Alpha-cluster states and 4α particle condensation in ¹⁶0

Yasuro Funaki (RIKEN)

Taiichi Yamada (Kanto Gakuin Univ.)

Peter Schuck (IPN, Orsay, Paris-Sud Univ.)

Hisashi Horiuchi (RCNP)

Akihiro Tohsaki (RCNP)

Gerd Röpke (Rostock Univ.)

INT Workshop on ``Correlations in Nuclei: From Di-Nucleons to Clusters", University of Washington, Seattle, USA, 26 - 29 November, 2007

Appearing of cluster gas state and ``BEC'' state in finite nuclei Energy 12 nucleons break-up threshold 12**C** $E/A \sim 8 MeV$ ~100 MeV Appearing near the 3α threshold a cluster Cluster gas **3** α break-up $\sim 10 \text{ MeV}$ Condensed into the lowest orbit threshold $\rho_0/3 \sim \rho_0/5$ $E/A \sim 1 MeV$ Lowest configuration of gas phase luquid A. Tohsaki et al., PRL 87, 192501 (2001). 0 MeV ho_0

Lowest energy state

Expansion of 0⁺₁ and 0⁺₂ wfs with H.O. basis

Calculated by T. Yamada

nα condensate wave function (THSR-w.f.)

$$\Phi_{n\alpha}(\beta,b) = \mathcal{A} \left\{ \prod_{i=1}^{n} \left(\exp\left(-\frac{2}{B^{2}} \vec{X}_{i}^{2}\right) \phi(\alpha_{i}) \right) \right\} \stackrel{(B^{2} = b^{2} + 2R_{0}^{2})}{\underset{function}{\text{Brink's wave}}} \\ \propto \left\langle \vec{r}_{1} \vec{i}_{1}, \cdots, \vec{r}_{4n} \vec{i}_{4n} \left| \left(C_{\alpha}^{\dagger} \right)^{n} \right| \text{VAC} \right\rangle \\ C_{\alpha}^{\dagger} = \int d^{3} \vec{R} \exp\left(-\frac{R^{2}}{R_{0}^{2}}\right) B_{\alpha}^{\dagger}(\vec{R}) \\ b \\ \phi(\alpha) \propto \left\langle \vec{r}_{1} \vec{i}_{1}, \cdots, \vec{r}_{4} \vec{i}_{4} \right| B_{\alpha}^{\dagger}(\vec{R}) \left| \text{VAC} \right\rangle \doteq \left\langle 0s \right\rangle^{4} \\ \phi(\alpha) \propto \left\langle \vec{r}_{1} \vec{i}_{1}, \cdots, \vec{r}_{4} \vec{i}_{4} \right| B_{\alpha}^{\dagger}(\vec{R}) \left| \text{VAC} \right\rangle = \left\langle 0s \right\rangle^{4} \\ \left\langle 0s \right\rangle^{4} \\ configuration \\ around \vec{R} \\ calculation of matrix elements \\ is owing to Tohsaki's technique \\ \\ \sum_{k_{0}} \left\langle \Phi_{n\alpha}(R_{0}, b) \right| H - E^{\lambda} \left| \Phi_{n\alpha}(R_{0}^{\dagger}, b) \right\rangle f_{k_{0}^{\lambda}}^{\lambda} = 0 \qquad \Psi_{n\alpha}^{\lambda} = \sum_{k_{0}} f_{k_{0}}^{\lambda} \Phi_{n\alpha}(R_{0}, b)$$

The comparison of 3α condensate model (H.W.) with microscopic 3α model (3α RGM)

Volkov No.2 force: M=0.59

$$E_{3\alpha}^{\rm ths} = -82.04 \,\,{\rm MeV}$$

Calculated values of r.m.s radius (fm) and monopole matrix element (fm²)

Calculated values of binding energy (MeV)

	H. W.	3α RGM
0_{1}^{+}	-89.52	-89.4
0^+_2	-81.79	-81.7
2_{1}^{+}	-86.71	-86.7

	H. W.	3α RGM
r.m.s radius 0_1^+	2.40	2.40
r.m.s radius 0_2^+	3.83	3.47
r.m.s radius 2_1^+	2.38	2.38
$M (0_2^+ \rightarrow 0_1^+)$	6.45	6.7

First example of α condensate state in finite nuclei

3α break-up threshold : 7.27 MeV Hoyle state (0_2^+ state in ${}^{12}C$ (excitation energy : 7.65 MeV))

OCM in ¹²C

$\int \rho(\vec{r}, \vec{r}') f^{\lambda}(\vec{r}') dr = \mu^{\lambda} f^{\lambda}(\vec{r})$ Single α -orbits in ¹²C(0+) $\mu^{\lambda}/3 = N_{\alpha}$

