Structure Properties of Hypernuclei with Skyrme force based Energy Density Functional

Shashi K Dhiman

Department of Physics, Himachal Pradesh University, Shimla, India

Outline of talk:

Introduction

Energy density Functional for Hypernuclei

Results (preliminary)

Future studies for Hypernuclei

1

Hyperons: A probe of nuclear interior

The baryon-baryon interaction provides **Figure Figure 1** information where direct or traditional scattering can not.

Hypernucleus is formed by replacing one or two nucleons in the normal nucleus

Hyperon contains at least one strange quark, which makes it different from nucleons in nucleus.

Hyperons bound state have narrow spreading width of less than100keV as compared to nucleons/hole 10 MeV deep.

- **1. YN interaction is weak than the NN interaction**
- **2. YN spin orbit interaction is weak**
- **3. a Y with zero isospin can excite only isoscalar p-h modes of the core nucleus**
- **4. No exchange term with nucleon is**

First observation of Λ **hypernucleus, Denyez and Pnieski Phil. Mag. 44, (1953) 348**

Profesor Marian Danysz (1909-1983) Profesor Jerzy Pniewski (1913 - 1989)

Hypernuclei Productions

Λ **Hypernuclei Chart**

5

The Λ**N (YN) Effective Interaction**

Theoretical Investigations

 From QCD point of view hypernuclei lie in the non-perturbative low momentum regime, therefore the lattice QCD calculations should be ideal tool to study the structure of hypernuclei.

 The scattering length and effective range for Λ**N scattering has been extracted in both QCD and partially-quenched CQD.**

Beane, Bedaquw, Parreno, and Savage, Nucl. Phys. A747, 55, 05

Hyperon-Nucleon interaction has been calculated with quenched Lattice QCD simulations based on plaquette guage action and the Wilson quark action

Nemura, Ishii, Aoki and Hatsuda ,Phys Letts.B673, 136, 09

Relativistic Mean Field Models have been with empirically adjusted mesonhyperon vertices

Phys Rev C58, 99, Phys Rev C76, 06,

Theoretical Investigations

Shell Model: The experimental information of gamma spectroscopy for hypernuclei, ⁷ ^Λ**Li, 9** ^Λ**Be, 10,11B, ¹²** ^Λ**C and ¹⁶** ^Λ**O with p-shell core nucleus for both** Λ **and** Σ **hyperons configurations,**

Millener, Lect. Notes Phys. 724: 31, 2007

Quark –Meson Coupling Model: Structure properties has been calculated over the periodic chart (spe's, etc.)

Thomas et al.,Prog. Part. Nucl. Phys. 58, 1-167, 2007

Skyrme Hartree Fock Theory, **Rayet. Nucl.Phys A 1981 and subsequently Phys Rev C 55, 2330, 97, Phys Rev C,98 Phys Rev C ,06**

Hamiltonian and Λ**N Skyrme force**

$$
H = H_{\text{core nucleus}} + T_{\text{A}} + V_{\text{AN}}
$$

$$
^{12}{}_{\Lambda}B = ^{11}B + \Lambda
$$

The V_{ΛN} interaction can be constructed the Skyrme nucleon-nucleon **force as;**

$$
V_{\Lambda N}(\mathbf{r}_{\Lambda}, \mathbf{r}_{\text{N}}) = u_0 (1 + y_0 P_{\sigma}) \delta(\mathbf{r}_{\text{NA}}) + \frac{1}{2} u_1 (\vec{p}^2 \delta(\mathbf{r}_{\text{NA}}) + \delta(\mathbf{r}_{\text{NA}}) \vec{p}^2 \frac{\vec{\sigma} = \vec{\sigma}_{\Lambda} - \vec{\sigma}_{\text{N}}}{P_{\sigma} = \frac{1}{2} (1 + \vec{\sigma}_{\Lambda} \cdot \vec{\sigma}_{\text{N}})} + u_2 \vec{p}^2 \delta(\mathbf{r}_{\text{NA}}) \cdot \vec{p} + i W_0 \vec{p}^2 \delta(\mathbf{r}_{\text{NA}}) \cdot (\vec{\sigma} \times \vec{p}).
$$
\n
$$
\mathbf{r}_{\text{AN}} = \mathbf{r}_{\Lambda} - \mathbf{r}_{\text{N}}, \ \vec{p} = (\vec{\nabla}_{\Lambda} - \vec{\nabla}_{\text{N}})/2i
$$

$$
V_{\Lambda NN}(\mathbf{r}_{\Lambda}, \mathbf{r}_{1}, \mathbf{r}_{2}) = \frac{3}{8}u_{3}(1 + y_{3}P_{\sigma})\delta(r_{\Lambda} - r_{1})\delta(r_{\Lambda} - r_{2}).
$$
 There-body interactions

