National INSTITUTE FOR NUCLEAR THEORY

The Form of the Effective Interaction in Harmonic-Oscillator-Based Effective Theory (HOBET)

- The form of H^{eff}: short-range expansion/long-range summation
- N^3LO results for two-body interaction: running with Λ , Lepage plot
- State-dependence and K: implications for Lee-Suzuki, etc.
- Scales and long-wavelength/short-wavelength factorization: implications for numerical strategies with potentials or in ET

Wick Haxton -- New Approaches in Nuclear Many-Body Theory -- INT, October 2007

• Much of the work on HOBET done in collaboration with

Chang-Liang Song

• More complete summary of most of this talk available at

arXiv: 0710:0289

this interplay potentially quite useful:

- HOBETp can be used to determine the features of the systematic expansion that will be needed in HOBET (our main topic)
- But the insight HOBET provides can also be helpful in potential-based approaches -- simple analytic representation for H^{eff}

Overview of Approach

• Low-energy P-space defined by a set of HO states with quanta

 $\leq \Lambda_P \hbar \omega$

• Hamiltonian a sum of relative KE and potential

$$H = \frac{1}{2} \sum_{i,j=1}^{A} (T_{ij} + V_{ij})$$

• HOBETp's H^{eff} defined by energy-dependent Bloch-Horowitz equation

$$H^{eff} = P \left[H + H \frac{1}{E - QH} QH \right] P$$
$$H^{eff} |\Psi_P\rangle = E |\Psi_P\rangle \quad |\Psi_P\rangle = P |\Psi\rangle$$

• Solved self consistently. E is the exact eigenvalue and $|\Psi_P\rangle$ the restriction of the exact wave function to P: nontrivial normalization, non-orthogonality

$$P = P(b, \Lambda_P)$$

- P is thus separable: H^{eff}, like H, is translationally invariant
- Solutions independent of b, Λ_P if the ET is executed properly -- though efficiency may be influence by this choice
- Wave function evolves simply with increments $\Lambda_P \rightarrow \Lambda_P + 2$: new components added to existing, norm increases, eventually $\rightarrow 1$
- HOBET's H^{eff} defined by a systematic expansion that encodes in P the physics residing in Q, with parameters fit to bound and continuum data
- Effective operators are in HOBET/HOBETp done in analogy with H^{eff}, taking into account both operator corrections and wf normalization

•	3He	
•	av18	DOT

- av18 potential (~hard core)
- numerical BH solution

	amplitude						
state	0ħω	2 ħω	4ħω	6 ħω	8 ħω	exact	
	(31.1%)	(57.4%)	(70.0%)	(79.8%)	(85.5%)	(100%)	
0,1 angle	0.5579	0.5579	0.5579	0.5579	0.5579	0.5579	
2,1 angle	0.0000	0.0463	0.0461	0.0462	0.0462	0.0463	
2,2>	0.0000	-0.4825	-0.4824	-0.4824	-0.4824	-0.4826	
2,3>	0.0000	0.0073	0.0073	0.0073	0.0073	0.0073	
4,1 angle	0.0000	0.0000	-0.0204	-0.0204	-0.0204	-0.0205	
4,2>	0.0000	0.0000	0.1127	0.1127	0.1127	0.1129	
4,3	0.0000	0.0000	-0.0419	-0.0420	-0.0421	-0.0423	

Basic attributes:

- Slow convergence of shell-byshell expansions -- "SM" missing a great deal of physics
- Attractive evolution of wf
- <H^{eff}> hypersensitive to choice of P

	2 ħω	4ħω	6 ħω	8 ħω
$ig \langle 0,1 \ \ H^{eff} \ \ 2,1 angle$	-4.874	-3.165	-0.449	1.279
$ig \langle 0,1 \ \ H^{eff} \ \ 2,5 angle$	-0.897	-1.590	-1.893	-2.208
$\boxed{\langle 2,1 \mid H^{eff} \mid 2,2 \rangle}$	6.548	-2.534	-4.144	-5.060

Task #1: Identifying a Systematic Expansion for HOBET's H^{eff}

- Usual goal in an ET is to describe the low-lying excitations in P
- The HOBET H^{eff} is more ambitious: a spectral quantity where
 - Q contains both missing short- and long-range physics, unlike EFTs: can be viewed as an expansion around q ~1/b. What is the systematic expansion for such a case?
 - The relative importance of the missing long- and short-range physics is governed by the binding energy E: one has a finely tuned parameter that can produce an extended state as → 0 (balance between T, V minimization delicate)
 - P and Q are strongly coupled by T via nearest-shell interactions T is a ladder operator in the HO. Worst possible case for an ET
- Lovely resolution, which we learned about the hard way ...