 N_{α} : Occupation probability

Large oscillation : **strong** Pauli blocking effect **Compact** structure SU(3) model: $[f](\lambda\mu)=[444](04)$ -like structure

Small oscillation: **weak** Pauli blocking effect **Long** tail: **dilute** structure Radial behavior: **Gaussian** form with *a*= 0.04 fm⁻²

T. Yamada and P. Schuck, Euro. Phys. Jour. A, 26 (2005), 185.

Density distribution of 0_1^+ , 2_1^+ , 4_1^+ states(shell model structure) and 0_2^+ , 2_2^+ states(gas-like structure)

First attempt to explore 4α condensate state in ¹⁶0

α+¹⁶O inelastic scattering O₅⁺state:

A candidate of 4αcondensate E = 13. 6MeV Γ=0. 8MeV ¹⁶O(α, α') Wakasa etal.

The result of the calculation is consistent with the experimental data.

The 0⁺ state at $E_x = 13.5$ MeV can be assigned to the four- α condensed state.

The 0⁺ state wave function obtained at E_x =10.3 MeV leads to a largely different absolute value.

(O3⁺)_{THSR} : E=14.9 MeV F =1.5 MeV (based on R-matrix theory)

T. Wakasa, E. Ihara, M. Takashina and Y. F. et al, PLB 653, 173 (2007).

Motivation for 4 a OCM (Orthogonality Condition Model)

Need to solve full 4 α problem, 4 α OCM (semi microscopic)

Model space of $4 \alpha OCM(Orthogonality Condition Model)$

Adopted angular momentum channels (10 channels)

 c_{K} and $c_{H} = [[l_{3}, l_{2}]_{l_{32}}, l_{1}]_{L}$

K-type channel

 c_{K} : $[[0,0]_{0},0]_{0}$ $[[2,0]_{2},2]_{0}$ $[[0,2]_{2},2]_{0}$ $[[2,2]_{0},0]_{0}$ $[[0,1]_{1},1]_{0}$ $[[2,1]_{1},1]_{0}$

H-type channel

 c_{H} : [[0,0]₀,0]₀ [[2,0]₂,2]₀ [[0,2]₂,2]₀ [[2,2]₀,0]₀

 $\begin{array}{l} \textbf{Total wave function} \\ \Phi_L({}^{16}\text{O}) = \sum_{c_K, v_1, v_2, v_3} A_{c_K}(v_1, v_2, v_3) \Phi_{c_K}^{4\alpha}(v_1, v_2, v_3) + \sum_{c_H, v_1, v_2, v_3} A_{c_H}(v_1, v_2, v_3) \Phi_{c_H}^{4\alpha}(v_1, v_2, v_3) \end{array}$

Energy levels, rms radii, monopole matrix elements and density distribution.

Reduced width amplitudes of 0_4^+ and 0_5^+ states obtained with 4α OCM

- •New (not discussed so far) $\alpha + {}^{12}C$ cluster states.
- $\alpha + {}^{12}C$ dynamics survives up to around the 4α threshold.

Reduced width amplitudes of 0_4^+ and 0_6^+ states obtained with 4α OCM

Possible assignment of the two calculations and observations

Summary

- Beyond doubt the Hoyle state is the 3α condensate state. (THSR and OCM)
- 4α condensate w. f. (4α THSR-w.f.) predicts the existence of 4α condensate state. (not as the third 0⁺ state but as the fourth 0⁺ state)
 Analysis by using 4α OCM(orthogonality condition model) in order to describe both ¹²C+α, 4α gas states and others, if any, in larger model space.
- 4α condensate state and other cluster states are simultaneously obtained. Large OS-occupancey, 60 %
 - •Two new resonance states are obtained near the 4α threshold. One has a developed α cluster structure ($R_{rms} \sim 3.0$ fm) in which ${}^{12}C(1^-) + \alpha$, ${}^{12}C(3^-) + \alpha$ and ${}^{12}C(0_2^+) + \alpha$ components are mixed. The other has a very well developed α cluster structure ($R_{rms} \sim 4.0$ fm). ${}^{12}C(0^+) + \alpha$ (higher nodal)

 \Rightarrow corresponding to the observed 0_4^+ and 0_5^+ states, respectively

•Successfully reproducing the well known $^{12}C(g.s.)$ + α (6.05 MeV) and $^{12}C(2^+)$ + α (12.05 MeV) structures,

For future work,

- •Analyses of condensate fraction and 4α CSM are necessary for more reliable conclusion.
- 4α linear chain structure (the band head is estimated at 16.7 MeV)
 We are able to discuss it simultaneously with the lower structures !