Image: Image:

.

Criticality in the Interacting Boson Model with configuration mixing

V. Hellemans¹, P. Van Isacker², S. De Baerdemacker¹ and K. Heyde¹

¹Department of subatomic and radiation physics, University of Ghent, Belgium ²Grand Accélerateur National des Ions Lourds, Caen, France

Criticality in the Interacting Boson Model with configuration mixing

University of Ghent

Outline

1 The interacting boson model (IBM)

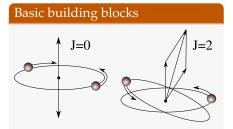
2 U(5)-QQ mixing

3 QQ-QQ mixing

4 Conclusions and outlook

イロト イポト イヨト イヨト

The interacting boson model



Nucleon pairs coupled to J = 0 and J = 2 are approximately treated as s and d bosons. These are the basic building blocks of the IBM.

The Hamiltonian is 'generated' by group theory

$$\hat{H}_{cqf} = \varepsilon \hat{n}_d + \kappa \hat{Q}(\chi) \cdot \hat{Q}(\chi)$$

Three symmetry limits in which the Hamiltonian is analytically solvable

- U(5)-limit : $\kappa = 0$
- SU(3)-limit : $\varepsilon = 0$ and $\chi = \pm \sqrt{7}/2$
- O(6)-limit : $\varepsilon = 0$ and $\chi = 0$

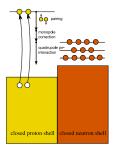
• □ ▶ • □ ▶ • □ ▶ • •

 The interacting boson model (IBM)
 U(5)-QQ mixing
 QQ-QQ mixing
 Conclusions and outlook

 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 00

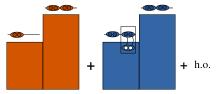
The interacting boson model with configuration mixing

The interacting boson model with configuration mixing



If particle-hole configurations out of a closed shell are sufficiently lowered in energy, configuration mixing occurs.

K. Heyde et al., Nucl. Phys. A466, 189 (1987)



The IBM Hamiltonian can be extended to include particle-hole configurations

$$\begin{split} \hat{H} = & \hat{P}_{N}^{\dagger} \hat{H}_{\text{cqf}}^{N} \hat{P}_{N} \\ &+ \hat{P}_{N+2}^{\dagger} \left(\hat{H}_{\text{cqf}}^{N+2} + \Delta^{N+2} \right) \hat{P}_{N+2} \\ &+ \hat{V}_{\text{mix}}^{N,N+2} + \text{h.o.} \end{split}$$

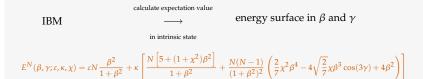
 Δ^{N+2} takes corrected excitation energy of 2p-2h configuration into account

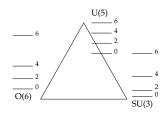
The interacting boson model (IBM)	U(5)-QQ mixing	QQ-QQ mixing	
000000			
Geometry of the IBM			

Geometry of the IBM

A single configuration

J. N. Ginocchio et al., Phys. Rev. Lett. 44, 1744 (1980)





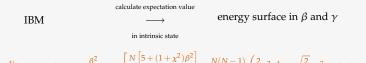
イロト イポト イヨト イヨ

The interacting boson model (IBM)	U(5)-QQ mixing	QQ-QQ mixing	
000000			
Geometry of the IBM			

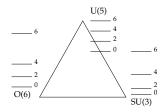
Geometry of the IBM

A single configuration

J. N. Ginocchio et al., Phys. Rev. Lett. 44, 1744 (1980)



$$E^{N}(\beta,\gamma;\varepsilon,\kappa,\chi) = \varepsilon N \frac{\beta^{2}}{1+\beta^{2}} + \kappa \left\lfloor \frac{N \left\lfloor 5 + (1+\chi^{2})\beta^{2} \right\rfloor}{1+\beta^{2}} + \frac{N(N-1)}{(1+\beta^{2})^{2}} \left(\frac{2}{7}\chi^{2}\beta^{4} - 4\sqrt{\frac{2}{7}}\chi\beta^{3}\cos(3\gamma) + 4\beta^{2}\right) \right\rfloor$$



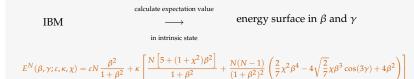
(日)

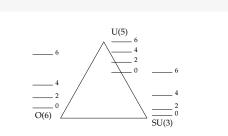
The interacting boson model (IBM)	U(5)-QQ mixing	QQ-QQ mixing	
000000			
Geometry of the IBM			

