Structure Properties of Hypernuclei with Skyrme force based Energy Density Functional

Shashi K Dhiman

Department of Physics, Himachal Pradesh University, Shimla, India

Outline of talk:

Introduction

Energy density Functional for Hypernuclei

Results (preliminary)

Future studies for Hypernuclei

Hyperons: A probe of nuclear interior

The baryon-baryon interaction provides information where direct or traditional scattering can not. Hypernucleus is formed by replacing one or two nucleons in the normal nucleus

Hyperon contains at least one strange quark, which makes it different from nucleons in nucleus.

Hyperons bound state have narrow spreading width of less than100keV as compared to nucleons/hole 10 MeV deep.

- 1. YN interaction is weak than the NN interaction
- 2. YN spin orbit interaction is weak
- 3. a Y with zero isospin can excite only isoscalar p-h modes of the core nucleus
- 4. No exchange term with nucleon is required.

First observation of \land hypernucleus, Denyez and Pnieski Phil. Mag. 44, (1953) 348

Profesor Marian Danysz (1909-1983) Profesor Jerzy Pniewski (1913-1989)

May 22, 2009

Hypernuclei Productions

∧ Hypernuclei Chart

The $\wedge N$ (YN) Effective Interaction

Theoretical Investigations

From QCD point of view hypernuclei lie in the non-perturbative low momentum regime, therefore the lattice QCD calculations should be ideal tool to study the structure of hypernuclei.
 The scattering length and effective range for AN scattering has been

Beane, Bedaquw, Parreno, and Savage, Nucl. Phys. A747, 55, 05

*Hyperon-Nucleon interaction has been calculated with quenched Lattice QCD simulations based on plaquette guage action and the Wilson quark action

Nemura, Ishii, Aoki and Hatsuda , Phys Letts. B673, 136, 09

Relativistic Mean Field Models have been with empirically adjusted mesonhyperon vertices

Phys Rev C58, 99, Phys Rev C76, 06,

Properties of Hypernuclei, INT09, Seattle

Theoretical Investigations

Shell Model: The experimental information of gamma spectroscopy for hypernuclei, ${}^{7}_{\Lambda}$ Li, ${}^{9}_{\Lambda}$ Be, 10,11 B, ${}^{12}_{\Lambda}$ C and ${}^{16}_{\Lambda}$ O with p-shell core nucleus for both Λ and Σ hyperons configurations,

Millener, Lect. Notes Phys. 724: 31, 2007

Quark – Meson Coupling Model: Structure properties has been calculated over the periodic chart (spe's, etc.)

Thomas et al., Prog. Part. Nucl. Phys. 58, 1-167, 2007

Skyrme Hartree Fock Theory, Rayet. Nucl.Phys A 1981 and subsequently Phys Rev C 55, 2330, 97, Phys Rev C,98 Phys Rev C ,06

Hamiltonian and **AN Skyrme force**

$$H_{\text{core nucleus}} + T_{\wedge} + V_{\wedge N}$$

The $V_{\Lambda N}$ interaction can be constructed the Skyrme nucleon-nucleon force as;

$$\begin{split} V_{\Lambda N}(\mathbf{r}_{\Lambda},\mathbf{r}_{N}) &= u_{0}(1+y_{0}P_{\sigma})\delta(\mathbf{r}_{N\Lambda}) + \frac{1}{2}u_{1}(\vec{p'}^{2}\delta(\mathbf{r}_{N\Lambda}) + \delta(\mathbf{r}_{n\Lambda})\vec{p}^{2} \\ &+ u_{2}\vec{p'}\delta(\mathbf{r}_{N\Lambda}).\vec{p} + iW_{0}\vec{p'}\delta(\mathbf{r}_{N\Lambda}).(\vec{\sigma}\times\vec{p}). \\ \end{split} \qquad \begin{aligned} \vec{\sigma} &= \vec{\sigma}_{\Lambda} - \vec{\sigma}_{N} \\ P_{\sigma} &= \frac{1}{2}(1+\vec{\sigma}_{\Lambda}.\vec{\sigma}_{N}) \\ P_{\sigma} &= \frac{1}{2}(1+\vec{\sigma}_{\Lambda}.\vec{\sigma}_{N}) \\ \mathbf{r}_{\Lambda N} &= \mathbf{r}_{\Lambda} - \mathbf{r}_{N}, \vec{p} = (\vec{\nabla}_{\Lambda} - \vec{\nabla}_{N})/2i \end{aligned}$$

$$V_{\text{ANN}}(\mathbf{r}_{\Lambda}, \mathbf{r}_{1}, \mathbf{r}_{2}) = \frac{3}{8}u_{3}(1 + y_{3}P_{\sigma})\delta(r_{\Lambda} - r_{1})\delta(r_{\Lambda} - r_{2}).$$
 Three-body interactions

