In-medium similarity renormalization group
for nuclei and nuclear matter
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Punch lines of my falk

The in-medium SRG (thru the magic of normal-ordering) suggests the
following intriguing possibilities:

RG evolution of 3-body (and higher) interactions with NN machinery
Microscopic basis for phenomenological SM and Landau Fermi Liquid Theory

new ab-initio method in and of itself?
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"Resolution-Dependent” Sources of Non-perturbative Physics
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* strong core repulsion scheme-dependent, U.V. details
. strong tensor forces (e.g., resolution scale A)

scheme-independent

* deuteron pole }
(physical, independent of UV details)

*  pairing instability

Strong coupling of low- and high-k <=> Strong SRC's



Renormalization methods to decouple high-k

e Bloch-Horowitz
- simple (either “integral” or RGE form) ©

- energy-dependent (issues with size extensivity, c.f.
Brandow et al.) ®

® |ee-Suzuki
- energy independent ©

- complicated “integral” or RGE form (need to diagonalize a-
body problem for a-body Hets ) ®

e Similarity RG
- energy independent ©

- simple RGE form (never diagonalize a-body problem) ©



The Similarity Renormalization Group
[Wegner, Glazek and Wilson]

e Unitary transformation on an initial H=T +V

H,=U(s)HU'(s) =T+ V, s = continuous flow parameter

e Differentiating with respect to s:

d(ZS - [n(s)aHs] with T}(S) - dU(S)

e Engineer n(s) to do different things as s -> o0
n(s) = |Gs, Hs]
Gs =1 = H,driventowardsthe diagonalin k — space
G, =PH,P+ QH,(Q = H,driventowards block diagonal form



SRG evolved NN interactions with n = [T,H]

@ In each partial wave with ¢, = #°k?/M and \? =1/./s
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SRG evolved NN interactions with n = [T,H]

@ In each partial wave with ¢, = #°k?/M and \? =1/./s
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SRG evolved NN interactions with n = [T,H]

@ In each partial wave with ¢, = #°k?/M and \? =1/./s
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SRG evolved NN interactions with n = [T,H]

@ In each partial wave with ¢, = #°k?/M and \? =1/./s

dv ! ! !
d—;(k-k ) oc —(ex — e P VA(K K )+ (e + exr — 26q) Va(K. q)Va(q. k')
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Flexibility of SRG methods

Can reproduce “conventional” Lee-Suzuki Block-Diagonalization

Lk o miiom =iz S W Y L O e EH

i L
¥ E
= i 4 i 0 F Ta . "l Il & ] B ! £l
5

EE i
'
B -
i
"
u
i i
0wy i 53 ey o | e ] grwnan 1
r
o 3

Lee-Suzuki-esque
P & Q space V

n=[PHP+QHQ, H]
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Key Difference: In SRG approach
one never has to diagonalize a
cluster problem.
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Ground-State Energy [MeV]

Full Configuration Interaction (FCI) Calculations
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Decoupling high-k and low-k => accelerated convergence, more
perturbative

BUT note...

A-dependent results (omitted induced 3..A-body forces)
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SRG Evolution and Many-Body Forces

e Many-body interactions induced during the flow

ddis — HZ a*a,z a*a*aa},z a*a*aa} — .t Z atatataaa+ - -
2-body 2-body 3-body!

In principle up to A-body operators generated

e Is this a problem?

- Not if “induced” terms are of natural size

- A-dependence => tool to assess truncation errors
- They're there to begin with anyway. Might as well have them be
soft and develop the SRG machinery to evolve them.

12



Ground-State Energy

Recent developments in 3N SRG evolution
(Jurgenson, Furnstahl, Navratil)
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It works! A-independent °H, softer convergence
Induced 4N are = 0 for A2 2 fm™...
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Free space versus in-medium SRG

Free space SRG: V(A)on fixed in 2N system
V(A)sn fixed in 3N system

V(A)on fixed in aN system

Use T + VIA)on + VA)sN + ... + V(A)an in A-body system

In-medium SRG: evolution done at finite density (i.e., directly
in A-body system). Different mass regions =>

require different SRG evolutions

inconvenience outweighed (?) by simplifications
allowed by normal-ordering
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Normal Ordered Hamiltonians

Pick a reference state ® (e.g., HF) and apply Wick's theorem
to 2nd-quantized Hamiltonian

Az‘A]’AkAl e Am — .ZV(AZAJAkAl et Am)
1
4+ N ((A,-AjAkAl .-+ Ap) + all other single contra.ctions)

—
+ N ((Ai/-lj ArA;- -+ Ap) + all other double contractions)

+ N ((all fully contracted terms)

1 ~
a%l - (52'j9(€F — 62') (l.'z'(l.;- — 0239(62 — EF)

(@IN(---)|®) =0
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Normal Ordered Hamiltonians

Exactly re-cast H as:

H = Eyqc + Zfz CL az + - Zrzjk:lN(a a alak ZWz]klmn af]t;afnamal)
Eyae = <(I)|H‘(I)>
fi = tu+ Z th|Valthy ny, + = Z (ihh'|V3]ihh') npnp:
hh'
’ ; n; =6(er — fi)

O-, 1-, 2-body terms contain some 3NF effects thru
density dependence => Efficient fruncation scheme?
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Normal Ordering Truncations