What is the expansion implicit in the BH "data"?

- Initial attempt mimicked EFT approaches (WH + Luu, NP A690 (2001) 5247)
 - Discrete renormalization group: shell-by-shell integration
 - □ Started with a LO contact operator at some high scale Λ , integrated progressively to reach Λ_P , the "SM" scale
 - LO was schemed independent; beyond LO introduced scheme dependent counterterms to make shell-by-shell evolution exact
- But results were troubling: the coefficients a_{LO}, a_{NLO}, etc., did not evolve naturally. The short-range expansion used was not systematically correcting the low-energy results
 - Tom's thesis: dissecting this problem, identifying the right expansion
 - Led to other results on making NP perturbative -- will not discuss

TABLE I: Contact-gradient expansion for relative-coordinate two-particle matrix elements. Here $\vec{D_M^2} = (\vec{\nabla} \otimes \vec{\nabla})_{2M}, \vec{D_0^0} = [(\sigma(1) \otimes \sigma(2))_2 \otimes D^2]_{00}, \vec{F_M^3} = (\vec{\nabla} \otimes \vec{D^2})_{3M}, \vec{F_M^1} = [(\sigma(1) \otimes \sigma(2))_2 \otimes F^3]_{1M}, \vec{G_M^4} = (\vec{D^2} \otimes \vec{D^2})_{4M}, \vec{G_M^2} = [(\sigma(1) \otimes \sigma(2))_2 \otimes G^4]_{2M},$ and the scalar product of tensor operators is defined as $A^J \cdot B^J = \sum_{M=-J}^{M=J} (-1)^M A^J_M B^J_{-M}.$