Geometry of the IBM

A single configuration

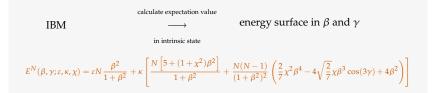
J. N. Ginocchio et al., Phys. Rev. Lett. 44, 1744 (1980)





イロト イポト イヨト イヨ

The interacting boson model (IBM) ○○●○○○○	U(5)-QQ mixing 0000000	QQ-QQ mixing 00000	
Geometry of the IBM			
Geometry of the I	IBM		
A single configurat	ion	J. N. Ginocchio et al., Phys. Re	ev. Lett. 44, 1744 (1980)



Mixing between two configurations

A. Frank et al., Phys. Rev. C 69, 034323 (2004)

IBM with configuration mixing \longrightarrow

energies are the eigenvalues of

$$\left(\begin{array}{cc} H^N_{\rm cqf} & V^{N,N+2}_{\rm mix} \\ \tilde{V}^{N,N+2}_{\rm mix} & H^{N+2}_{\rm cqf} + \Delta \end{array} \right)$$

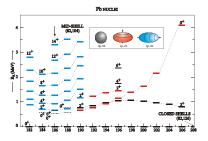
energy surface in β and γ

energy surface is lowest eigenvalue of

$$\begin{array}{c} E^{N}(\beta,\gamma;\varepsilon_{1},\kappa_{1},\chi_{1}) & \omega(\beta) \\ \omega(\beta) & E^{N+2}(\beta,\gamma;\varepsilon_{2},\kappa_{2},\chi_{2}) + \Delta \end{array} \right)$$

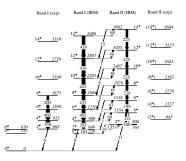
The interacting boson model (IBM)	U(5)-QQ mixing	QQ-QQ mixing	
○○○●○○○	0000000	00000	
Motivation			

Motivation



- Z=82 is a magic number
- systematic lowering of two collective bands when proceeding towards neutron midshell
- these collective bands are understood as arising from 2p-2h and 4p4h excitations across the closed Z=82 shell

3-configuration mixing within the IBM

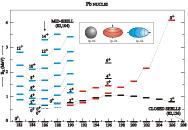


J. Pakarinen et al., Phys. Rev. C 75, 014302 (2007)

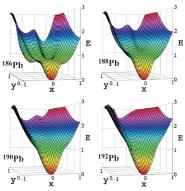
T. Grahn et al., Phys. Rev. Lett. 97, 062501

The interacting boson model (IBM)	U(5)-QQ mixing	QQ-QQ mixing	
○○○●○○○	0000000	00000	
Motivation			

Motivation



- ► Z=82 is a magic number
- systematic lowering of two collective bands when proceeding towards neutron midshell
- these collective bands are understood as arising from 2p-2h and 4p4h excitations across the closed Z=82 shell



Geometric interpretation of the IBM

A. Frank et al., Phys. Rev. C 69, 034323 (2004)

The interacting boson model (IBM)	U(5)-QQ mixing	QQ-QQ mixing	
0000000			
Critical changes of the energy surface			

Critical changes of the energy surface

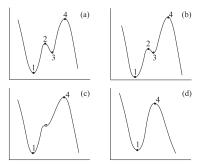
Question

How does the qualitative behaviour of a family of functions $F(x_1, ...x_n; a_1, ..., a_k)$ change as a function of the parameters $(a_1, ...a_k)$?

A one-dimensional example

For the function $f(x; a_1, .., a_k)$, the degenerate critical points are determined by

$$\frac{\partial f}{\partial x} = 0$$
 and $\frac{\partial^2 f}{\partial x^2} = 0$



The interacting boson model (IBM)	U(5)-QQ mixing	QQ-QQ mixing	
0000000			
Critical changes of the energy surface			

Critical changes of the energy surface

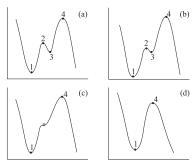
Answer

Degenerate critical points mark out the regions where qualitative behaviour of $F(x_1, ..., x_n; a_1, ..., a_k)$ remains unaltered

A one-dimensional example

For the function $f(x; a_1, .., a_k)$, the degenerate critical points are determined by

$$\frac{\partial f}{\partial x} = 0$$
 and $\frac{\partial^2 f}{\partial x^2} = 0$



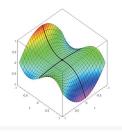
U(5)-QQ mixing 0000000 QQ-QQ mixing 00000 Conclusions and outlook