Where the Skyrme force parameterization can be obtained self consistently from the G-matrix calculation

Properties of Hypernuclei, INT09, Seattle

H =

$H_{\wedge N}$ Hamiltonian Density

$$\begin{split} H_{\Lambda N}(r) &= \frac{\hbar^2}{2m_{\Lambda}} \tau_{\Lambda} + H_0 + H_{eff.} + H_{fin} + H_{den} + H_{s.o.} \\ H_0 &= u_0 (1 + \frac{1}{2} y_0) \rho_N \rho_{\Lambda} \\ H_{eff} &= \frac{1}{4} (u_1 + u_2) (\tau_{\Lambda} \rho_N + \tau_N \rho_{\Lambda}) \\ &= \frac{3}{5} (3\pi^2)^{2/3} \frac{1}{4} (u_1 + u_2) \rho_{\Lambda} \left(\rho_N \rho_{\Lambda}^{2/3} + \rho_N^{5/3} \right) \\ H_{fin} &= \frac{1}{4} (3u_1 - u_2) (\nabla \rho_N \cdot \nabla \rho_{\Lambda}) \\ H_{den} &= \frac{3}{8} u_3 (1 + \frac{1}{2} y_3) \rho_N^{\beta+1} \rho_{\Lambda} \\ H_{s.o.} &= \frac{1}{2} W_0^{\Lambda} (\nabla \rho_N \cdot J_{\Lambda} + \nabla \rho_{\Lambda} \cdot J_N) \end{split}$$

We use the values of $\hbar^2 / 2m_{\Lambda} = 17.44054$ MeV fm² and $\beta = \frac{1}{3}$

10

May 22, 2009

$V_{\wedge N}$ Parameterizations

□ Skyrme parameterizations is determined by reproducing the G-matrix calculation

 \Box The density dependence of G-matrix is originate from $\Lambda N\text{-}\Sigma N$ coupling, repulsive core singularity and tensor force

The coupled channel Bethe-Goldstone equation is used to solve the G-matix .

□ Then observed data of hypernuclei is reproduced with condition that $V_{\wedge N}$ = - 30MeV at normal nuclear density

□Afterwards the skyrme parameters are determined so as to reproduce the $V_{\Lambda}^{s}(p_{F})$ in singlet even, $V_{\Lambda}^{T}(p_{F})$ in triplet even, and $V_{\Lambda}^{e}(p_{F}) = U_{\Lambda}^{s}(p_{F}) + U_{\Lambda}^{T}(p_{F})$ for u0, u1, u3, and $V_{\Lambda}^{o}(p_{F})$ for u2,

□ Additional the experimental binding energy of $BE(^{13}_{\Lambda}C) = 11.69$ MeV hypernuclei used for fine tuning of the parameters.

□ Julich model for set A, Nijmegen model for set B and Soft core model for set C

$V_{\wedge N}$ Parameterizations

SET	u ₀	u ₁	u ₂	u3	У0	У3
((MeV fm ³)	(MeV fm ⁵)	(MeV fm ⁵)	(MeV fm ^{3+3β}))	
А	-476.0	42.0	23.00	1514.10	-0.0452	-0.2800
В	-622.0	116.0	-30.00	1880.30	-0.0172	0.0679
С	-542.5	56.0	8.00	1387.00	-0.1534	0.1074
D	-265.7	97.17	12.83		-0.2160	
Е	-176.5	-35.8	44.10			

Skyrme Energy Density Functional for A **Hypernucleus**

$$\begin{split} \mathcal{E}_{1\Lambda}^{H} &= \mathcal{E}_{NN}(\rho_{n},\rho_{p},\tau_{n},\tau_{p},J_{n},J_{p}) + \mathcal{E}_{\Lambda N}(\rho_{n},\rho_{p},\rho_{\Lambda},\tau_{\Lambda}) + \mathcal{E}_{R}^{\Lambda}(\rho_{n},\rho_{p},\rho_{\Lambda}) \\ \\ \mathcal{E}_{NN} &= \int d^{3}rH_{NN}(r), \\ \\ \rho_{q} &= \sum_{i=1}^{N_{q}} v_{q}^{i} \mid \phi_{i}(r,q) \mid^{2} \\ \tau_{q} &= \sum_{i=1}^{N_{q}} v_{q}^{i} \mid \nabla \phi_{i}(r,q) \mid^{2}, \\ J_{q} &= \sum_{i=1}^{N_{q}} v_{q}^{i} \phi_{i}^{*}(r,q) (\nabla \phi_{i}(r,q) \times \sigma)/i. \end{split}$$