Where the Skyrme force parameterization can be obtained self consistently from the G-matrix calculation

H_ΛN Hamiltonian Density

$$
H_{\Lambda N}(r) = \frac{\hbar^2}{2m_{\Lambda}} \tau_{\Lambda} + H_0 + H_{eff.} + H_{fin} + H_{den} + H_{s.o.}
$$

\n
$$
H_0 = u_0 (1 + \frac{1}{2} y_0) \rho_{N} \rho_{\Lambda}
$$

\n
$$
H_{eff} = \frac{1}{4} (u_1 + u_2) (\tau_{\Lambda} \rho_N + \tau_{N} \rho_{\Lambda})
$$

\n
$$
= \frac{3}{5} (3\pi^2)^{2/3} \frac{1}{4} (u_1 + u_2) \rho_{\Lambda} (\rho_{N} \rho_{\Lambda}^{2/3} + \rho_{N}^{5/3})
$$

\n
$$
H_{fin} = \frac{1}{4} (3u_1 - u_2) (\nabla \rho_N \cdot \nabla \rho_{\Lambda})
$$

\n
$$
H_{den} = \frac{3}{8} u_3 (1 + \frac{1}{2} y_3) \rho_N^{\beta+1} \rho_{\Lambda}
$$

\n
$$
H_{s.o.} = \frac{1}{2} W_0^{\Lambda} (\nabla \rho_N \cdot J_{\Lambda} + \nabla \rho_{\Lambda} \cdot J_N)
$$

\nWe use the values of $\hbar^2 / 2m_{\Lambda} = 17.44054$ MeV fm² and $\beta = \frac{1}{3}$

V_Λ_N Parameterizations

 Skyrme parameterizations is determined by reproducing the G-matrix calculation

 The density dependence of G-matrix is originate from Λ**N-**Σ**N coupling, repulsive core singularity and tensor force**

The coupled channel Bethe-Goldstone equation is used to solve the G-matix .

 \Box Then observed data of hypernuclei is reproduced with condition that $V_{\Lambda N}$ = -**30MeV at normal nuclear density**

Afterwards the skyrme parameters are determined so as to reproduce the $\mathbf{V^S}_{\wedge}(\mathbf{p_F})$ in singlet even $, \;\; \mathbf{V^T}_{\wedge}(\mathbf{p_F})$ in triplet even $, \;\;$ and $\bm{\mathsf{V}}^\textsf{e}_{\wedge\bm{\mathsf{N}}} \left(\bm{{\mathsf{p}}}_\textsf{F} \right) = \bm{\mathsf{U}}^\textsf{S}_{\wedge} (\bm{{\mathsf{p}}}_\textsf{F}) \; + \bm{\mathsf{U}}^\textsf{T}_{\wedge} (\bm{{\mathsf{p}}}_\textsf{F}) \; \text{for u0, u1, u3, and } \bm{\mathsf{V}}^\textsf{o}_{\wedge\bm{\mathsf{N}}} \left(\bm{{\mathsf{p}}}_\textsf{F} \right) \text{for u2,}$

 Additional the experimental binding energy of BE(¹³ ^Λ**C) = 11.69 MeV hypernuclei used for fine tuning of the parameters.**