Critical changes of the energy surface

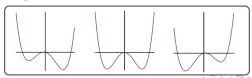
An energy surface associated with the IBM-CM

For $E_{-}(\beta, \gamma; \varepsilon_1, \varepsilon_2, \kappa_1, \kappa_2, \chi_1, \chi_2, \omega, \Delta, N)$, the degenerate critical points are determined by

$$\begin{split} \frac{\partial E_{-}}{\partial \beta} &= 0 , \ \frac{\partial E_{-}}{\partial \gamma} &= 0 , \\ \det(\mathcal{S}) &= \begin{pmatrix} \frac{\partial^{2} E_{-}}{\partial \beta^{2}} & \frac{\partial^{2} E_{-}}{\partial \beta \partial \beta} \\ \frac{\partial^{2} E_{-}}{\partial \gamma \partial \beta} & \frac{\partial^{2} E_{-}}{\partial \gamma^{2}} \end{pmatrix} = 0 \end{split}$$



In regions where the energy surface has several minima, it is of interest to know the Maxwell points



The interacting boson model (IBM) U

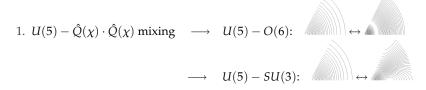
J(5)-QQ mixing

QQ-QQ mixing 00000 Conclusions and outlool

Criticality in the IBM with two-configuration mixing

Criticality in the IBM with two-configuration mixing

A study of the full phase space (ε_1 , ε_2 , κ_1 , κ_2 , χ_1 , χ_2 , ω , Δ , N) of the energy surface $E_-(\beta, \gamma; \varepsilon_1, \varepsilon_2, \kappa_1, \kappa_2, \chi_1, \chi_2, \omega, \Delta, N)$ is a tremendous, if not impossible, task. Therefore, we focus on mixing cases between the dynamical symmetry limits which are the benchmarks of the model.



2. $\hat{Q}(\chi_1) \cdot \hat{Q}(\chi_1) - \hat{Q}(\chi_2) \cdot \hat{Q}(\chi_2)$ mixing

 \rightarrow encompasses mixing between the *SU*(3), the \overline{SU} (3), and the *O*(6) limit

The associated energy surface

$$U(5) - \hat{Q}(\chi) \cdot \hat{Q}(\chi)$$
 mixing

The energy surface is given as

$$\begin{split} E_{-} &= \frac{|\kappa|}{2(1+\beta^2)^2} \left(\left[\ell'N - (N+2)(1+\chi^2) - \frac{2}{7}(N+2)(N+1)\chi^2 + \Delta' \right] \beta^4 \\ &+ \left[\ell'N - (N+2)(6+\chi^2) - 4(N+2)(N+1) + 2\Delta' \right] \beta^2 \\ &+ \frac{4}{7}(N+2)(N+1)\sqrt{14}\chi\beta^3 \cos(3\gamma) - 5(N+2) + \Delta' \\ &- \left[\left(\left[\ell'N + (N+2)(1+\chi^2) + \frac{2}{7}(N+2)(N+1)\chi^2 - \Delta' \right] \beta^4 \\ &+ \left[\ell'N + (N+2)(6+\chi^2) + 4(N+2)(N+1) - 2\Delta' \right] \beta^2 \\ &- \frac{4}{7}(N+2)(N+1)\sqrt{14}\chi\beta^3 \cos(3\gamma) + 5(N+2) - \Delta' \right)^2 \\ &+ \omega'^2(1+\beta^2)^4 \right]^{\frac{1}{2}} \end{split}$$

The parameters

- ► *N* number of bosons
- χ parameter in quadrupole operator (prolate, oblate, or γ-unstable rotor)
- κ strength of quadrupole interaction
- $\varepsilon' = \varepsilon/|\kappa|$ scaled strength of vibrational contribution
- $\omega' = 2\omega/|\kappa|$ scaled mixing strength
- ► Δ' = Δ/|κ| scaled excitation energy of intruders

イロト イヨト イヨト

	U(5)-QQ mixing ○●○○○○○	QQ-QQ mixing 00000	
The associated energy surface			

An analytical solution to the criticality conditions is obtained from a Taylor expansion in $(\beta, \gamma) = (0, n\pi/3)$

$$E_{-} = t_{00} + \frac{1}{2!} t_{20} \beta^2 + \frac{1}{3!} t_{30} \beta^3 + \frac{1}{4!} t_{40} \beta^4 + \frac{1}{5!} t_{50} \beta^5 + \cdots$$

