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Dirac mean fields

The Dirac equation for a nucleon of momentum k in nuclear matter 
is

The Dirac mean field can be decomposed as 

In terms of these, we can define the effective mass and 
momentum,

and the single-particle energy of the state, u(k,s),



Approximations to the mean field

Hartree – includes direct 
meson term with all 
nucleons

Hartree-Fock – includes 
direct meson and nucleon 
exchange terms

Dyson equation for 
the single-particle 
propagator



Meson exchange - Hartree vs. Hartree-Fock

Low mass mesons included in 
meson-exchange NN 
potentials, such as the Bonn 
potentials

Only the first four enter the 
Hartree mean field – no pions.

Without the long-range of pion exchange, the Hartree 
approximation furnishes a very sharp nuclear surface and a very 
large surface energy.

Dirac-Hartree effective interactions improve their description of 
the nuclear surface using either:

1 - Non-linear meson interactions, such as a  term;
2 - Density-dependent coupling coefficients that increase at low 
density to increase the mean field in the surface. 



The  Hartree-Fock approximation can describe the nuclear 
surface in a more fundamental manner than the Hartree 
approximation, 

It still does not provide a good description of the interaction 
of two nucleons -- it does not take into account properly the 
hard core of the nucleon-nucleon interaction.

The HF furnishes an overly rigid model of the nucleus -- a 
compressibility on the order of 500 MeV, (as in the Hartree 
approximation) -- compared to experimental estimates of 200 
– 300 MeV.

Density-dependent Hartree models try to correct for this by  
adjusting to Brueckner mean fields, which take the hard core 
into account.

Our objective: to adjust Brueckner mean fields with a 
density-dependent Hartree-Fock interaction - one that 
includes the pion explicitly. 

 Hartree-Fock and Brueckner



The Bethe-Salpeter equation

The Brueckner G-matrix  satisfies a Bethe-Salpeter equation.

 We calculate it in the ladder approximation, including the anti-
symmetrized bare nucleon-nucleon interaction to all orders in the 
nn,np,pn and pp channels.

In free space, the G-matrix reduces to the two-nucleon scattering T-
matrix.

  

nn or pp



The Brueckner mean field

Dyson equation for the 
single-particle propagator 

Quasi-particle approximation    → Re[] ,  → Re[] :



The reduced Bethe-Salpeter equation

We simplify the Bethe-Salpeter equation further by
1) projecting onto a set of positive-energy single-particle states
2) and reducing the integral to a three-dimensional one.

where  and v are the reduced G-matrix and antisymmetrized bare 
interaction, Q is a Pauli blocking factor and g is a reduced two-particle 
propagator.

This equation is solved by reducing it to coupled equations for the 
principal parts of 5 (or 6) independent helicity amplitudes, expanding 
these in partial waves and solving them as matrix equations.

(K. Erkelenz, Phys. Reports, C13 (1974) 191.)‏

nn or pp



Reconstructing the G-matrix

To calculate the mean field, we need the complete G-matrix, not just its 
projection. To reconstruct it, we solve for the component functions of a 
covariant expansion, projected on positive-energy states with distinct 
masses,

(C.J. Horowitz and B. Serot, Nucl. Phys. A464 (1987) 613.)‏

Due to the ambiguity between the pseudoscalar and pseudovector 
pion- and eta-nucleon coupling, we reconstruct the difference 
between the G-matrix and the bare interaction V and use the 
unprojected expression for the latter. 

(E. Schiller and H. Müther, Eur. Phys. J. A 11 (2001) 227.)‏



Brueckner Calculations

We show calculations as a function of the density and the 
asymmetry ,

 = 0   nuclear matter
 = 1   neutron matter

We represent the density by an effective Fermi momentum, given 
by

We use the Bonn A, B, C interactions 
(B. Brockmann and R. Machleidt, Phys. 
Rev, C42  (1990) 1965.)  
 
    We take into account the tensor 
coupling of the  meson and use 
pseudovector coupling for the  and 

We use the Thompson form of the reduced nucleon propagator, g.



Pairing instability

3S1-3D1

B. Funke Haas, BVC and T. Frederico, 
Nucl. Phys. A788 (2007) 316c.

Pairing leads to a density-dependent gap in the single-particle 
spectrum. A self-consistent treatment leads to a BCS-like equation 
for the two (±) isolated bound state poles in the gap. 
 W.H. Dickhoff, Phys. Lett. B 210 (1988) 15.

We do not treat pairing self-
consistently. 

