Ab Initio Shell Model with a Core: Extending the NCSM to Heavier Nuclei

, University of Arizona, Bruce R. Barrett

Arizona's First University.

INT-09-01 April 27, 2009

MICROSCOPIC NUCLEAR-STRUCTURE **THEORY**

- 1. Start with the bare interactions among the nucleons
- 2. Calculate nuclear properties using nuclear many body theory

$H \Psi = E \Psi$

We cannot, in general, solve the full problem in the

complete Hilbert space, so we must truncate to a finite

model space

 We must use effective interactions and operators!

Some current shell-model references

- 1. 1. E. Caurier, G. Martinez-Pinedo, F. Nowacki, A. Poves, and A. P. Zuker, "The Shell Model as a Unified View of Nuclear Structure, " *Reviews of Modern Physics* **77**, 427 (2005)
- 2. 2. B. A. Brown, "The Nuclear Shell Model towards the Drip Lines," *Progress in Particle and Nuclear Physics* **47**, 517 (2001)
- 3. 3. I. Talmi, "Fifty Years of the Shell Model-The Quest for the
- 4. Effective Interaction," *Advances in Nuclear Physics*, Vol. **27**,
- 5. ed. J. W. Negele and E. Vogt (Plenum, NY, 2003)
- 6. 4. B. R. B., "Effective Operators in Shell-Model Calculations," 10th Indian Summer School of Nuclear Physics:Theory of Many-Fermion Systems, *Czechoslovak Journal of Physics* **49**, 1 (1999)

No Core Shell Model

"*Ab Initio*" approach to microscopic nuclear structure calculations, in which all A nucleons are treated as being active.

Want to solve the A-body Schrödinger equation

$$
H_A\Psi^A = E_A\Psi^A
$$

R P. Navrátil, J.P. Vary, B.R.B., PRC 62, 054311 (2000) P. Navratil, et al., nucl-th arXiv: 0904.0463

From few-body to many-body

P. Navrátil and E. Caurier, Phys. Rev. C **6 9**, 014311 (2004)

No Core Shell Model

Starting Hamiltonian

Coordinate space -Momentum space -

 $N=5$ $N=4$

 $N=3$

 $N=2$ $N=1$

 $N=0$

Binding center-of-mass HO potential (Lipkin 1958)

$$
\frac{1}{2}Am\Omega^2 \vec{R}^2 = \sum_{i=1}^A \frac{1}{2}m\Omega^2 \vec{r}_i^2 - \sum_{i
$$

$$
H^{\Omega} = \sum_{i=1}^{A} \left[\frac{\vec{p}_i^2}{2m} + \frac{1}{2} m \Omega^2 \vec{r}_i^2 \right] + \sum_{i < j}^{A} \left[V_{NN} (\vec{r}_i - \vec{r}_j) - \frac{m \Omega^2}{2A} (\vec{r}_i - \vec{r}_j)^2 \right]
$$

 \leq HO|V_{NN}(,A)|HO>

Cluster Expansion: Two-body cluster approximation

$$
H_2^{\Omega} = \sum_{i=1}^2 \left[\frac{\vec{p}_i^2}{2m} + \frac{1}{2} m \Omega^2 \vec{r}_i^2 \right] + \sum_{i
$$

NCSM results for 6Li with CD-Bonn NN potential

Dimensions p-space: 10; N max =12: 48 887 665; N max = 14: 211 286 096

Effective Hamiltonian for SSM

Two ways of convergence: 1) For P \rightarrow 1 and fixed a: $H^{\text{eff}}_{\text{A},a=2}$ \rightarrow H_A: previous slide 2) For $a_1 \rightarrow A$ and fixed P_1 : $Heff_{Aa1} \rightarrow H_A$

 $P_1 + Q_1 = P$; P_1 - small model space; Q_1 - excluded space;

$$
\mathcal{H}_{A,a_1}^{N_{1,\max},N_{\max}} = \frac{U_{a_1,P_1}^{A,\dagger}}{\sqrt{U_{a_1,P_1}^{A,\dagger}U_{a_1,P_1}^A}}E_{A,a_1,P_1}^{N_{\max},\Omega}\frac{U_{a_1,P_1}^A}{\sqrt{U_{a_1,P_1}^{A,\dagger}U_{a_1,P_1}^A}}
$$