►
$$t_{20}=0$$
 \Rightarrow $\varepsilon'_{c} = -\frac{(N+2)(4N+\chi^{2})}{N}\frac{5(N+2)-\Delta'+\sqrt{(5(N+2)-\Delta')^{2}+\omega'_{c}^{2}}}{5(N+2)-\Delta'-\sqrt{(5(N+2)-\Delta')^{2}+\omega'_{c}^{2}}}$

$$\chi$$
 is part of a scaling factor

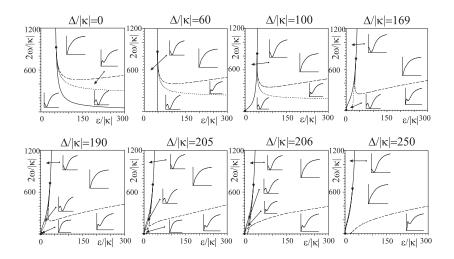
triple point?

$$t_{30} = \frac{24}{7} (N+2)(N+1)\sqrt{14}\chi \cos(n\pi) \frac{5(N+2) - \Delta' + \sqrt{(5(N+2) - \Delta')^2 + \omega'^2}}{\sqrt{(5(N+2) - \Delta')^2 + \omega'^2}}$$

⇒ only in case of
$$U(5)$$
- $O(6)$ mixing
⇒ triple point is obtained from $t_{20} = t_{40} = 0$

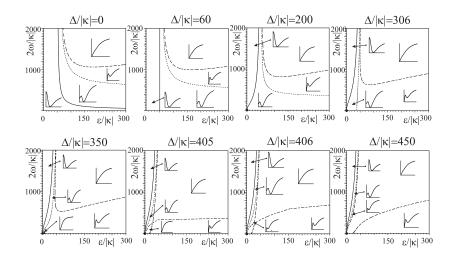
Phase diagram for U(5) O(6) mining			
000000	000000		
	U(5)-QQ mixing	QQ-QQ mixing	

Phase diagram for U(5)-O(6) mixing



Dhass diagram (or U(5) CU(2) mining			
	0000000		
	U(5)-QQ mixing	QQ-QQ mixing	

Phase diagram for U(5)-SU(3) mixing

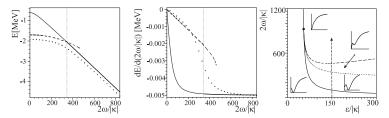


	U(5)-QQ mixing ○○○○●○○	QQ-QQ mixing 00000	
Phase transitions for U(5)-O(6) mixing			

Phase transitions for U(5)-O(6) mixing

In analogy to the Ehrenfest classification for thermodynamical phase transition, an analogous classification for quantum phase transitions can be proposed

Ist order : discontinuity in first derivative of the energy of the global minimum



 2nd order : discontinuity in second derivative of the energy of the global minimum

	U(5)-QQ mixing ○○○○○●○	QQ-QQ mixing 00000	
Phase transitions for U(5)-O(6) mixing			

In the transition from a spherical to a deformed minimum in case of U(5) - O(6) mixing, the deformation β_0 exhibits powerlaw behaviour.

From the condition that $\partial E_{-}/\partial \beta = 0$, we derive

$$\begin{split} \omega'_{\pm} &= \pm \frac{4\sqrt{-(1+\beta^2)\varepsilon'N(N+2)[(N+2)\beta^2-N]}}{(1+\beta^2)^2\big([\varepsilon'N+4(N+2)^2]\beta^2+N[\varepsilon'-4(N+2)]\big)} \\ &\times \Big([\varepsilon'N-4(N+2)+\zeta]\beta^4+[\varepsilon'N+4N(N+2)+2\zeta]\beta^2+\zeta\Big) \\ \zeta &= -\Delta'+5(N+2). \end{split}$$

where *L* $-\Delta^{2} + 5(N + 2)$

Powerlaw at the degenerate critical points

the deformation of the global minimum in the vicinity of the degenerate critical points

$$\beta_0 = \sqrt{\frac{\zeta N}{2\varepsilon_{\rm c}' \left[4N^2(N+2) + \zeta(N+1) - \varepsilon_{\rm c}' N^2\right]}} (\varepsilon_{\rm c}' - \varepsilon')^{1/2}$$

for $\omega_c' > \omega_t'$ and $\varepsilon' < \varepsilon_c'$

	U(5)-QQ mixing ○○○○○●○	QQ-QQ mixing 00000	
Phase transitions for U(5)-O(6) mixing			

In the transition from a spherical to a deformed minimum in case of U(5) - O(6) mixing, the deformation β_0 exhibits powerlaw behaviour.

