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The interacting boson model

The interacting boson model

Basic building blocks The Hamiltonian is ‘generated’ by

group theory
chf = efig + KQ(X) ) Q(X)
Three symmetry limits in which the

Hamiltonian is analytically solvable
» U(5)-limit: k=0

Nucleon pairs coupled to ] = 0 and g SU_(3:)|;1\1/rr7ut2: ¢=0and

] = 2 are approximately treated as s X= /

and d bosons. These are the basic > O(6)-limit: e =0and x =0
building blocks of the IBM.

J=0 =2
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The interacting boson model with configuration mixing

The interacting boson model with configuration mixing
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closed proton shell

If particle-hole configurations out of a
closed shell are sufficiently lowered in
energy, configuration mixing occurs.

K. Heyde et al., Nucl. Phys. A466, 189 (1987)
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The IBM Hamiltonian can be extended
to include particle-hole configurations
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AN*2 takes corrected excitation
energy of 2p-2h configuration into
account
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Geometry of the IBM

Geometry of the IBM

A single configuration

. Lett. 44, 1744
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Geometry of the IBM

A single configuration

calculate expectation value
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Geometry of the IBM

Geometry of the IBM

A single configuration . 2 : Lett, 44, 1744

calculate expectation value

IBM SN energy surface in 3 and y
in intrinsic state
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Geometry of the IBM

Geometry of the IBM

A single configur ation J. N. Ginocchio et al., Phys. Rev. Lett. 44, 1744 (1980)

calculate expectation value
IBM — energy surface in 3 and y

in intrinsic state

2 N[5+1+x)B|  N(N-1)

N(g . _.N_P
E (b,V,E,K,X)—:l\T1+ﬁ2+K 112 +(]-ﬁ2)2

2 o4 f‘? B N 142
<7er 4V7ij cos(3y) +4p

Mixing between two Configurati A. Frank et al,, Phys. Rev. C 69, 034323 (2004)

IBM with configuration mixing SN energy surface in  and y

energies are the eigenvalues of : :
energy surface is lowest eigenvalue of

N,N+2 7
vmlx < EN(ﬁrVFfHKl,X” : w(p)
H}q;rz i w(p) ENT2(B,v;65,k0,X2) + A
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Motivation
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> systematic lowering of two collective C ' / /
bands when proceeding towards neutron
midshell J. Pakarinen et al., Phys. Rev. C 75, 014302 (2007)

> these collective bands are understood as T Grahn et al, Phys. Rev. Lett. 97, 062501

arising from 2p-2h and 4p4h excitations
across the closed Z=82 shell
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> Z=82is a magic number

> systematic lowering of two collective
bands when proceeding towards neutron
midshell

> these collective bands are understood as A. Frank et al,, Phys. Rev. C 69, 034323 (2004)
arising from 2p-2h and 4p4h excitations
across the closed Z=82 shell
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Critical changes of the energy surface

Question

How does the qualitative behaviour of a family of functions
F(x1,..xn; a1, .., a) change as a function of the parameters (a1, ..ax)?

4 @ 4 (b)

A one-dimensional example X 2

For the function f(x; a1, .., ax), the 1
degenerate critical points are
determined by 4 © (@

of _ Pf _
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Critical changes of the energy surface

Critical changes of the energy surface

Answer

Degenerate critical points mark out the regions where qualitative behaviour
of F(x1,..xn; a1, .., ax) remains unaltered

4 @ 4 (b

A one-dimensional example : 2

For the function f(x; a1, .., ax), the 1
degenerate critical points are
determined by 4 (© (@

of _ ’f _
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Critical changes of the energy surface

An energy surface associated with the IBM-CM

For E_(B,v; €1,€2,K1,K2, X1, X2, w, A, N), the degenerate critical points are

determined by
oE_ JE_ 22
=0, =0, 7
wo A
0*E_ 0*E_ o
— 00
qe(s) = | 2 B | =0 S
_ _ N
dydp 9y?

In regions where the energy surface has several minima, it is of interest to
know the Maxwell points

\/I\// %AV, \mv
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Criticality in the IBM with two-configuration mixing

Criticality in the IBM with two-configuration mixing

A study of the full phase space (e1, €2, K1, K2, X1, X2, W, A, N) of the energy
surface E_ (3, v; €1, €2, K1, K2, X1, X2, W, A, N) is a tremendous, if not
impossible, task. Therefore, we focus on mixing cases between the dynamical
symmetry limits which are the benchmarks of the model.