Valence Cluster Expansion $N_{1,max} = 0$ space (p-space); $a_1 = A_c + a_v$; a_1 - order of cluster; A_c - number of nucleons in core; a_v - order of valence cluster;

$$
\mathcal{H}_{A,a_1}^{0,N_{\max}}=\sum_k^{a_{\mathrm{v}}}V_k^{A,A_c+k}
$$

Two-body VCE for ⁶Li
\n
$$
\mathcal{H}_{A=6,a_1=6}^{0,N_{\text{max}}} = V_0^{6,4} + V_1^{6,5} + V_2^{6,6}
$$
\nNeed NCSM results
\nin N_{max} space for
\nWith effective interaction for A=6 III: $H_{A=6,2}^{N_{\text{max}},\Omega,\text{eff}}$
\nCore Energy
\n
$$
V_0^{6,4} = -51.644 \text{ MeV}
$$
\n
$$
V_1^{6,5} = \mathcal{H}_{6,5}^{0,N_{\text{max}}} - V_0^{6,4} \quad \langle ab; JT | V_1^{6,5} | cd; JT \rangle = (\epsilon_a + \epsilon_b) \delta_{a,c} \delta_{b,d}
$$
\nSingle Particle
\nEnergies
\n
$$
V_2^{6,6} = \mathcal{H}_{6,6}^{0,N_{\text{max}}} - \mathcal{H}_{6,5}^{0,N_{\text{max}}}
$$
\n
$$
V_2^{6,6} = \mathcal{H}_{6,6}^{0,N_{\text{max}}} - \mathcal{H}_{6,5}^{0,N_{\text{max}}}
$$
\n
$$
\langle p_{3/2}p_{3/2} | V_2^{6,6} | p_{3/2}p_{3/2} \rangle_{J=3, \text{T=0}} = -1.825 \text{ MeV}
$$
\nTBMEs

2-body Valence Cluster approximation for A>6

$$
\mathcal{H}_{A}^{0,N_{\max}}{}_{\!,a_1=6}=V_0^{A,4}+V_1^{A,5}+V_2^{A,6}
$$

 2-body Valence Cluster approximation for A=6

2-body Valence Cluster approximation for A=7

2-body Valence Cluster approximation for A=7

$$
\mathcal{H}_{A}^{0,N_{\mathrm{max}}}=V_{0}^{A,4}+V_{1}^{A,5}+V_{2}^{A,6}
$$

3-body Valence Cluster approximation for A>6

 P¹ + Q1 = P; P¹ Construct 3-body interaction in terms of 3-body matrix elements: Yes

$$
V_3^{A,7}={\cal H}_{A,7}^{0,N_{\rm max}}-{\cal H}_{A,6}^{0,N_{\rm max}}\Bigg|
$$

3-body Valence Cluster approximation for A>6

$$
E_J = \mathcal{U}_J \mathcal{H}_J \mathcal{U}_J^{\dagger}.
$$
 (4)

This same eigenstate matrix \mathcal{U}_J can also be used to calculate the matrix elements of other effective operators, $\mathcal{O}_{A,a_1}^{\text{eff}}(\lambda k; JJ')$, between basis states with spins J and J' in the $0\hbar\Omega$ space:

$$
\mathcal{M}_{A,a_1}^{\text{eff}}(\lambda k; JJ') = \mathcal{U}_J \mathcal{O}_{A,a_1}^{\text{eff}}(\lambda k; JJ') \mathcal{U}_{J'}^{\dagger},\tag{5}
$$

FIG. 6: The quadrupole moment of the ground state for ⁶Li $(1^+(T = 0))$ is shown in terms of one- and two-body contributions as a function of increasing model space size.

FIG. 2: Low-lying energy levels of the positive-parity states in ¹⁸O.

S. Fujii and B.R.B. Nucl-th arXiv: 0902.2169

3-step technique to construct effective Hamiltonian for SSM with a core :

- #1 2-body UT of bare NN Hamiltonian (2-body cluster approximation)
- #2 NCSM diagonalization in large N_{max} space for $A = 4,5,6,7$

 #3 many-body UT of NCSM Hamiltonian (up to 3-body valence cluster approximation) Results:

- 1) strong mass dependence of core $\&$ one-body parts of H^{ert}
- 2) 3-body effective interaction plays crucial role
- 3) negligible role of 4-body and higher-order interactions for identical nucleons

COLLABORATORS

Alexander Lisetskiy, U. of Arizona Michael Kruse, U. of Arizona Ionel Stetcu, LANL Petr Navratil, LLNL James Vary, Iowa State U.

From $4h\Omega$ NCSM to sd CSM for ¹⁸F

Petr Navrátil, Michael Thoresen, and Bruce R. Barrett, Phys. Rev. C 55, R573 (1997)

Step 2: Projection of 18-body 4hΩ Hamiltonian onto 0hΩ 2-body Hamiltonian for ¹⁸F

- A. Lisetskiy