Properties of Hypernuclei, INT09, Seattle

May 22, 2009

Skyrme Energy Density Functional for \land **Hypernucleus**

$$E_{pair} = -\sum_{q \in p,n} G_q \left[\sum_{\alpha \in q} \sqrt{v_\alpha (1 - v_\alpha)}\right]^2$$

$$v_q^2 = \frac{1}{2} \left[1 - \frac{\epsilon_q - \mu_q}{\sqrt{(\epsilon_q - \mu_q)^2 + (\Delta_q)^2}} \right]$$

$$\mathcal{E}_{c.m.} = \frac{\langle P_{c.m.}^2 \rangle}{2(A-n)m_N + nm_\Lambda)}$$

$$< P_{c.m.}^{2} > = \sum_{\alpha} v_{\alpha}^{2} < \alpha \alpha \mid \mathbf{p}^{2} \mid \alpha \alpha >$$
$$- \sum_{\alpha,\beta} v_{\alpha} v_{\beta} (v_{\alpha} v_{\beta} - u_{\alpha} u_{\beta}) < \alpha \beta \mid \mathbf{p}_{1} \cdot \mathbf{p}_{2} \mid \alpha \beta >$$

$$\mathcal{E}_R^{\Lambda} = -\frac{1}{2} \int d^3 r \rho_{\Lambda} (\rho_N^2 + 2\rho_p \rho_n).$$

Properties of Hypernuclei, INT09, Seattle

May 22, 2009

Solutions of SHF equations by minimization of EDF

$$\left[-\nabla \frac{\hbar^2}{2m_q^*(r)} \cdot \nabla + V_q(r) - iW_q(r) \cdot (\nabla \times \sigma)\right] \phi_i(r,q) = \epsilon_q^i \phi_i(r,q)$$

$$V_{\Lambda N}(r) = m_0^{\Lambda} \rho_N + \frac{3}{5} (3\pi^2)^{2/3} m_1^{\Lambda} (\rho_N \rho_{\Lambda}^{2/3} + \rho_N^{5/3}) + m_3^{\Lambda} \rho_n^{\beta+1}$$

$$m_0 = u_0(1 - \frac{1}{2}y_0)$$
 and $m_3 = \frac{3}{8}u_3(1 + \frac{1}{2}y_3)$

May 22, 2009

The \land **Effective mass**

SHF mean field potential

Single particle energies in Hypernuclei

Set C, u_0 parameter of Skyrme force is adjusted to reproduce 1s SPE's.

Separation energies $S_{\Lambda} = BE(A^{-1}Z) - BE(A_{\Lambda}Z)$

	$S^{Expt}_{\Lambda}(MeV)$	$\mathrm{S}^{Theor}_{\Lambda}~(\mathrm{MeV})$	B.E./A (MeV)	$r^{\Lambda}(s_{1/2})$
$^{28}_{\Lambda}{\rm Si}$	16.6 ± 0.20 [26]	16.764	8.073	3.16
$^{32}_{\Lambda}{\rm S}$	17.5 ± 0.30	17.115	8.603	3.27
$^{33}_{\Lambda}{\rm S}$	17.96 ± 0.00	17.266	8.664	3.29
$^{40}_{\Lambda} Ca$	18.70 ± 1.10	18.686	8.574	3.35
$^{41}_{\Lambda} Ca$	19.24 ± 1.00	18.819	8.585	3.36
$^{51}_{\Lambda}\mathrm{V}$	19.97 ± 0.13 [1]	19.814	8.798	3.51
$^{56}_{\Lambda}{ m Fe}$	21.00±1.50 [1, 30]	20.209	8.664	3.57
$^{89}_{\Lambda}{ m Y}$	23.1 ± 0.50 [1]	23.239	8.732	3.94
¹³⁹ Lа	24.5 ± 1.2	24.253	8.384	4.46
²⁰⁸ Рb	26.3 ± 0.80 [1]	25.282	7.889	4.93

Properties of Hypernuclei, INT09, Seattle

May 22, 2009

Excitation spectra (mirror hypernuclei ¹²_AB and ¹²_AC)

TABLE II: The single particle energies calculated with set C parameterizations for ΛN interaction and s-p orbitals energy spacing obtained from ${}^{12}_{\Lambda}B$ and ${}^{12}_{\Lambda}C$ hypernuclei excitation spectra compared with recent measurement [22] and shell model calculation [22, 23].