1 U(5) - Q(x) - Q(x) mixing  — U(5) — O(6): "y

—  U(5) — su(s): —

2. Q(x1) - Q(x1) — Qlx2) - Q(x2) mixing

— encompasses mixing between the SU(3), the SU(3), and the O(6)
limit

y in the Interacting Boson Model with configurati i University of Ghent
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The associated energy surface

U(5) — Q(x) - Q(x) mixing

The energy surface is given as The parameters

» N number of bosons

x|
2(1+ %) > x parameter in
+[IN= (N4 2)(6+x3) - 4N +2)(N +1) + 247 g2 quadrupole operator
(prolate, oblate, or

< {E'Nf (N+2)(1+x%) - %(N+Z)(N+1)X2+A’} p

+ ; (N+2)(N +1)VT4xp3 cos(3y) — 5(N +2) + &’ y-unstable rotor)
,[( [E/N+ (N+2)(1442) + g(NH)(NH)XZ —A'} gt > k strength of quadrupole
/ , "o interaction
+ [5 N+ (N+2)(6+x°) +4(N+2)(N+1) - 24 ] B
, > ¢ = ¢/|| scaled
(N 2N+ ) VTR cos(3r) + 5(N+2) - A/) strength of vibrational
) contribution
+w72<1+ﬁ2)4] 7) > ' =2w/|k| scaled

mixing strength

> A" = A/|k| scaled
excitation energy of
intruders

> Boson Model with
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The associated energy surface

An analytical solution to the criticality conditions is obtained from a Taylor
expansion in (f,y) = (0, nm/3)

1 1 1 1
E_ =tgp+ El‘zoﬁz + §f30ﬁ3 + Ef4oﬁ4 + §f50ﬁ5 +oe

= r_ (N42)(AN+x?) S(N+2)—A'+/(5(N+2)—-A") 2+ w?
> t20—0 = &= 5(N+2)*A/*\/(S(N+2)7A’)2+wé2

X is part of a scaling factor
» triple point?

5(N+2)—A'++/(5(N+2)—A")2+w”?
V(5(N+2)—A")2+aw?

tso = 2 (N +2)(N + 1)v/14x cos(nm)

= only in case of U(5)-O(6) mixing
= triple point is obtained from tyg = t49 = 0

y in the Interacting Boson Model with configurati i University of Ghent
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Phase diagram for U(5)-O(6) mixing

Phase diagram for U(5)-O(6) mixing

AJk|=0 AJ|=60 AJk|=100 Akl=169
120 1200 1200 120
FE =z = | =
B ETS
600 600 § ¥\ [0 *f [ 600 1 [
ST AN e
> Do T
0 150 ¢/ 300 0 150 /x| 300 0 150 g/}ic| 300 0 150 £/|K|300
Ak[=190 A|k|=205 A|k|=206 A[k[=250
1200 1200 200 1200
=0 sl E5 L =TS
] & - 3
600 w7 600 1 Ve 600 { K
Al Sandl el P

0 150 ¢/ji| 300 0 150 ¢/jic| 300 0 150 g/l 300 0 150 g/]i| 300

University of Ghent

uration mixing

ty in the Interactin;



Phase diagram for U(5)-SU(3) mixing

U(5)-QQ mixing

Phase diagram for U(5)-SU(3) mixing
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Phase transitions for U(5)-O(6) mixing

Phase transitions for U(5)-O(6) mixing

In analogy to the Ehrenfest classification for thermodynamical phase
transition, an analogous classification for quantum phase transitions can be
proposed

» 1st order : discontinuity in first derivative of the energy of the global
minimum

dE/dQ2o/|k]) [MeV]

0 200 400 600 800 200 400 600 800
20/|k| 20/|x|

» 2nd order : discontinuity in second derivative of the energy of the global
minimum
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Phase transitions for U(5)-O(6) mixing

In the transition from a spherical to a deformed minimum in case of
U(5) — O(6) mixing, the deformation S exhibits powerlaw behaviour.

From the condition that 0E_ /d3 = 0, we derive

4\/—(1+B2)eN(N +2)[(N+2)B2 — N]
(1+p2)? ([£’N+ 4(N +2)?]8%2 4+ N[¢’ — 4(N +2)])

(sN 4(N +2) + CJB* + [¢/N + 4N(N +2) +2¢]8% + )

==

where { = —A" +5(N +2).

Powerlaw at the degenerate critical points

the deformation of the global minimum in the vicinity of the degenerate
critical points

Bo = N (e
O\ 2 AN2(N+2) + {(N + 1) — elN?] = ©

o g/>1/z

for w), > w;and ¢ < ¢,
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Phase transitions for U(5)-O(6) mixing

In the transition from a spherical to a deformed minimum in case of
U(5) — O(6) mixing, the deformation f3y exhibits powerlaw behaviour.

From the condition that 0E_/df3 = 0, we derive

4\/—(1+B2)eN(N +2)[(N+2)82 — N]
(14 B2)2([¢/N+4(N +2)2]p>+ N[/ —4(N +2)])

=4
x ([N —4(N +2) +¢JB* + ['N + AN(N +2) + 2] +¢)

/
Wy =

where { = —A" +5(N +2).

