## Maxim Kartamyshev, Morten Hjorth-Jensen, Torgeir Engeland and Eivind Osnes

Department of Physics and Center of Mathematics for Applications University of Oslo, N-0316 Oslo, Norway



Aim: derive properties of selected nuclear systems from microscopic point of view.

- Start with a realistic nucleon-nucleon potential.
- Onstruct a medium-renormalized (effective) interaction.
- Use the effective interaction to calculate properties of nuclear systems.

#### Missing elements in nuclear structure calculations

- Continuum and resonance coupling
- **2** Three-body interactions

| Intro | Folded diagrams | Three-body V <sub>eff</sub> | <sup>16</sup> O isotopes | <sup>40</sup> Ca isotopes | Conclusions |
|-------|-----------------|-----------------------------|--------------------------|---------------------------|-------------|
| 0•    |                 |                             |                          |                           |             |
|       |                 |                             |                          |                           |             |

#### Three-body interactions

- **Necessary** for reproducing binding energies of light nuclei.
- 2 Importance for medium and heavy nuclei is still not fully clarified.

#### Medium and heavy nuclei

Three-body contributions to the effective interaction

- The 'true' three-body forces: (CD Bonn + TM99 3NF, AV18 + Illinois 3NF, CFPT (N3LO))
- **2** Three-body terms of the **effective interaction**

| Intro | Folded diagrams | Three-body V <sub>eff</sub> | <sup>16</sup> O isotopes | <sup>40</sup> Ca isotopes | Conclusions |
|-------|-----------------|-----------------------------|--------------------------|---------------------------|-------------|
|       | 000             |                             |                          |                           |             |

#### Effective interaction

Want to solve the many-body Schrödinger equation for nuclear systems:

$$H\Psi = E\Psi$$
 with  $H = H_1 + H_0$ ,  $H_0 = T + U$ ,  $H_1 = V - U$ 

Practically impossible to solve in the complete Hilbert space - consider the problem in the truncated (model) space. Define projection operators: P (on the model space) and Q (on the excluded space):

$$P+Q=1$$
 and  $PQ=0$ 

Then the complete Hilbert-space eigenvalue problem can be replaced by the model space eigenvalue problem:

$$PH_{eff}P\Psi = EP\Psi$$
 with  $H_{eff} = H_0 + V_{eff}$ 

 $V_{\it eff}$  is the effective interaction, acting solely within the model space.

| Intro | Folded diagrams | Three-body V <sub>eff</sub> | <sup>16</sup> O isotopes | <sup>40</sup> Ca isotopes | Conclusions |
|-------|-----------------|-----------------------------|--------------------------|---------------------------|-------------|
|       | 000             |                             |                          |                           |             |

### The folded-diagram theory

To construct the effective interaction, one starts with introducing the  $\hat{Q}$ -box<sup>a</sup>:

$$\hat{Q}(\omega) = extsf{P} extsf{H}_1 extsf{P} + extsf{P} extsf{H}_1 extsf{Q} rac{1}{\omega - extsf{Q} extsf{H}_0 extsf{Q}} Q \hat{Q}(\omega) extsf{P}$$

The  $\hat{Q}$ -box is a sum of all possible **topologically distinct** diagrams which are:

- Irreducible: the intermediate many-particle states between each pair of vertices belong to the excluded space Q.
- **Valence linked:** all the interaction vertices are linked (via fermion lines) to at least one valence space line.

These diagrams can be either connected or disconnected.



<sup>a</sup> T. T. S. Kuo and E. Osnes, Folded-Diagram Theory of the Effective Interaction in Atomic Nuclei, Springer Lecture Noters in Physics (Springer, Berlin, 1990) Vol. 364



$$V^{(n)} = \frac{1}{1 - Q_1 - \sum_{m=2}^{n-1} \widehat{Q}_m \prod_{k=n-m+1}^{n-1} V^{(k)}} \widehat{Q}(\omega_0) \quad \text{with} \quad \widehat{Q}_m = \frac{1}{m!} \frac{d^m Q(\omega_0)}{d\omega^m}$$

where  $\omega_0$  is the true model space energy, appropriate for the nuclear system of interest.



Common practice is to neglect the disconnected two-body  $\hat{Q}$ -box terms,  $D^{(\sigma\sigma)}$ . Negligible for two-body  $V_{eff}$ , may not be so for three-body  $V_{eff}$ . Can be easily calculated using cancellation property of disconnected diagrams.