Transitions	LO	NLO	NNLO	N ³ LO
${}^3S_1 \leftrightarrow {}^3S_1$	$a_{LO}^{3S1}\delta({\bf r})$	$a_{NLO}^{3S1}(\stackrel{\leftarrow}{\nabla^2} \delta(\mathbf{r}) + \delta(\mathbf{r}) \stackrel{\rightarrow}{\nabla^2})$	$a_{NNLO}^{3S1,22} \stackrel{\leftarrow}{ abla^2} \delta({f r}) \stackrel{ ightarrow}{ abla^2}$	$a_{N^3LO}^{3S1,42}(\stackrel{\leftarrow}{\nabla^4} \delta(\mathbf{r}) \stackrel{\rightarrow}{\nabla^2} + \stackrel{\leftarrow}{\nabla^2} \delta(\mathbf{r}) \stackrel{\rightarrow}{\nabla^4})$
or ${}^1S_0 \leftrightarrow {}^1S_0$			$a_{NNLO}^{3S1,40}(\stackrel{\leftarrow}{ abla^4}\delta({f r})+\delta({f r})\stackrel{ ightarrow}{ abla^4})$	$a_{N^3LO}^{3S1,60}(\stackrel{\leftarrow}{ abla^6}\delta({f r})+\delta({f r})\stackrel{ ightarrow}{ abla^6})$
${}^3S_1 \leftrightarrow {}^3D_1$		$\begin{vmatrix} a_{NLO}^{SD}(\delta(\mathbf{r}) \stackrel{\rightarrow}{D^0} + \stackrel{\leftarrow}{D^0} \delta(\mathbf{r}) \end{vmatrix}$	$a_{NNLO}^{SD,22}(\stackrel{\leftarrow}{\nabla^2} \delta(\mathbf{r}) \stackrel{\rightarrow}{D^0} + \stackrel{\leftarrow}{D^0} \delta(\mathbf{r}) \stackrel{\rightarrow}{\nabla^2})$	$a_{N^3LQ}^{SD,42}(\stackrel{\leftarrow}{ abla^4}\delta({f r})\stackrel{ ightarrow}{D^0}+\stackrel{\leftarrow}{D^0}\delta({f r})\stackrel{ ightarrow}{ abla^4})$
			$a_{NNLO}^{SD,04}(\delta(\mathbf{r}) \overrightarrow{\nabla^2 D^0} + \overrightarrow{D^0 \nabla^2} \delta(\mathbf{r}))$	$a_{N^3LO}^{SD,24}(\stackrel{\smile}{\nabla^2}\delta(\mathbf{r})\stackrel{\rightarrow}{\nabla^2}\stackrel{\rightarrow}{D^0}+\stackrel{\smile}{D^0}\stackrel{\rightarrow}{\nabla^2}\delta(\mathbf{r})\stackrel{\rightarrow}{\nabla^2})$
				$a_{N^3LO}^{SD,06}(\delta(\mathbf{r}) \nabla^4 D^0 + D^0 \nabla^4 \delta(\mathbf{r}))$
$^1D_2 \leftrightarrow ^1D_2$			$\stackrel{\leftarrow}{a_{NNLO}} \stackrel{ ightarrow}{D^2} \cdot \delta({f r}) \stackrel{ ightarrow}{D^2}$	$a_{N^3LO}^{1D2}(\stackrel{\leftarrow}{D^2} \stackrel{\leftarrow}{\nabla^2} \cdot \delta(\mathbf{r}) \stackrel{\rightarrow}{D^2} + \stackrel{\leftarrow}{D^2} \cdot \delta(\mathbf{r}) \stackrel{\rightarrow}{\nabla^2} \stackrel{\rightarrow}{D^2})$
or ${}^3D_J \leftrightarrow {}^3D_J$				
${}^{3}D_{3} \leftrightarrow {}^{3}G_{3}$				$a_{N^3LO}^{DG} (\stackrel{\leftarrow}{D^2} \cdot \delta(\mathbf{r}) \stackrel{\rightarrow}{G^2} + \stackrel{\leftarrow}{G^2} \cdot \delta(\mathbf{r}) \stackrel{\rightarrow}{D^2})$
$^{1}P_{1} \leftrightarrow ^{1}P_{1}$		$a_{NLO}^{1P1} \stackrel{\leftarrow}{ abla} \cdot \delta(\mathbf{r}) \stackrel{ ightarrow}{ abla}$	$a_{NNLO}^{1P1}(\stackrel{\leftarrow}{\nabla} \stackrel{\leftarrow}{\nabla}^2 \cdot \delta(\mathbf{r}) \stackrel{\rightarrow}{\nabla} + \stackrel{\leftarrow}{\nabla} \cdot \delta(\mathbf{r}) \stackrel{\rightarrow}{\nabla}^2 \stackrel{\rightarrow}{\nabla})$	$a_{N^3LO}^{1P1,33} \stackrel{\leftarrow}{\nabla} \stackrel{\leftarrow}{\nabla^2} \cdot \delta(\mathbf{r}) \stackrel{ ightarrow}{\nabla^2} \stackrel{ ightarrow}{\nabla}$
or ${}^{3}P_{J} \leftrightarrow {}^{3}P_{J}$				$a_{N^3LO}^{1P1,51}(\overleftarrow{\nabla}\overrightarrow{\nabla^4}\cdot\delta(\mathbf{r})\overrightarrow{\nabla}+\overleftarrow{\nabla}\cdot\delta(\mathbf{r})\overrightarrow{\nabla^4}\overrightarrow{\nabla})$
${}^{3}P_{2} \leftrightarrow {}^{3}F_{2}$			$a_{NNLO}^{PF} (\stackrel{\leftarrow}{\nabla} \cdot \delta(\mathbf{r}) \stackrel{\rightarrow}{F^1} + \stackrel{\leftarrow}{F^1} \cdot \delta(\mathbf{r}) \stackrel{\rightarrow}{\nabla})$	$a_{N^{3}LO}^{PF,33}(\stackrel{\leftarrow}{\nabla}\stackrel{\leftarrow}{\nabla}^{2}\cdot\delta(\mathbf{r})\stackrel{\rightarrow}{F^{1}}+\stackrel{\leftarrow}{F^{1}}\cdot\delta(\mathbf{r})\stackrel{\rightarrow}{\nabla}^{2}\stackrel{\rightarrow}{\nabla})$
				$a_{N^3LO}^{PF,15}(\stackrel{\leftarrow}{\nabla}\cdot\delta(\mathbf{r})\stackrel{\rightarrow}{\nabla^2}\stackrel{\rightarrow}{F^1}+\stackrel{\leftarrow}{F^1}\stackrel{\leftarrow}{\nabla^2}\cdot\delta(\mathbf{r})\stackrel{\rightarrow}{\nabla})$
${}^1F_3 \leftrightarrow {}^1F_3$				$a_{N^3LO}^{1F3} \stackrel{\leftarrow}{F^3} \cdot \delta({f r}) \stackrel{ ightarrow}{F^3}$
or ${}^3F_J \leftrightarrow {}^3F_J$				