		$^{12}_{\Lambda}B$		$^{12}_{\Lambda}C$		
States	Experiment [22]	EDF	Shell Model [22]	Experiment [22]	EDF	Shell Model [23]
1s	11.70±0.10	11.4135		10.76	10.9578	
1p	0.50±0.10	0.3738		0.10	0.3833	
Δs-p	11.20±0.10	11.0407	11.06	10.66±0.10	10.5745	10.60
$\Delta \operatorname{sp}({}^{12}_{\Lambda}B)$ - $\Delta \operatorname{sp}({}^{12}_{\Lambda}C)$	0.50±0.20	0.4667	0.46	0.50±0.20	0.4667	0.46

Excitation spectra ${}^{16}_{\Lambda}$ **O**

Hypernucleus	J^{π}	p-h state	Expt.[31]	SkHF
			[MeV]	[MeV]
$^{16}_{\Lambda}\mathrm{O}$	0-	$(1s_{1/2})_{\Lambda}, (1p_{1/2})_n^{-1}$	-0.26	0.0
	1^{-}_{1}	$(1s_{1/2})_{\Lambda},(1p_{1/2})_n^{-1}$	0.0	0.0
	1^{-}_{2}	$(1s_{1/2})_{\Lambda}, (1p_{3/2})_n^{-1}$	6.532	6.398
	2^{-}_{1}	$(1s_{1/2})_{\Lambda}, (1p_{3/2})_n^{-1}$	6.784	6.398
	0^{+}_{1}	$(1p_{1/2})_{\Lambda}, (1p_{1/2})_n^{-1}$	10.570	12.068
	1_{1}^{+}	$(1p_{3/2})_{\Lambda}, (1p_{1/2})_n^{-1}$	-	12.930
	2^{+}_{1}	$(1p_{3/2})_{\Lambda}, (1p_{1/2})_n^{-1}$	10.610	12.930
	2^{+}_{2}	$(1p_{3/2})_{\Lambda}, (1p_{3/2})_n^{-1}$	16.590	17.309
	2^{+}_{3}	$(1p_{3/2})_{\Lambda}, (1p_{3/2})_n^{-1}$	16.590	17.309
	0 ₂ +	$(1p_{3/2})_{\Lambda}, (1p_{3/2})_n^{-1}$	17.140	17.309

Properties of Hypernuclei, INT09, Seattle

May 22, 2009

Excitation spectra ⁴⁰ Ca

J^{π}	p-h state	Expt.	SkHF	B.E./B	r_p^{Λ}	$r_h^{neutron}$
		[MeV]	[MeV]	[MeV]	[fm]	[fm]
1_{1}^{+}	$(1s_{1/2})_{\Lambda}, (1d_{3/2})_n^{-1}$	0.22	0.00	8.4930	3.39	4.18
2^{+}_{1}	$(1s_{1/2})_\Lambda,(1d_{3/2})_n^{-1}$	0.00	0.00			
0+	$(1s_{1/2})_\Lambda,(2s_{1/2})_n^{-1}$	2.92	2.2388	8.4416	3.39	4.52
1_{1}^{+}	$(1s_{1/2})_\Lambda,(2s_{1/2})_n^{-1}$	3.44	2.2388			
3+	$(1s_{1/2})_\Lambda,(1d_{5/2})_n^{-1}$	6.01	7.1412	7.2338	3.28	4.02
2^{+}_{2}	$(1s_{1/2})_{\Lambda}, (1d_{5/2})_n^{-1}$	6.19	7.1412			
2^{-}_{1}	$(1p_{3/2})_{\Lambda}, (1d_{3/2})_n^{-1}$	7.98	8.2804	8.114	3.37	4.17
3-	$(1p_{3/2})_{\Lambda}, (1d_{3/2})_n^{-1}$	8.55	8.2804			
1^{-}_{1}	$(1p_{3/2})_{\Lambda}, (1d_{3/2})_n^{-1}$	8.78	8.2804			
0-	$(1p_{3/2})_\Lambda, (1d_{3/2})_n^{-1}$	9.54	8.2804			
1^{-}_{2}	$(1p_{1/2})_{\Lambda}, (1d_{3/2})_n^{-1}$	9.27	8.2804			
2^{-}_{2}	$(1p_{1/2})_{\Lambda}, (1d_{3/2})_n^{-1}$	9.53	8.2804			

