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Dirac mean fields

The Dirac equation for a nucleon of momentum k in nuclear matter
IS

(vMk, — M — X(k))u(k,s) =0

The Dirac mean field can be decomposed as

So(k) = T3 (k)] — 9 (k)° + ()7 -k t=n,p

In terms of these, we can define the effective mass and
momentum,

M*(k) =M +Y°(k), k*=k(1+X"k))

and the single-particle energy of the state, u(k,s),

E*(k) = E + °(k) = \/k*? + M*?



Approximations to the mean field

Dyson equation for
the single-particle
propagator

Hartree — includes direct
meson term with all
nucleons

Hartree-Fock — includes
direct meson and nucleon
exchange terms

Gi(k) = Go(k) + Go(k)X: (k)G (k)
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Meson exchange - Hartree vs. Hartree-Fock

Low mass mesons included in meson | J™, I | mass (MeV)
meson-exchange NN i 0™, 0 550.0
potentials, such as the Bonn 6 | 07,1 983.0
potentials » 17,0 782.6
Only the first four enter the P é_" é Ziz‘g
Hartree mean field — no pions. 2 0_" . T {ﬁ

Without the long-range of pion exchange, the Hartree
approximation furnishes a very sharp nuclear surface and a very
large surface energy.

Dirac-Hartree effective interactions improve their description of
the nuclear surface using either:

1 - Non-linear meson interactions, such as a Ac* term;
2 - Density-dependent coupling coefficients that increase at low
density to increase the mean field in the surface.



Hartree-Fock and Brueckner

The Hartree-Fock approximation can describe the nuclear
surface in a more fundamental manner than the Hartree
approximation,

It still does not provide a good description of the interaction
of two nucleons -- it does not take into account properly the
hard core of the nucleon-nucleon interaction.

The HF furnishes an overly rigid model of the nucleus -- a
compressibility on the order of 500 MeV, (as in the Hartree
approximation) -- compared to experimental estimates of 200
— 300 MeV.

Density-dependent Hartree models try to correct for this by
adjusting to Brueckner mean fields, which take the hard core
into account.

Our objective: to adjust Brueckner mean fields with a
density-dependent Hartree-Fock interaction - one that
iIncludes the pion explicitly.




The Bethe-Salpeter equation

The Brueckner G-matrix I" satisfies a Bethe-Salpeter equation.

We calculate it in the ladder approximation, including the anti-
symmetrized bare nucleon-nucleon interaction to all orders in the
nn,np,pn and pp channels.

In free space, the G-matrix reduces to the two-nucleon scattering T-
matrix.
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nn or pp P P
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The Brueckner mean field

Gi(k) = Go(k) + Go(k)X: (k)G (k)

+

Dyson equation for the
single-particle propagator = 1 4+ F‘

Quasi-particle approximation [' - Re[l], 2 — Re[X]:
My, (p)
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The reduced Bethe-Salpeter equation

We simplify the Bethe-Salpeter equation further by
1) projecting onto a set of positive-energy single-particle states
2) and reducing the integral to a three-dimensional one.

J H
g g|P /@f H )
nn or pp xQ(¢"|P) g )7 (¢", q|P)

where y and v are the reduced G-matrix and antisymmetrized bare

iInteraction, Q is a Pauli blocking factor and g is a reduced two-particle

propagator.

This equation is solved by reducing it to coupled equations for the

principal parts of 5 (or 6) independent helicity amplitudes, expanding

these in partial waves and solving them as matrix equations.
(K. Erkelenz, Phys. Reports, C13 (1974) 191.)



Reconstructing the G-matrix

To calculate the mean field, we need the complete G-matrix, not just its
projection. To reconstruct it, we solve for the component functions of a

covariant expansion, projected on positive-energy states with distinct
masses,

T (q:‘ﬁ qu_‘)) — e (Q‘fﬂ_ Q|P) 1(1)1(2} + Vv (g!‘f1 q‘P) ﬁ.'r:.j_(i-l)f:f:{zjﬁ
A 1 (1) (1 .(2)_(2)
+T4(d, qlP) s v s v ¥
(C.J. Horowitz and B. Serot, Nucl. Phys. A464 (1987) 613.)

Due to the ambiguity between the pseudoscalar and pseudovector
pion- and eta-nucleon coupling, we reconstruct the difference
between the G-matrix and the bare interaction V and use the
unprojected expression for the latter.

I'(q,qP)=V (¢, q)+ AT (¢, q|P)

(E. Schiller and H. Muther, Eur. Phys. J. A 11 (2001) 227.)



Brueckner Calculations

We show calculations as a function of the density and the

asymmetry a,

Prn — Pp o =0 nuclear matter
neutron matter

a =

p o =1

We represent the density by an effective Fermi momentum, given

by 9

32

k= pp + pn = p

We use the Bonn A, B, C interactions
(B. Brockmann and R. Machleidt, Phys.