Julich model for set A, Nijmegen model for set B and Soft core model for set C

V_ΛN Parameterizations

Skyrme Energy Density Functional for Λ **Hypernucleus**

$$
\mathcal{E}_{1\Lambda} = \mathcal{E}_{NN}(\rho_n, \rho_p, \tau_n, \tau_p, J_n, J_p) + \mathcal{E}_{\Lambda N}(\rho_n, \rho_p, \rho_\Lambda, \tau_\Lambda) + \mathcal{E}_{R}^{\Lambda}(\rho_n, \rho_p, \rho_\Lambda)
$$

$$
\mathcal{E}_{NN} = \int d^3r H_{NN}(r).
$$

$$
\mathcal{E}_{\Lambda N} = \int d^3r H_{\Lambda N}(r).
$$

$$
\mathcal{E}_{\Lambda N} = \int d^3r H_{\Lambda N}(r).
$$

$$
\rho_q = \sum_{i=1}^{N_q} v_q^i |\phi_i(r, q)|^2 \tau_q = \sum_{i=1}^{N_q} v_q^i |\nabla \phi_i(r, q)|^2.
$$

$$
J_q = \sum_{i=1}^{N_q} v_q^i \phi_i^*(r, q) (\nabla \phi_i(r, q) \times \sigma)/i.
$$

Skyrme Energy Density Functional for Λ **Hypernucleus**

$$
\left(\begin{array}{c}\nE_{pair} = -\sum_{q \in p,n} G_q \left[\sum_{\alpha \in q} \sqrt{v_{\alpha} (1 - v_{\alpha})} \right]^2\n\end{array}\right)
$$

$$
v_q^2 = \frac{1}{2} \left[1 - \frac{\epsilon_q - \mu_q}{\sqrt{(\epsilon_q - \mu_q)^2 + (\Delta_q)^2}} \right]
$$

$$
\mathcal{E}_{c.m.} = \frac{P_{c.m.}^2 >}{2(A - n)m_N + nm_\Lambda)}
$$

$$
\langle P_{c.m.}^2 \rangle = \sum_{\alpha} v_{\alpha}^2 < \alpha \alpha \mid \mathbf{p}^2 \mid \alpha \alpha > \\
-\sum_{\alpha, \beta} v_{\alpha} v_{\beta} (v_{\alpha} v_{\beta} - u_{\alpha} u_{\beta}) < \alpha \beta \mid \mathbf{p}_1 . \mathbf{p}_2 \mid \alpha \beta > \\
\tag{3}
$$

$$
\mathcal{E}_R^{\Lambda} = -\frac{1}{2} \int d^3 r \rho_{\Lambda} (\rho_N^2 + 2\rho_p \rho_n).
$$

Solutions of SHF equations by minimization of EDF

$$
\left[-\nabla \frac{\hbar^2}{2m_q^*(r)} \cdot \nabla + V_q(r) - iW_q(r) \cdot (\nabla \times \sigma)\right] \phi_i(r, q) = \epsilon_q^i \phi_i(r, q)
$$

$$
V_{\Lambda N}(r)=m_0^\Lambda \rho_N+\frac{3}{5}(3\pi^2)^{2/3}m_1^\Lambda (\rho_N\rho_\Lambda^{2/3}+\rho_N^{5/3})+m_3^\Lambda\rho_n^{\beta+1}
$$

$$
m_0 = u_0(1 - \frac{1}{2}y_0)
$$
 and $m_3 = \frac{3}{8}u_3(1 + \frac{1}{2}y_3)$

The Λ **Effective mass**

SHF mean field potential

Single particle energies in Hypernuclei

Set C, **u**₀ parameter of Skyrme force is adjusted to reproduce 1s SPE's.

Separation energies $S_\Lambda = BE(A-1Z) - BE(A_0Z)$

Excitation spectra (mirror hypernuclei ¹² ^Λ**B and ¹²** ^Λ**C)**

TABLE II: The single particle energies calculated with set C parameterizations for ΛN interaction and s-p orbitals energy spacing obtained from $^{12}_{\Lambda}B$ and $^{12}_{\Lambda}C$ hypernuclei excitation spectra compared with recent measurement [22] and shell model calculation [22, 23].