Properties of Hypernuclei, INT09, Seattle

May 22, 2009

208 APb Excitation spectra

Neutron hole - 1i_{13/2}

Λ -state	Expt1.	Expt2	SkHF	r^{Λ}
	[MeV]	[MeV]	[MeV]	[fm]
1s _{1/2}	-3.0	1.6	1.6	4.65
1p _{3/2}	4.6	6.8	5.4133	5.20
1d _{5/2}	8.24	12.84	6.3851	5.62
$1f_{7/2}$	13.69	18.29	11.2422	5.98
1g9/2	17.49	17.49	16.8096	6.31

Double \land force

$$V_{\Lambda\Lambda}(\mathbf{r}_{\Lambda\Lambda}) = \lambda_0 \delta(\mathbf{r}_{\Lambda\Lambda}) + \frac{1}{2} \lambda_1 \left(\vec{p'}^2 \delta(\mathbf{r}_{\Lambda\Lambda}) + \delta(\mathbf{r}_{\Lambda\Lambda}) \vec{p}^2 \right)$$

$$\mathbf{r}_{\Lambda\Lambda} = \mathbf{r}_{\Lambda_1} - \mathbf{r}_{\Lambda_2}$$

$$V_{\Lambda\Lambda N}(\mathbf{r}_{\Lambda_1}, \mathbf{r}_{\Lambda_2}, \mathbf{r}_N) = \lambda_3 \delta(\mathbf{r}_{\Lambda_1} - \mathbf{r}_N) \rho_N^\beta \delta(\mathbf{r}_{\Lambda_2} - \mathbf{r}_N)$$

Energy density Functional for AA **hypernuclei**

$$\mathcal{E}_{2\Lambda}^{H} = \mathcal{E}_{1\Lambda}^{H} + \mathcal{E}_{\Lambda\Lambda} \qquad \qquad \mathcal{E}_{\Lambda\Lambda} = \int d^{3}r H_{\Lambda\Lambda}(r),$$

May 22, 2009

$H_{\Lambda\Lambda}$ Hamiltonian density

$$H_{\Lambda\Lambda} = n_0^{\Lambda} \rho_{\Lambda}^2 + n_1^{\Lambda} \rho_{\Lambda} \tau_{\Lambda} + n_2^{\Lambda} \rho_{\Lambda} \nabla^2 \rho_{\Lambda} + \frac{1}{4} n_3^{\Lambda} \rho_{\Lambda}^2 \rho_{N}^{\beta}$$

$$n_0^{\Lambda} = \frac{1}{4}\lambda_0, n_1^{\Lambda} = \frac{1}{8}(\lambda_1 - 3\lambda_2), n_2^{\Lambda} = \frac{3}{32}(\lambda_2 - \lambda_1), \qquad n_3^{\Lambda} = \frac{1}{4}\lambda_3$$

$$V_{\Lambda\Lambda}(r) = V_{\Lambda N}(r) + n_0^{\Lambda} \rho_{\Lambda} + \frac{3}{5} (3\pi^2)^{2/3} n_1^{\Lambda} \rho_{\Lambda}^{5/3} + \frac{1}{2} n_3^{\Lambda} \rho_{\Lambda} \rho_N^{\beta}$$

May 22, 2009

Effective mass acquire additional terms as,

$$\begin{split} \frac{m_{\Lambda}^{*}}{m_{\Lambda}} &= \left[\left(\frac{m_{\Lambda}}{m_{\Lambda}^{*}} \right)_{s\Lambda} + n_{1}^{\Lambda} \rho_{\Lambda} \right]^{-1} \\ &= \left(\frac{m_{\Lambda}}{m_{\Lambda}^{*}} \right)_{s\Lambda} - n_{1}^{\Lambda} \rho_{\Lambda} \left(\frac{m_{\Lambda}}{m_{\Lambda}^{*}} \right)_{s\Lambda}^{2} + \left(n_{1}^{\Lambda} \rho_{\Lambda} \right)^{2} \left(\frac{m_{\Lambda}}{m_{\Lambda}^{*}} \right)_{s\Lambda}^{3} - \dots, \end{split}$$

Properties of Hypernuclei, INT09, Seattle

May 22, 2009

Conclusion and Outlook

➤ Theoretical calculations for ∧ hypernuclei across the periodic table are shown with in Skyrme H F theory by using the Skyrme parameterizations from the literature.

>The description of single particle energies require the Lambda Nucleon interaction have density dependence, which arise from the zero range three body interaction in Skyrme HF calculation.

>Plan to parameterize Skyrme $\land N$ force by the fitting the recent data of single particle energies of hypernuclei over the periodic table.

28

May 22, 2009

Suggested Reading: Hashimoto & Tamura, Progress in Particle and Nuclear Physics 57, 564, 06