H=F,,+ Zfz :ajaz-: —1—% ZI’ijkl :a,}La

Good truncation for CC (closed shell) and making
contact to phenomenological SM monopole corrections

(Hagen et al.)
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Schwenk et al.
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Other operators? Resolution dependence of fruncations? Open shell systems

and multi-reference N-ordering?
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In-medium SRG for Infinite NM

e Normal order H w.r.t. non-interacting fermi sea

® Choose SRG generator to eliminate “energy off-diagonal” pieces

D= [f+TuT] = [f.0]+0(%) => lim Tou(s) =0

A S— OO

<12‘F0d|34> =0 if f12 = f34

¢ Truncate flow equations to < 2-body normal-ordered operators
- dominant parts of induced many-body forces included implicitly

H( vac + Zfz CL az + — Z Fd zyklN CL a,; alak)

E’UCLC<OO) — Egs
fr(c0) — € (fully dressed s.p.e.)
['y(o) — f(k', k) (Landau q.p. interaction)
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In-medium SRG Equations Infinite Matter

O-body flow

d 1 y _
o Bvac = 5> (fig = fu) [ ITIRD) P mm sy
ijkl

1-body flow

d o _
T = et Rl (o + i)

interference of 2plh 2hlp
self-energy terms
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In-medium SRG Equations Infinite Matter

2-body flow

(1209038 = (2 — fau)?(12T}30)

T % %;(flz + f3a — 2fab) (12|F|ab>(ab\F|34>(1 — Na — ”b)

+ Z[(fm — fab) = (fop — f1a)] (La|T|30)(b2|T|ad) (n, — ny)

ab
— f2a fgb flb — f4a 26L|F|3b b1|F|CL4 — nb)

xiémﬁ

Note the inferference between s, f, u channels a-la Parquet theory
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SRG is manifestly non-perturbative

MGy~ ;é KX ﬁj
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SRG is manifestly non-perturbative

o~ P
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+ many more ...



Some observations

1) ; (H), <0 for monotonic f, correlations weakened, HF picks
S

up more binding with increasing s.

2) pp channel + 2 ph channels treated on equal footing

3) Functional derivatives to make contact with induced many-body
forces in the original (not normal-ordered) representation

... dVs o |, .dI’
k| —2imk) = — | (ij]|—|i
k] k) = 5| d8|m>]{nzo} Et..

4) no unlinked diagrams (size extensive, etc.)

5) Extension to effective operators immediate
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Example: Perturbative content of SRG

e Solve SRG eqgns to 2nd-order the bare coupling

1 Vi234(0)]? ,_ .
Eo(s) = Ep(0) + -~ E 'n.]-n.g'n.g-n.4| 1234(0)| (1 — C_b(fl‘z_f:}l)z)
BT fi2 = faa

1 Vioas(0)]2 »_ .
1234 12 34

As s increases, contributions shuffled from correlation energy into
The non-interacting VEV contribution (I.e., Hartree-Fock)

Microscopic connection to shell model?
(MF + "weak” A-dependent residual NN interaction)
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In-medium SRG in 1D nuclear matter

Free-space SRG evolution fruncated at NN level
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In-medium SRG in 1D nuclear matter

In-medium SRG evolution truncated at normal-ordered NN level
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e HF approaches ladder sum
at lower A (weak correlations)

AND

e \-dependence weak (dominant
many-body forces kept by normal
ordering).
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In-medium SRG in Real 3D nuclear matter

In-medium SRG evolution truncated at normal-ordered NN level
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e HF approaches ladder sum
at lower A (weak correlations)

AND

e \-dependence weak (dominant
many-body forces kept by normal
ordering).

e soon: ph-channel ferms

* Neglected ph channel, angle-averaging, ...
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In-medium SRG in Real 3D nuclear matter

In-medium SRG evolution truncated at normal-ordered NN level

16— T ' ' e HF approaches ladder sum
| k=135 fm~ PNM | at lower A (weak correlations)
N’LO(500)
14+ .
— E
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= 1k .

g e \-dependence weak (dominant
many-body forces kept by normal
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* Neglected ph channel, angle-averaging, ... .



Application to nuclei (k. Tsukiyama, SB, A. Schwenk)
minor annoyance: Zfz (ala;) — wa (alay)
SRG generator: n=[f%4 19, fod 4 109
Z-Cé- =0 (& F¢€;) szkl 0 (€ +e€ #ex+e)

= HO sp energy
s=0 : s> OO

=)
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E,(‘He) [MeV]

SRG flow of Ey. for He-4

preliminary

NCSM=-24.8MeV

0.5
s [MeV ™

1

In progress: perturbative
corrections from non-zero
['in the block-diagonal
structure

Alternative SRG generators
using HF energies to define
“diagonal” and “off-diagonal”

016 and Ca40 next...

31



SRG flow of 1-body (s.p.e.’s)
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Summary of In-Medium SRG w/Normal-Ordering

e 2N formalism includes dominant induced 3,...A-body forces
® Microscopically obtain dominant MF + “weak” residual interaction
e 1st 3D nuclear matter results look pretty good, still need ph terms

e Non-perturbative path to shell model H . and O _.?

® Ab-initio method fo diagonalize medium nuclei?

e First applications fo finite nuclei gearing up

® More sophisticated reference state to normal order w.r.t.?
* quasiparticle vacuum (pairing)

* multi-reference (open shell systems)
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