Powerlaw at the triple point

the deformation of the global minimum in the vicinity of the triple point

N4 N 75/)1/'4

1/4
Bo = (3(N+1)2[4N2(N+2) +C(N+1)]> (&

y in the Interacting Boson Model with configurati i University of Ghent
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Phase transitions for U(5)-O(6) mixing

0.064 ' N1/
Bo~(c—¢)'"?
Bo 1
0.03 1
54.08 8/|K| 54.16 B
] Vo E_
0.5 BO“(91—3)1/4 ! /
Bo |
0.3
0.1
4 el| ©2 B

» powerlaw behaviour fingerprint for 2nd order phase transitions

Universi



The associated energy surface

QQ-QQ mixing

Q(x1) - Q(x1) — Q(x2) - Q(x2) mixing

The energy surface is given as

_ Ix] 4 2 3 _ / /
E_= 502 {alﬁ +apy B +azp” cos(3y) —5(N+ o' |[(N+2)) +A
- [(bl B+ by B2 + by B3 cos(3y) — 5(N — |0’ [(N +2)) — A’)z

+w’2<1+ﬁ2)4]1/1
with

ap = -N(1+ 2N +5)3) ~ 1o [(N+2) (14 5 (N +9)3) + 47,
ay = -N(3 +22N +1)) - |0 (N +2)(x3 +2(2N +5)) + 24",

a3 = SVIE(NIN = 1z +10/ (N + DN +2)x2),

by = -N(1+ %(2N+5)X%) +\a’\(N+z)(1+ ;(2N+9)X%) —a,
by = —N(Z +2@N +1)) + [0’ |(N+2)(x3 +2(2N +5)) - 24",

by = ;mm(wq)xl 1o’ [(N+1)(N+2)xp)

The parameters

>

>

N number of bosons

x1 and xp parameter in
quadrupole operator
(prolate, oblate, or y-unstable
rotor)

K strength of quadrupole
interaction for the regular
configuration

|o’| = |o|/|k| scaled strength
of quadrupole interaction for
the intruder configuration

w' = 2w/ |k| scaled mixing
strength

A" = A/|k| scaled excitation
energy of intruders

> Boson Model with
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Two classes of solution

Two classes of solutions

From the condition aa% = 0, it follows that y can be frozen n7/3 such that
the other criticality conditions reduce to
9*E_
2
LEi = 0 ’ det aﬁ ’)/:n7T/3 2
9B ly=nmn/3 0 ai;
Iy y=nm/3

Hence, there are two classes of solutions to the criticality conditions :
1. degenerate critical points indicating changes in the number of extrema
in the B-direction
2. degenerate critical points indicating changes in the number of extrema
in the y-direction

ty in the Interactin; Mo vith co uration mixing University of Ghent
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Prolate-oblate coexistence?

Prolate-oblate coexistence?

2
From the condition aa% = 0, we derive

y=nmn/3
; b1 B* + by % + b3p® — 5(N — |o'|(N +2)) — A/
w' = £/ (b3 —a3)(b3 + a3) (1 + )2

with

V(b3 —a3) (b3 +a3) = 5/~ 14]07| (N~ NN + (N +2)xixz

= Prolate-oblate shape coexistence only occurs if x1 and x, have opposite
sign.

y in the Interacting Boson Model with configurati i University of Ghent
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Phase diagram for QQ-QQ mixing

A

Phase diagram for SU_(3)-

Alkl=0 AN|k[=667

(x2)Q(x2) mixing (x2 = V/7/16)
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Behaviour in critical point

By means of a Taylor expansion, the behaviour in the degenerate critical
point can be derived

Acl=0
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Behaviour in critical point

By means of a Taylor expansion, the behaviour in the degenerate critical
point can be derived

Allic=0
E N
807 -390
<
s N -
- ~-poy
101 410
-430
0 T T T T T T
06 12 18
p
E. E. E.
i i i
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Conclusions and outlook

Conclusions and outlook

» An extensive region of shape coexistence is found for various excitation
energies of the intruder configuration in the phase diagrams for the IBM
with configuration mixing. This makes shape coexistence a important
aspect of the IBM with configuration mixing.

> In case of mixing between two deformed configurations, shape
coexistence between a prolate and an oblate minimum can only arise if
x1 and x; have opposite sign

» Future perspectives :

> calculation of the Maxwell points in case of mixing between two deformed
configurations and possibility of first-order shape phase transitions?
> study of the energy surface associated with configuration mixing in less

schematic cases
»>

> Boson Model with



	The interacting boson model (IBM)
	The interacting boson model
	The interacting boson model with configuration mixing
	Geometry of the IBM
	Motivation
	Critical changes of the energy surface
	Criticality in the IBM with two-configuration mixing

	U(5)-QQ mixing
	The associated energy surface
	Phase diagram for U(5)-O(6) mixing
	Phase diagram for U(5)-SU(3) mixing
	Phase transitions for U(5)-O(6) mixing

	QQ-QQ mixing
	The associated energy surface
	Two classes of solution
	Prolate-oblate coexistence?
	Phase diagram for QQ-QQ mixing
	Behaviour in critical point

	Conclusions and outlook

