Towards Ab Initio Nuclear Structure beyond the p-Shell

Robert Roth

Institut für Kernphysik Technische Universität Darmstadt

Overview

Motivation

Modern Effective Interactions

- Unitary Correlation Operator Method
- Similarity Renormalization Group
- Innovative Many-Body Methods
 - No-Core Shell Model
 - Importance Truncated NCSM
- Perspectives

Nuclear Structure

Robert Roth - TU Darmstadt - 10/2007

Nuclear Structure

Realistic Nuclear Interactions

Low-Energy QCD

- chiral interactions: consistent NN & 3N interaction derived within χEFT
- traditional NN-interactions: Argonne V18, CD Bonn,...
- reproduce experimental NN phaseshifts with high precision
- induce strong short-range central & tensor correlations

Nuclear Structure

Exact / Approx. Many-Body Methods

- 'exact' solution of the many-body problem for light and intermediate masses (GFMC, NCSM, CC,...)
- controlled approximations for heavier nuclei (HF & MBPT,...)
- rely on restricted model spaces of tractable size
- not suitable for the description of short-range correlations

Realistic Nuclear Interactions

Low-Energy QCD

Nuclear Structure

Exact / Approx. Many-Body Methods

Modern Effective Interactions

Realistic Nuclear Interactions

Low-Energy QCD

- adapt realistic potential to the available model space
 - tame short-range correlations
 - improve convergence behavior
- conserve experimentally constrained properties (phase shifts)
 - generate new realistic interaction
- provide consistent effective interaction & effective operators
- unitary transformations most convenient

Modern Effective Interactions

Unitary Correlation Operator Method (UCOM)

H. Feldmeier et al. — Nucl. Phys. A 632 (1998) 61
T. Neff et al. — Nucl. Phys. A713 (2003) 311
R. Roth et al. — Nucl. Phys. A 745 (2004) 3
R. Roth et al. — Phys. Rev. C 72, 034002 (2005)

Unitary Correlation Operator Method

Correlation Operator

define an unitary operator C to describe the effect of short-range correlations

$$\mathbf{C} = \exp[-\mathrm{i}\,\mathrm{G}] = \expigg[-\,\mathrm{i}\sum_{i < j}\mathrm{g}_{ij}igg]$$

Correlated States

imprint short-range correlations onto uncorrelated many-body states

$$\left| \widetilde{\psi}
ight
angle = {f C} \; \left| \psi
ight
angle$$

Correlated Operators

adapt Hamiltonian and all other observables to uncorrelated many-body space

 $\widetilde{\mathbf{O}} = \mathbf{C}^{\dagger} \mathbf{O} \mathbf{C}$

$$\left\langle \widetilde{\psi} \right| \mathbf{O} \left| \widetilde{\psi'} \right\rangle = \left\langle \psi \right| \mathbf{C}^{\dagger} \mathbf{O} \mathbf{C} \left| \psi' \right\rangle = \left\langle \psi \right| \widetilde{\mathbf{O}} \left| \psi' \right\rangle$$

Robert Roth - TU Darmstadt - 10/2007

Deuteron: Manifestation of Correlations

exact deuteron solution for Argonne V18 potential

 $ho_{S=1,M_S=\pm 1}^{(2)}(\vec{r})$

short-range repulsion supresses wavefunction at small distances *r*

central correlations

tensor interaction generates D-wave admixture in the ground state

tensor correlations

Unitary Correlation Operator Method

explicit ansatz for the correlation operator motivated by the **physics of short-range central and tensor correlations**

Central Correlator C_r

 radial distance-dependent shift in the relative coordinate of a nucleon pair

$$\begin{split} \mathbf{g}_r &= \frac{1}{2} \big[s(\mathbf{r}) \; \mathbf{q}_r + \mathbf{q}_r \; s(\mathbf{r}) \big] \\ \mathbf{q}_r &= \frac{1}{2} \big[\frac{\vec{\mathbf{r}}}{\mathbf{r}} \cdot \vec{\mathbf{q}} + \vec{\mathbf{q}} \cdot \frac{\vec{\mathbf{r}}}{\mathbf{r}} \big] \end{split}$$

