Role of the tensor correlation in neutron halo nuclei

Takayuki Myo RCNP, Osaka Univ.

In collaboration with

Hiroshi Toki (RCNP, Osaka Univ.) Kiyomi Ikeda (RIKEN) Satoru Sugimoto (Kyoto Univ.) Kiyoshi Kato (Hokkaido Univ.) Yuma Kikuchi (Hokkaido Univ.)

INT workshop@INT, Univ. of Washington. 2007.11.26-29

Contents

- He isotopes with tensor correlation
 - Tensor-optimized shell model (TOSM)
- Li isotopes with tensor and pairing correlations
 - Breaking of magic number, halo formation
- Unitary Correlation Operator Method (UCOM) for short-range correlation
 - TOSM+UCOM with bare interaction

Motivation

• Tensor force (V_{tensor}) plays a significant role in the nuclear structure.

– In ⁴He,
$$\langle V_{tensor} \rangle \sim \langle V_{central} \rangle$$

$$- \frac{V_{\pi}}{V_{NN}} \sim 80\% \text{ (GFMC)}$$

$$\tau \circ \nabla / \int_{J^{\pi} = 0^{-}}^{\pi} \tau \circ \nabla / \int_{T = 1}^{\pi} \tau \circ \nabla$$

R.B. Wiringa, S.C. Pieper, J. Carlson, V.R. Pandharipande, PRC62(2001)

- We would like to understand the role of V_{tensor} in the nuclear structure by describing tensor correlation explicitly.
 - model wave function (shell model and cluster model).
 - spatial properties, p-h correlation, ...
- Spectroscopy of neutron-rich nuclei : He and Li isotopes

Variational calculation in real space

C.Pieper, R.B.Wiringa, Annu.Rev.Nucl.Part.Sci.51(2001) R.B.Wilinga,S.C.Pieper,J.Carlson, V.R.Pandaripande, PRC62(2000)014001.

α - α structure

Tensor-optimized shell model (TOSM)

- Tensor correlation in the shell model type approach.
- Configuration mixing with high-L orbit within 2p2h excitations
 TM, Kato, Ikeda, PTP113(2005) TM et al., PTP117(2007)
 T.Terasawa, PTP22(1959)

- Length parameters $\{b_{\alpha}\}$ such as $b_{0s}, b_{0p1/2}, \dots$ are determined independently and variationally.
 - Describe high momentum component from V_{tensor}
 CPPHF by Sugimoto et al,(NPA740) / Akaishi (NPA738)
 CPP-RMF by Ogawa et al.(PRC73), CPP-AMD by Dote et al.(PTP115) ⁵

Hamiltonian and variational equations

$$H = \sum_{i=1}^{A} t_i - T_G + \sum_{i

$$\Phi = \sum_{k} C_k \cdot \psi_k \qquad \qquad \psi_k : \text{ shell model type configuration}$$

$$\delta \frac{\langle \Phi | H | \Phi \rangle}{\langle H - E \rangle} = 0 \implies \qquad \frac{\partial \langle H - E \rangle}{\partial \langle H - E \rangle} = 0, \qquad \frac{\partial \langle H - E \rangle}{\partial \langle H - E \rangle} = 0$$$$

 ∂b_{α}

TM, Kato, Ikeda, PTP113('05)763 TM, Sugimoto, Kato, Toki, Ikeda PTP117('07)257

 ∂C_{k}

- Effective interaction : Akaishi force (NPA738)
 - G-matrix from AV8' with $k_Q=2.8 \text{ fm}^{-1}$

 $\langle \Phi | \Phi \rangle$

- Long and intermediate ranges of V_{tensor} survive.
- Adjust V_{central} to reproduce B.E. and radius of ^4He

• Centrifugal potential (1GeV@0.5fm) pushes away the L=2 wave function.

⁴He with TOSM

Pion exchange interaction vs. V_{Tensor}

- V_{tensor} produces the high momentum component.