From the condition that $\partial E_-/\partial \beta = 0$, we derive

$$\omega'_{\pm} = \pm \frac{4\sqrt{-(1+\beta^2)\varepsilon'N(N+2)[(N+2)\beta^2 - N]}}{(1+\beta^2)^2([\varepsilon'N+4(N+2)^2]\beta^2 + N[\varepsilon' - 4(N+2)])} \\ \times \left([\varepsilon'N - 4(N+2) + \zeta]\beta^4 + [\varepsilon'N + 4N(N+2) + 2\zeta]\beta^2 + \zeta\right) \\ = -\Lambda' + 5(N+2)$$

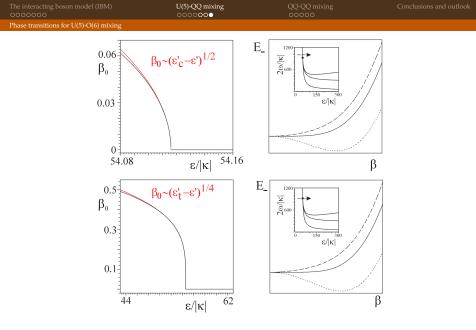
where $\zeta = -\Delta' + 5(N+2)$.

Powerlaw at the triple point

the deformation of the global minimum in the vicinity of the triple point

$$\beta_0 = \left(\frac{N^4}{3(N+1)^2[4N^2(N+2) + \zeta(N+1)]}\right)^{1/4} (\varepsilon'_{\mathsf{t}} - \varepsilon')^{1/4}$$

• □ • • • □ • • □ • • □



powerlaw behaviour fingerprint for 2nd order phase transitions

QQ-QQ mixing

The associated energy surface

$$\hat{Q}(\chi_1) \cdot \hat{Q}(\chi_1) - \hat{Q}(\chi_2) \cdot \hat{Q}(\chi_2)$$
 mixing

The energy surface is given as

$$\begin{split} E_{-} &= \frac{|\kappa|}{2(1+\beta^2)^2} \left[a_1 \beta^4 + a_2 \beta^2 + a_3 \beta^3 \cos(3\gamma) - 5(N+|\sigma'|(N+2)) + \Delta' \right. \\ &\left. - \left[\left(b_1 \beta^4 + b_2 \beta^2 + b_3 \beta^3 \cos(3\gamma) - 5(N-|\sigma'|(N+2)) - \Delta' \right)^2 \right. \\ &\left. + \omega'^2 \left(1 + \beta^2 \right)^4 \right]^{1/2} \right] \end{split}$$

with

$$\begin{split} a_1 &= -N \Big(1 + \frac{1}{7} (2N+5) \chi_1^2 \Big) - |\sigma'| (N+2) \Big(1 + \frac{1}{7} (2N+9) \chi_2^2 \Big) + \Delta' \ , \\ a_2 &= -N \big(\chi_1^2 + 2(2N+1) \big) - |\sigma'| (N+2) \big(\chi_2^2 + 2(2N+5) \big) + 2\Delta' \ , \\ a_3 &= \frac{4}{7} \sqrt{14} \big(N(N-1) \chi_1 + |\sigma'| (N+1) (N+2) \chi_2 \big) \ , \\ b_1 &= -N \Big(1 + \frac{1}{7} (2N+5) \chi_1^2 \Big) + |\sigma'| (N+2) \Big(1 + \frac{1}{7} (2N+9) \chi_2^2 \Big) - \Delta' \ , \\ b_2 &= -N \big(\chi_1^2 + 2(2N+1) \big) + |\sigma'| (N+2) \big(\chi_2^2 + 2(2N+5) \big) - 2\Delta' \ , \\ b_3 &= \frac{4}{7} \sqrt{14} \big(N(N-1) \chi_1 - |\sigma'| (N+1) (N+2) \chi_2 \big) \end{split}$$

The parameters

- ► N number of bosons
- χ₁ and χ₂ parameter in quadrupole operator (prolate, oblate, or γ-unstable rotor)
- κ strength of quadrupole interaction for the regular configuration
- ► $|\sigma'| = |\sigma|/|\kappa|$ scaled strength of quadrupole interaction for the intruder configuration
- $\omega' = 2\omega/|\kappa|$ scaled mixing strength
- ► Δ' = Δ/|κ| scaled excitation energy of intruders