With constant mean fields, we 
obtain good convergence with a 
continuous spectrum – no gap.

With momentum-dependent 
mean fields, fluctuations in the 
3S1-3D1 channel demand a gap, 
which we take to have a constant 
value of 4 MeV. 

We also use fourth-order 
smoothing.



Brueckner calculations

Momentum dependence:
 - softens the equation of state of 
neutron matter;
 - increases the Fermi momentum for 
saturation;
 - increases the binding energy per 
nucleon and incompressibility and  
decreases the symmetry coefficient at 
saturation.

Bonn A0, B0, C0 – constant 
mean fields

Bonn A, B, C – momentum-
dependent mean fields

Calculations stop where 
instability dominates.

Neutron matter – same result 
for all interactions.



Brueckner calculations – Bonn C

M* - e ffective mass at the Fermi 
momentum

Neutrons – little difference between 
M*’s in nuclear and neutron matter

Protons – higher M* than neutrons at 
high density but lower M* at low 
density (?)

HF with Bonn C parameters 
varied (g and g) to saturate at 

       kF=270 MeV/c 

       Eb=-15.75 MeV.



Momentum dependence 
of the mean fields

Neutron fields - Momentum 
dependence becomes stronger as 
asymmetry grows
Proton fields – momentum 
dependence becomes weaker

Constant fields ‘average’ the 
momentum dependence of the 
occupied states. 

In symmetric nuclear matter,  = 0, 
the Brueckner and H-F fields have a 
similar momentum dependence. But 
the H-F effective mass M* is about 
100 MeV smaller and the  H-F  

0
 

field 100 MeV larger than the 
corresponding Brueckner fields. 



Brueckner mean fields vs. 
density-dependent Hartree-Fock fields

What differences would we expect between the ‘ bare’ NN interaction and an 
effective HF one that describes the Brueckner mean fields?
 
 The mean fields are defined in terms of the Brueckner G-matrix as

where the G-matrix is  

The G-matrix correction to the effective interaction, , is density-dependent. 
As it reduces the overlap of the nucleons, because of the repulsive core of 
the nucleon-nucleon potential, the effective coupling strengths of the shorter 
range mesons should be smaller at higher densities. The density-dependent 
Hartree-Fock interaction should reflect this trend.
We expect the effective HF coupling constants to decrease with density.



A Hartree-Fock fit to the Brueckner mean fields 

The average trend of the mean 
fields is well fit. Binding energies 
are reproduced within 0.5 MeV.

The momentum dependence of 
the HF fields is smoother than that 
of the Brueckner fields. 

g ~ -0.2     g ~ -3.5 

    g ~ -3.1 →  g ~ -8.0 
    g ~  0.6 →  g ~ -1.4

as    = 0 →  = 1.

Bonn C:
      g ~ 10.0      g ~15.9
      g ~  8.0       g ~   3.5



A zero-range contribution to the interaction  

The momentum dependence of HF 
mean fields obtained with the bare 
interaction is very similar to that of 
the Brueckner mean fields.

This suggests that  the effects of 
the ladder sum could be 
represented by simply including a 
zero-range contribution in the 
interaction,

(E. Schiller and H. Müther, Eur. Phys. J. A 11 (2001) 227.)‏

Note that the signs of the terms are opposite of what would be expected 
of the exchange of zero-range mesons.



The momentum dependence of 
the Brueckner fields is reproduced 
better. Binding energies are still 
reproduced only within 0.5 MeV.

g ~  0.0     g ~  0.3

    g ~ -1.0 →  g ~ -2.5 
    g ~  0.9 →  g ~ -0.3

as    = 0 →  = 1.

      gz ~ 7.5    gz ~ 0.0

 gz ~  0.5

     gz ~  0.7 →  gz ~ 0.2

as    = 0 →  = 1.

Including zero-range terms in the Hartree-Fock fit 



How seriously should we take this?

A few things we’ve left out:

1) Retardation terms → covariance of the interaction;
2) Negative energy states and full Dirac structure;
3) Pairing instability → a density dependent gap;
4) Quasiparticle approximation → Re[] → Re[] → 
                                                  → spectral function A(k,);
5)  meson dynamics → correlated ’s and  – dynamics;
6) ’s;
7) Other mesons → Rho – Brown scaling;
8) Nucleon structure;
9) RPA/particle-hole and higher-order correlations;
10) ...

  The results can still serve as a guide to the form of the interaction 
we will need to describe nuclei.     