| ntro | o Folded diagrams Inree-body V <sub>eff</sub> ~0 isotopes ~Ca isotopes<br>000 00€00 00000 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ⊂<br>O   |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|      | Disconnected terms of the three-body $\hat{Q}$ -box                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
|      | Disconnected diagrams from different folds and with the same amount of interaction vectices cancel out e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | exactly. |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|      | $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
|      | $\langle \mathbf{ijk}   \mathbf{T}^{(\sigma\sigma)}   \mathbf{Imn}  angle = -rac{d}{d\omega} (S_{i,j}S_{j,m} + S_{i,j}S_{k,n} + S_{j,m}S_{k,n})  \delta_{ij}  \delta_{jm}  \delta_{kn}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
|      | $\langle \mathbf{ijk}   \mathbf{T}^{(\delta\sigma)}   \mathbf{Imn}  angle = -rac{d}{d\omega} \Big[ D_{ij,lm}^{(\delta)} S_{k,n} - D_{ij,ln}^{(\delta)} S_{k,m} - D_{ij,nm}^{(\delta)} S_{k,l} - D_{ik,lm}^{(\delta)} S_{j,n} + D_{ik,ln}^{(\delta)} S_{j,m} + D_{ik,lm}^{(\delta)} S_{j,n} + D_{ik,lm}^{(\delta)} S_{j,m} + D_{ik,lm}^{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|      | $D_{ik,nm}^{(\delta)} S_{j,l} - D_{kj,lm}^{(\delta)} S_{i,n} + D_{kj,ln}^{(\delta)} S_{i,m} + D_{kj,nm}^{(\delta)} S_{i,l} \Big]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|      | $\langle \mathbf{ijk}   \mathbf{T}^{(\boldsymbol{\sigma}\boldsymbol{\sigma}\boldsymbol{\sigma})}   \mathbf{lmn} \rangle = \frac{1}{2} \left[ \frac{d^2 I}{d\omega^2} \left( J + K \right)^2 + \frac{d^2 J}{d\omega^2} \left( I + K \right)^2 + \frac{d^2 J}{d\omega^2} \left( I + J \right)^2 \right]  \delta_{il}  \delta_{jm}  \delta_{kn} + \frac{d^2 J}{d\omega^2} \left( J + K \right)^2 + \frac{d^2 J}{d\omega^2} \left( J + J \right)^2 + \frac{d^2 J}{d\omega^2} \left( J + K \right)^2 + d^$ |          |
|      | $\left[\frac{dI}{d\omega}\frac{dJ}{d\omega}\left(I+J+2K\right)+\frac{dI}{d\omega}\frac{dK}{d\omega}\left(I+K+2J\right)+\frac{dJ}{d\omega}\frac{dK}{d\omega}\left(J+K+2I\right)\right]\delta_{il}\delta_{jm}\delta_{kn}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
|      | where $I = S_{i,i}, J = S_{j,j}, K = S_{k,k}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |

| Intro | Folded diagrams | Three-body V <sub>eff</sub> | <sup>16</sup> O isotopes | <sup>40</sup> Ca isotopes | Conclusions |
|-------|-----------------|-----------------------------|--------------------------|---------------------------|-------------|
| 00    | 000             | 00000                       | 00000                    | 00000                     | 0           |

## Separation of two-body and three-body components of $V_{eff}$

Need to separate two-body and three-body components of the effective interaction to proceed with shell-model calculations.  $^{\rm a}$ 

$$egin{array}{l} \left\langle \mathsf{a}\mathsf{b}
ight|\mathsf{V}\left|\mathsf{c}\mathsf{d}
ight
angle =\left\langle \mathsf{a}\mathsf{b}
ight|\mathsf{V}^{(2)}\left|\mathsf{c}\mathsf{d}
ight
angle +\left(\left\langle \mathsf{a}
ight|\mathsf{V}^{(1)}\left|\mathsf{a}
ight
angle +\left\langle \mathsf{b}
ight|\mathsf{V}^{(1)}\left|\mathsf{b}
ight
angle 
ight)\delta_{\mathsf{ac}}\,\delta_{\mathsf{b}\mathsf{d}} \end{array}$$

$$\langle ijk | V | lmn \rangle = \langle ijk | V^{(3)} | lmn \rangle +$$

$$\langle ij | V | lm \rangle \delta_{kn} - \langle ij | V | ln \rangle \delta_{km} - \langle ij | V | nm \rangle \delta_{kl} -$$

$$\langle ik | V | lm \rangle \delta_{jn} + \langle ik | V | ln \rangle \delta_{jm} + \langle ik | V | nm \rangle \delta_{jl} -$$

$$\langle kj | V | lm \rangle \delta_{in} + \langle kj | V | ln \rangle \delta_{im} + \langle kj | V | nm \rangle \delta_{il} -$$

$$(\langle i | V | l \rangle + \langle j | V | m \rangle + \langle k | V | n \rangle) \delta_{il} \delta_{jm} \delta_{kn}$$

<sup>a</sup> P.J.Ellis et al, Phys.Rev. **C71** 034301,2005



























3N effective interactions in nuclear structure studies Seattle, Washington, Nov. 26 - 30, 2007





| Intro<br>00 | Folded diagrams                                                                                                | Three-body V <sub>eff</sub> | <sup>16</sup> O isotopes<br>00000 | <sup>40</sup> Ca isotopes<br>00000 | Conclusions<br>• |
|-------------|----------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------|------------------------------------|------------------|
| -           | Conclusions                                                                                                    |                             |                                   |                                    |                  |
|             | Contributions                                                                                                  | from the three-b            | ody V <sub>eff</sub> terms        | cannot be negle                    | ected.           |
|             | Three-body V <sub>eff</sub> reproduces binding energy trends of <sup>16</sup> O and <sup>40</sup> Ca isotopes. |                             |                                   |                                    | <sup>40</sup> Ca |
|             | <b>3</b> Three-body $V_{eff}$ gives more <b>repulsion</b> compared two-body $V_{eff}$ .                        |                             |                                   |                                    |                  |
|             | The disconne into account.                                                                                     | cted terms of the           | three-body $\hat{Q}$ -l           | pox must be tak                    | en               |

## Work in progress

- Inclusion of the 'true' three-body forces: CFPT NNLO.
- Implementation of the Folded-Diagram Theory for non-degenerate model space.
- Comparison with other schemes for constructing effective interactions (LS similarity transformation).