	U(5)-QQ mixing 0000000	QQ-QQ mixing ○●○○○	
Two classes of solution			

Two classes of solutions

From the condition $\frac{\partial E_{-}}{\partial \gamma} = 0$, it follows that γ can be frozen $n\pi/3$ such that the other criticality conditions reduce to

$$\frac{\partial E_{-}}{\partial \beta}\Big|_{\gamma=n\pi/3} = 0, \quad \det \begin{pmatrix} \frac{\partial^{2} E_{-}}{\partial \beta^{2}}\Big|_{\gamma=n\pi/3} & 0\\ 0 & \frac{\partial^{2} E_{-}}{\partial \gamma^{2}}\Big|_{\gamma=n\pi/3} \end{pmatrix} = 0$$

Hence, there are two classes of solutions to the criticality conditions :

- 1. degenerate critical points indicating changes in the number of extrema in the β -direction
- 2. degenerate critical points indicating changes in the number of extrema in the γ -direction

	U(5)-QQ mixing 0000000	QQ-QQ mixing ○○●○○	
Prolate-oblate coexistence?			

Prolate-oblate coexistence?

From the condition
$$\frac{\partial^2 E_-}{\partial \gamma^2}\Big|_{\gamma=n\pi/3} = 0$$
, we derive
 $\omega' = \pm \sqrt{(b_3 - a_3)(b_3 + a_3)} \frac{b_1 \beta^4 + b_2 \beta^2 + b_3 \beta^3 - 5(N - |\sigma'|(N+2)) - \Delta'}{a_3(1 + \beta^2)^2}$

with

$$\sqrt{(b_3 - a_3)(b_3 + a_3)} = \frac{8}{7}\sqrt{-14|\sigma'|(N-1)N(N+1)(N+2)\chi_1\chi_2}$$

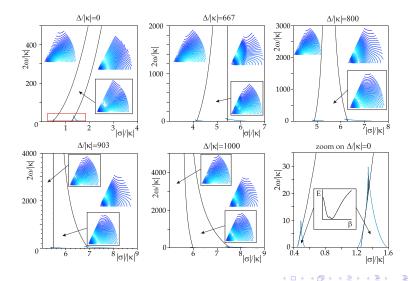
 \Rightarrow Prolate-oblate shape coexistence only occurs if χ_1 and χ_2 have opposite sign.

イロト イポト イヨト イヨ

 The interacting boson model (IBM)
 U(5)-QQ mixing
 QQ-QQ mixing
 Conclusions an

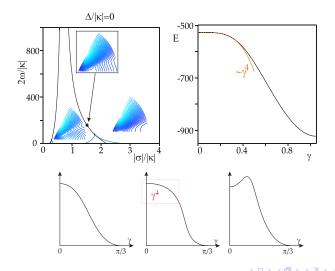
 0000000
 000000
 000000

Phase diagram for $SU_{-}(3)-\hat{Q}(\chi_{2})\hat{Q}(\chi_{2})$ mixing ($\chi_{2} = \sqrt{7}/16$)



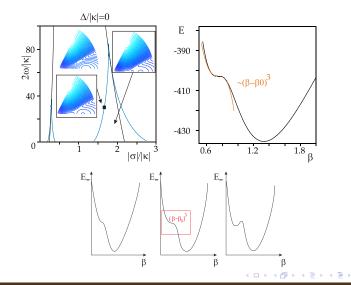
	U(5)-QQ mixing 0000000	QQ-QQ mixing ○○○○●	
Behaviour in critical point			

By means of a Taylor expansion, the behaviour in the degenerate critical point can be derived



	U(5)-QQ mixing 0000000	QQ-QQ mixing ○○○○●	
Behaviour in critical point			

By means of a Taylor expansion, the behaviour in the degenerate critical point can be derived



Conclusions and outlook

- An extensive region of shape coexistence is found for various excitation energies of the intruder configuration in the phase diagrams for the IBM with configuration mixing. This makes shape coexistence a important aspect of the IBM with configuration mixing.
- In case of mixing between two deformed configurations, shape coexistence between a prolate and an oblate minimum can only arise if *χ*₁ and *χ*₂ have opposite sign
- Future perspectives :
 - calculation of the Maxwell points in case of mixing between two deformed configurations and possibility of first-order shape phase transitions?
 - study of the energy surface associated with configuration mixing in less schematic cases
 - ▶ ...

• □ ▶ • • □ ▶ • • □ ▶