⁴He in TOSM

Energy (MeV)	- 28.0	4 Gaussians instead of HO
$\langle V_{tensor} \rangle$	- 51.0	$\langle T \rangle = 71.2 \text{ MeV}$
		$\langle V_{central} \rangle = -48.6 \text{ MeV}$
(0s _{1/2}) ⁴	85.0 %	\dot{v} \dot{r}
$(0s_{1/2})^2_{JT}(0p_{1/2})^2_{JT}$ JT=10	5.0 🤊	c.m. excitation = 0.6 wev
JT=01	0.3	• 0 ⁻ of pion nature.
$(0s_{1/2})^2{}_{10}(1s_{1/2})(0d_{3/2})_{10}$	2.4	 deuteron correlation
$(0s_{1/2})^2{}_{10}(0p_{3/2})(0f_{5/2}){}_{10}$	2.0	with (J,T)=(1,0)
P[D]	9.6	Cf. R.Schiavilla et al. (GFMC) PRL98('07)132501
		10

Tensor correlation in ⁶He

⁶He in coupled ⁴He+n+n model

- System is solved based on RGM $H(^{6}\text{He}) = H(^{4}\text{He}) + H_{nn} \qquad \Phi(^{6}\text{He}) = \mathcal{A}\left\{\sum_{i=1}^{N}\psi_{i}(^{4}\text{He}) \cdot \chi_{i}(nn)\right\}$ $\sum_{i=1}^{N} \left\langle \psi_{i}(^{4}\text{He}) \middle| H(^{6}\text{He}) - E \middle| \mathcal{A}\left\{\psi_{i}(^{4}\text{He}) \cdot \chi_{i}(nn)\right\} \right\rangle = 0$ $\psi_{i}(^{4}\text{He}): \text{ shell model type configuration} \rightarrow \textbf{TOSM}$
- Orthogonality Condition Model (OCM) is applied.

 $\sum_{i=1}^{N} \left[H_{ij}(^{4}\text{He}) + (T_{1} + T_{2} + V_{c1} + V_{c2} + V_{12}) \cdot \delta_{ij} \right] \chi_{j}(nn) = E \chi_{i}(nn)$ $H_{ij}(^{4}\text{He}) = \left\langle \psi_{i} \middle| H(^{4}\text{He}) \middle| \psi_{j} \right\rangle : \text{Hamiltonian for }^{4}\text{He}$

 $\chi(nn) = \mathcal{A}\{\varphi_1\varphi_2\} : 2 \text{ neutrons with Gaussian expansion method}$ $\left\langle \varphi_i \left| \phi_\alpha \right\rangle = 0, \ \{\phi_\alpha \in {}^4\text{He}\} : \text{Orthogonality to the Pauli-forbidden states}^2 \right\}$

⁶He in coupled ⁴He+n+n model

- (0p_{3/2})² can be described in Naive ⁴He+n+n model
- $(0p_{1/2})^2$ loses the energy \longrightarrow Tensor suppression in $0^+_{2 \ 13}$

⁷He (unbound) : Expt vs. Theory

Characteristics of Li-isotopes

I. Tanihata et. al PLB206(1988)592

- Breaking of magicity N=8
 - ¹⁰⁻¹¹Li, ¹¹⁻¹²Be
 - ¹¹Li ... (1s)² ~ 50%.

(Expt by Simon et al., PRL83)

• Mechanism is unclear

¹¹Li in coupled ⁹Li+n+n model

- System is solved based on RGM $H(^{11}\text{Li}) = H(^{9}\text{Li}) + H_{nn} \qquad \Phi(^{11}\text{Li}) = \mathcal{A}\left\{\sum_{i=1}^{N} \psi_{i}(^{9}\text{Li}) \cdot \chi_{i}(nn)\right\}$ $\sum_{i=1}^{N} \left\langle \psi_{i}(^{9}\text{Li}) \middle| H(^{11}\text{Li}) - E \middle| \mathcal{A}\left\{\psi_{i}(^{9}\text{Li}) \cdot \chi_{i}(nn)\right\} \right\rangle = 0$ $\psi_{i}(^{9}\text{Li}): \text{ shell model type configuration} \rightarrow \textbf{TOSM}$
- Orthogonality Condition Model (OCM) is applied.

 $\sum_{i=1}^{N} \left[H_{ij}({}^{9}\text{Li}) + (T_{1} + T_{2} + V_{c1} + V_{c2} + V_{12}) \cdot \delta_{ij} \right] \chi_{j}(nn) = E \chi_{i}(nn)$ $H_{ij}({}^{9}\text{Li}) = \left\langle \psi_{i} \left| H({}^{9}\text{Li}) \right| \psi_{j} \right\rangle : \text{Hamiltonian for } {}^{9}\text{Li}$ $\chi(nn) = \mathcal{A} \left\{ \varphi_{1}\varphi_{2} \right\} : 2 \text{ neutrons with Gaussian expansion method}$ $\left\langle \varphi_{i} \left| \varphi_{\alpha} \right\rangle = 0, \; \left\{ \phi_{\alpha} \in {}^{9}\text{Li} \right\} : \text{Orthogonality to the Pauli-forbidden states} \right\}$