Tensor Correlator C_{Ω}

 angular shift depending on the orientation of spin and relative coordinate of a nucleon pair

$$egin{aligned} &\mathbf{g}_\Omega = rac{3}{2} artheta(\mathbf{r}) ig[(ec{\sigma}_1 \!\cdot ec{\mathbf{q}}_\Omega) (ec{\sigma}_2 \!\cdot ec{\mathbf{r}}) + (ec{\mathbf{r}} \!\leftrightarrow \!ec{\mathbf{q}}_\Omega) ig] \ & ec{\mathbf{q}}_\Omega = ec{\mathbf{q}} - rac{ec{\mathbf{r}}}{ec{\mathbf{r}}} \,\mathbf{q}_r \end{aligned}$$

• s(r) and $\vartheta(r)$ for given potential determined by energy minimization in the two-body system (for each S, T)

Correlated States: The Deuteron

Correlated Interaction: V_{UCOM}

$$\widetilde{\mathbf{H}} = \mathbf{T} + \mathbf{V}_{UCOM} + \mathbf{V}_{UCOM}^{[3]} + \cdots$$

- closed operator expression for the correlated interaction V_{UCOM} in two-body approximation
- correlated interaction and original NN-potential are phase shift equivalent by construction
- unitary transformation results in a pre-diagonalization of Hamiltonian (similar to renormalization group methods)
- operators of all observables (densities, transitions) have to be and can be transformed consistently

Correlated Interaction: V_{UCOM}

Modern Effective Interactions

Similarity Renormalization Group (SRG)

Hergert & Roth — Phys. Rev. C 75, 051001(R) (2007) Bogner et al. — Phys. Rev. C 75, 061001(R) (2007)

Similarity Renormalization Group

unitary transformation of the Hamiltonian to a band-diagonal form with respect to a given uncorrelated many-body basis

Flow Equation for Hamiltonian

evolution equation for Hamiltonian

$$\widetilde{\mathrm{H}}(lpha) = \mathrm{C}^{\dagger}(lpha) \,\mathrm{H}\,\mathrm{C}(lpha) \quad o$$

$$rac{\mathrm{d}}{\mathrm{d}lpha} \widetilde{\mathrm{H}}(lpha) = ig[\eta(lpha), \widetilde{\mathrm{H}}(lpha)ig]$$

dynamical generator defined as commutator with the whose eigenbasis H shall be diagonalized

$$\eta(lpha) \stackrel{ ext{2B}}{=} rac{1}{2\mu} ig[ec{ ext{q}}^2, \widetilde{ ext{H}}(lpha)ig]$$

UCOM vs. SRG

 $\eta(0)$ has the same structure as the UCOM generators \mathbf{g}_r and \mathbf{g}_{Ω}

SRG Evolution: The Deuteron

Robert Roth – TU Darmstadt – 10/2007

SRG Evolution: The Deuteron

Exact Many-Body Methods No-Core Shell Model

Roth et al. — Phys. Rev. C 72, 034002 (2005) Roth & Navrátil — in preparation

⁴He: Convergence

⁴He: Convergence

Three-Body Interactions — Strategies

Correlated Hamiltonian in Many-Body Space

$$\begin{split} \widetilde{H} &= C^{\dagger} (T + V_{NN} + V_{3N}) C \\ &= \widetilde{T}^{[1]} + (\widetilde{T}^{[2]} + \widetilde{V}^{[2]}_{NN}) + (\widetilde{T}^{[3]} + \widetilde{V}^{[3]}_{NN} + \widetilde{V}^{[3]}_{3N}) + \cdots \\ &= T + V_{UCOM} + V^{[3]}_{UCOM} + \cdots \end{split}$$

strategies for treating the three-body contributions:

include full V^[3]_{UCOM} consisting of genuine and induced 3N terms
 replace V^[3]_{UCOM} by simplified 3N force (no consistent transformation)
 minimize V^[3]_{UCOM} by proper choice of unitary transformation

Three-Body Interactions — Tjon Line

Tjon-line: E(⁴He) vs. E(³H) for phase-shift equivalent NNinteractions

Three-Body Interactions — Tjon Line

- Tjon-line: E(⁴He) vs. E(³H) for phase-shift equivalent NNinteractions
- change of C_Ω-correlator range results in shift along Tjon-line

minimize net three-body force by choosing correlator with energies close to experimental value

Three-Body Interactions — Tjon Line

- Tjon-line: E(⁴He) vs. E(³H) for phase-shift equivalent NNinteractions
- same behavior for the SRG interaction as function of α

minimize net three-body force by choosing correlator with energies close to experimental value

¹⁰B: Hallmark of a 3N Interaction?