Rev, C42 (1990) 1965.)

We take into account the tensor
coupling of the p meson and use

pseudovector coupling for the n and .

meson

mass (MeV)

550.0

983.0

782.6

769.0

SID|E |

548.4

= O = D= D~

1

L,

138.03

We use the Thompson form of the reduced nucleon propagator, g.




Pairing instability

Pairing leads to a density-dependent gap in the single-particle
spectrum. A self-consistent treatment leads to a BCS-like equation

for the two (z) isolated bound state poles in the gap.
W.H. Dickhoff, Phys. Lett. B 210 (1988) 15.

We do not treat pairing self-
consistently.

With constant mean fields, we
obtain good convergence with a
continuous spectrum — no gap.

With momentum-dependent
mean fields, fluctuations in the
°S,-°D, channel demand a gap,

which we take to have a constant
value of 4 MeV.

We also use fourth-order
smoothing.

35,-3D,

LA

SR
o
-
e
4!¢4'f":"'"‘:‘ =V
:"::‘:‘f‘:‘:‘,:‘:“:““‘l‘ﬁ““““‘%‘w

B. Funke Haas, BVC and T. Frederico,
Nucl. Phys. A788 (2007) 316c.



Brueckner calculations
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Momentum dependence:

- softens the equation of state of
neutron matter;

- increases the Fermi momentum for
saturation;

- iIncreases the binding energy per
nucleon and incompressibility and
decreases the symmetry coefficient at
saturation.

Bonn AO, B0, CO — constant

mean fields

Bonn A, B, C — momentum-

dependent mean fields

Calculations stop where

iInstability dominates.

Neutron matter — same result
for all interactions.

kF.sat Eb.sat K A sym
[MeV/c| | [MeV] | [MeV] | [MeV]

Bonn A0 273.9 -17.96 | 331.7 37.1
Bonn B0 264.7 -16.08 | 254.1 32.9
Bonn C0 257.3 -14.93 | 215.5 30.1
Bonn A 292.1 -19.67 | 468.8 36.1

Bonn B 281.9 -16.83 | 260.3 32.9

Bonn C 270.8 -15.26 | 2523 28.4




Brueckner calculations — Bonn C
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M* - effective mass at the Fermi
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Neutrons — little difference between
M*’s in nuclear and neutron matter

Protons — higher M* than neutrons at
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Momentum dependence
of the mean fields

Neutron fields - Momentum
dependence becomes stronger as
asymmetry grows

Proton fields — momentum
dependence becomes weaker

Constant fields ‘average’ the
momentum dependence of the
occupied states.

In symmetric nuclear matter, o = 0,
the Brueckner and H-F fields have a
similar momentum dependence. But
the H-F effective mass M* is about
100 MeV smaller and the H-F X,

field 100 MeV larger than the
corresponding Brueckner fields.
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Brueckner mean fields vs.
density-dependent Hartree-Fock fields

What differences would we expect between the ‘ bare’ NN interaction and an
effective HF one that describes the Brueckner mean fields?

The mean fields are defined in terms of the Brueckner G-matrix as

| d*p
=e(k) = _?'f (9”:) Z Tr e (k, p; k,p)Ge (p)]

t'=n,p

where the G-matrix is

T'(¢,q|P)=V(q, q)+ AT (¢, q|P)

The G-matrix correction to the effective interaction, AI', is density-dependent.
As it reduces the overlap of the nucleons, because of the repulsive core of
the nucleon-nucleon potential, the effective coupling strengths of the shorter
range mesons should be smaller at higher densities. The density-dependent
Hartree-Fock interaction should reflect this trend.

We expect the effective HF coupling constants to decrease with density.



A Hartree-Fock fit to the Brueckner mean fields
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A zero-range contribution to the interaction
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(E. Schiller and H. Muther, Eur. Phys. J. A 11 (2001) 227.)

Note that the signs of the terms are opposite of what would be expected
of the exchange of zero-range mesons.



Including zero-range terms in the Hartree-Fock fit
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How seriously should we take this?

A few things we've left out:

1) Retardation terms — covariance of the interaction;

2) Negative energy states and full Dirac structure;

3) Pairing instability — a density dependent gap;

4) Quasiparticle approximation — Re[I'] —» I', Re[X] — X;
— spectral function A(k,o);

) o meson dynamics — correlated n's and © — A dynamics;

) A’S;

) Other mesons — Rho — Brown scaling;

) Nucleon structure;

) RPA/particle-hole and higher-order correlations;

0

The results can still serve as a guide to the form of the interaction
we will need to describe nuclei.



