- neutron skin predicted from n-p separation energies, no strong shell effects
- apv can be used to determine neutron skin or weak charge