	$^{12}_{\Lambda}B$			${}^{12}_{\Lambda}C$		
States						Experiment [22] EDF Shell Model [22] Experiment [22] EDF Shell Model [23]
1s	11.70 ± 0.10	11.4135		10.76	10.9578	$- - -$
1p	0.50 ± 0.10	0.3738		0.10	0.3833	\cdots
Δs -p	11.20 ± 0.10	11.0407	11.06	10.66 ± 0.10	10.5745	10.60
$\Delta sp(^{12}_{\Lambda}B)$ - $\Delta sp(^{12}_{\Lambda}C)$	0.50 ± 0.20	0.4667	0.46	0.50 ± 0.20	0.4667	0.46

Excitation spectra ¹⁶ Λ**O**

Excitation spectra ⁴⁰ ^Λ**Ca**

208 ^Λ**Pb Excitation spectra**

Neutron hole - 1i_{13/2}

Double Λ **force**

$$
V_{\Lambda\Lambda}(\mathbf{r}_{\Lambda\Lambda}) = \lambda_0 \delta(\mathbf{r}_{\Lambda\Lambda}) + \frac{1}{2} \lambda_1 \left(\vec{p}'^2 \delta(\mathbf{r}_{\Lambda\Lambda}) + \delta(\mathbf{r}_{\Lambda\Lambda}) \vec{p}^2 \right)
$$

$$
\mathbf{r}_{\Lambda\Lambda} = \mathbf{r}_{\Lambda_1} - \mathbf{r}_{\Lambda_2}
$$

$$
V_{\Lambda\Lambda N}(\mathbf{r}_{\Lambda_1}, \mathbf{r}_{\Lambda_2}, \mathbf{r}_{N}) = \lambda_3 \delta(\mathbf{r}_{\Lambda_1} - \mathbf{r}_{N}) \rho_N^{\beta} \delta(\mathbf{r}_{\Lambda_2} - \mathbf{r}_{N})
$$

Energy density Functional for ΛΛ **hypernuclei**

$$
\mathcal{E}_{2\Lambda}^H = \mathcal{E}_{1\Lambda}^H + \mathcal{E}_{\Lambda\Lambda} \qquad \mathcal{E}_{\Lambda\Lambda} = \int d^3 r H_{\Lambda\Lambda}(r),
$$

H_{ΛΛ} Hamiltonian density

$$
H_{\Lambda\Lambda}=n_0^\Lambda\rho_\Lambda^2+n_1^\Lambda\rho_\Lambda\tau_\Lambda+n_2^\Lambda\rho_\Lambda\nabla^2\rho_\Lambda+\frac{1}{4}n_3^\Lambda\rho_\Lambda^2\rho_\Lambda^\beta,
$$

$$
n_0^{\Lambda} = \frac{1}{4}\lambda_0, n_1^{\Lambda} = \frac{1}{8}(\lambda_1 - 3\lambda_2), n_2^{\Lambda} = \frac{3}{32}(\lambda_2 - \lambda_1), \quad n_3^{\Lambda} = \frac{1}{4}\lambda_3
$$

$$
V_{\Lambda\Lambda}(r) = V_{\Lambda N}(r) + n_0^{\Lambda} \rho_{\Lambda} + \frac{3}{5} (3\pi^2)^{2/3} n_1^{\Lambda} \rho_{\Lambda}^{5/3} + \frac{1}{2} n_3^{\Lambda} \rho_{\Lambda} \rho_N^{\beta}
$$

Effective mass acquire additional terms as,

$$
\frac{m_{\Lambda}^{*}}{m_{\Lambda}} = \left[\left(\frac{m_{\Lambda}}{m_{\Lambda}^{*}} \right)_{s\Lambda} + n_{1}^{\Lambda} \rho_{\Lambda} \right]^{-1}
$$
\n
$$
= \left(\frac{m_{\Lambda}}{m_{\Lambda}^{*}} \right)_{s\Lambda} - n_{1}^{\Lambda} \rho_{\Lambda} \left(\frac{m_{\Lambda}}{m_{\Lambda}^{*}} \right)_{s\Lambda}^{2} + \left(n_{1}^{\Lambda} \rho_{\Lambda} \right)^{2} \left(\frac{m_{\Lambda}}{m_{\Lambda}^{*}} \right)_{s\Lambda}^{3} - \dots,
$$

Conclusion and Outlook

 Theoretical calculations for Λ **hypernuclei across the periodic table are shown with in Skyrme H F theory by using the Skyrme parameterizations from the literature.**

The description of single particle energies require the Lambda Nucleon interaction have density dependence, which arise from the zero range three body interaction in Skyrme HF calculation.

Plan to parameterize Skyrme Λ**N force by the fitting the recent data of single particle energies of hypernuclei over the periodic table.**

Suggested Reading: Hashimoto &Tamura, Progress in Particle and Nuclear Physics 57, 564, 06