¹⁰B: Hallmark of a 3N Interaction?

Exact Many-Body Methods

Importance Truncated No-Core Shell Model

Roth & Navrátil — Phys. Rev. Lett. 99, 092501 (2007) Roth — in preparation

Importance Truncated NCSM

- converged NCSM calculations essentially restricted to p-shell
- full $6\hbar\omega$ calculation for ${}^{40}Ca$ presently not feasible (basis dimension $\sim 10^{10}$)

Importance Truncation

reduce NCSM space to relevant states using an a priori importance measure derived from MBPT

Importance Measure from MBPT

• **importance measure** κ_{ν} : a priori estimate for amplitude C_{ν} of shell-model configuration $|\Phi_{\nu}\rangle$ from multiconfigurational perturbation theory based on reference state $|\Psi_{\text{ref}}\rangle$:

$$\kappa_{
u} = -rac{\left\langle \Phi_{
u}
ight| \mathrm{H'} \left| \Psi_{\mathrm{ref}}
ight
angle}{\epsilon_{
u} - \epsilon_{\mathrm{ref}}}$$

iterative procedure for construction of importance truncated model space with reference states of increasing complexity

⁴He: Importance Truncated NCSM

reproduces exact NCSM result

with an importance truncated basis that is 2 orders of magnitude smaller than the full $\mathcal{N}_{\max}\hbar\omega$ space

¹⁶O: Importance Truncated NCSM

- excellent agreement with full NCSM calculation although configurations beyond 4p4h are not included
- dimension reduced by several orders of magnitude; possibility to go way beyond the domain of the full NCSM

¹⁶O: Importance Truncated NCSM

 beyond 4p4h contributions and size-extensivity via multireference Davidson correction

Extrapolation to $N_{
m max} o \infty$ $E_{
m IT-NCSM(4)D} = -127.9 \pm 2\,{
m MeV}$ $E_{
m exp} = -127.6\,{
m MeV}$

the two-body interaction V_{UCOM} does predict **correct binding energies** for heavier nuclei

⁴⁰Ca: Importance Truncated NCSM

- 16ħω and more are feasible for ⁴⁰Ca in IT-NCSM(4)D
- size of individual npnhcontributions depends on oscillator frequency
- result consistent with experimental binding energy

- + full NCSM (Antoine)
- IT-NCSM(2)
- ♦ IT-NCSM(3)
- IT-NCSM(4)
- + IT-NCSM(4) + Davidson

¹⁶O: Coupled Cluster Method

calculations by J. Gour & P. Piecuch

¹⁶O: Coupled Cluster Method

- coupled-cluster calculation for ¹⁶O with V_{UCOM}
- including non-perturbative triples correction (completely penormalized CC)
- extrapolated ground-state energies

 $E_{ ext{CR-CC(2,3)}} = -126.9 \pm 5 \, ext{MeV}$ $E_{ ext{IT-NCSM(4)D}} = -127.9 \pm 2 \, ext{MeV}$ $E_{ ext{exp}} = -127.6 \, ext{MeV}$

calculations by J. Gour & P. Piecuch

Perspectives

Modern Effective Interactions

- treatment of short-range central and tensor correlations by unitary transformations: UCOM, SRG, Lee-Suzuki,...
- \bullet phase-shift equivalent correlated interaction \mathbf{V}_{UCOM} which is soft and requires minimal three-body forces
- universal input for...

Innovative Many-Body Methods

- No-Core Shell Model,...
- Importance Truncated NCSM, Coupled Cluster Method,...
- Hartree-Fock plus MBPT, Padé Resummed MBPT, BHF, HFB, RPA,...
- Fermionic Molecular Dynamics,...

thanks to my group & my collaborators

 S. Binder, P. Hedfeld, H. Hergert, M. Hild, P. Papakonstantinou, A. Popa, S. Reinhardt, F. Schmitt, I. Türschmann, A. Zapp Institut für Kernphysik, TU Darmstadt

• P. Navrátil

Lawrence Livermore National Laboratory, USA

• P. Piecuch, J. Gour

Michigan State University, USA

• H. Feldmeier, T. Neff, C. Barbieri,...

Gesellschaft für Schwerionenforschung (GSI)

supported by the DFG through SFB 634 "Nuclear Structure, Nuclear Astrophysics and Fundamental Experiments..."