Energy surface for b-parameter in ⁹Li

Expected effects of pairing and tensor correlations in ¹¹Li

Pairing-blocking :

K.Kato,T.Yamada,K.Ikeda,PTP101('99)119, Masui,S.Aoyama,TM,K.Kato,K.Ikeda,NPA673('00)207. TM,S.Aoyama,K.Kato,K.Ikeda,PTP108('02)133, H.Sagawa,B.A.Brown,H.Esbensen,PLB309('93)1.

Hamiltonian for ¹¹Li

[Ref] TM, S. Aoyama, K. Kato, K. Ikeda, PTP108(2002)

¹¹Li G.S. properties ($S_{2n}=0.31$ MeV)

2n correlation density in ¹¹Li

- Expt: T. Nakamura et al., PRL96,252502(2006)
- Energy resolution with \sqrt{E} =0.17 MeV.

Virtual s-wave states in ¹⁰Li

- $1s_{1/2}$ virtual state: $(0p_{3/2})_{\pi}(1s_{1/2})_{\nu} \rightarrow 1^{-}, 2^{-}$
 - a_s: scattering length of ⁹Li+n

J^{π}	Inert core	Tensor +Pairing
1-	+1.4 fm	-5.6 fm
2-	+0.8 fm	-17.4 fm

T.M. et al., submitted to JPG

Expt. M. Thoennessen et al., PRC59 (1999)111. M. Chartier et al. PLB510(2001)24. H.B. Jeppesen et al. PLB642(2006)449. $a_s = -10 \sim -25 \text{ fm}$

cf. $a_s(nn)$: -18.5 ± 0.5 fm

Pauli-blocking naturally describes virtual s-state in ¹⁰Li

26

Tensor & Short-range correlations

- Tensor correlation in TOSM
 - $-S_{12} \propto \left[Y_2(\hat{r}), [\vec{\sigma}_1, \vec{\sigma}_2]_2\right]_0 \rightarrow \Delta L = \Delta S = 2$
 - 2p2h mixing optimizing the particle states (radial & high-L)
- Short-range correlation
 - Short-range repulsion of the bare NN force in the relative wave function of nuclei
 - Unitary Correlation Operator Method (UCOM) H. Feldmeier, T. Neff, R. Roth, J. Schnack, NPA632(1998)61 T. Neff, H. Feldmeier NPA713(2003)311

Unitary Correlation Operator Method

$$\Psi_{\text{corr.}} = \underset{1}{C} \cdot \Phi_{\text{uncorr.}} \leftarrow \text{SM, HF, FMD}$$
short-range correlator $C^{\dagger} = C^{-1}$ (Unitary trans.)

$$H\Psi = E\Psi \rightarrow C^{\dagger}HC\Phi \equiv \widehat{H}\Phi = E\Phi$$
Bare Hamiltonian Shift operator depending on the relative distance of $C = \exp(-i\sum_{i < j} g_{ij}), \quad g_{ij} = \frac{1}{2} \{p_r s(r_{ij}) + s(r_{ij})p_r\} \quad \vec{p} = \vec{p}_r + \vec{p}_{\Omega}$
 $g_{ij} = g_{ij}^{\dagger}$: Hermitian generator $R'_+(r) = \frac{s(R_+(r))}{s(r)}$

H. Feldmeier, T. Neff, R. Roth, J. Schnack, NPA632(1998)61

Short-range correlator : C

2-body approximation in the cluster expansion of operator

Form of R₊ in UCOM

Functional form given by referring to the Deuteron's exact case

Afnan-Tang : central only about **1GeV** repulsion

⁴He with UCOM (Afnan-Tang)

Charge form factor and Corr. Func.

 $P[(0s)^4] = 0.95$

¹⁶O with UCOM (Afnan-Tang)

⁴He in TOSM+UCOM

R. Roth et. al , PRC72(2005)034002

Summary

- Tensor correlation in nuclei.
 - Tensor-optimized shell model (TOSM).
 - He isotopes : LS splitting
 - Li isotopes: Magic number breaking and halo
- Short-range correlation
 - Unitary Correlation Operator Method (UCOM).
- In TOSM+UCOM, we can study the nuclear structure starting from the bare interaction.