This is the kind of short-range expansion -- the candidate HOBET H^{eff} -- we tried: most general nonlocal contact-gradient potential consistent with P,T, hermiticity, etc. $a_{LO} = a_{LO}(b, \Lambda_P)$, etc

Repeated our troubled HOBET effort, dissecting the results at the individual matrix element level in HOBETp, to see why the wheels feel off:

One measure of m.e. quality:

Formulating HOBET

 HOBET -- and any confined basis -- excludes low- and high-momentum excitations: tension between T(E) and V_{hard}: sum QT to all orders

$$H^{eff} = \frac{E}{E - TQ} \left[T - T\frac{Q}{E}T + V + V\frac{1}{E - QH}QV \right] \frac{E}{E - QT}$$

• This redefines bare V, bare T, and rescattering contributions as:

• bare T:
$$\langle \alpha | T \frac{E}{E - QT} | \beta \rangle = \langle \alpha | \frac{E}{E - TQ} T | \beta \rangle \xrightarrow{\text{nonedge}} \langle \alpha | T | \beta \rangle$$

• bare V: $\langle \alpha | \frac{E}{E - QT} V \frac{E}{E - TQ} | \beta \rangle \xrightarrow{\text{nonedge}} \langle \alpha | V | \beta \rangle$
• $\langle \alpha | \frac{E}{E - TQ} V \frac{1}{E - QH} QV \frac{E}{E - QT} | \beta \rangle \xrightarrow{\text{nonedge}} \langle \alpha | V \frac{1}{E - QH} QV | \beta \rangle$

• Effectively absorbs into a new P' the "soft" physics residing in Q that governs the asymptotic behavior of w.f. -- new orthogonal space

Identify contact-gradient expansion with the short-range term

$$\frac{E}{E - TQ} V \frac{1}{E - QH} QV \frac{E}{E - QT} \xrightarrow{\text{HOBET}} \frac{E}{E - TQ} \bar{O} \frac{E}{E - QT}$$

• Define gradients as an expansion around $r_0 \sim I/b$

• EFT
$$\vec{\nabla}^2 e^{i\vec{k}\cdot\vec{r}}|_{\vec{k}=0} = 0 \implies \text{HOBET } \vec{\nabla}^2 \psi_{1s}(b) = 0$$

contact – gradient operators $O \to \overline{O} \equiv e^{r^2/2} O e^{r^2/2}$

- expansion nodal q.n.s : $\vec{\nabla}^2 \sim -4(n-1)$, $\vec{\nabla}^4 \sim 16(n-1)(n-2)$
- no op. mixing : e.g., $a_{LO} \leftrightarrow 1s 1s$, remains fixed, higher order

$$a's \sim \int_0^\infty \int_0^\infty e^{-r_1^2} \left[r_1^{n'} V(r_1, r_2) r_2^n \right] e^{-r_2^2} r_1^2 r_2^2 dr_1 dr_2$$

- Summation over QT involves single parameter, $\kappa = \sqrt{2}|E|/\hbar\omega$
 - □ Long-wavelength corrections severe as K→0: limit of small binding (halo nucleus) or small b. But significant in all cases.
 - **Remarkable that these effects are encoded in a single parameter K**
 - Summation non-perturbative in both QT and V -- strong potential consequences contained in |E| (correct asymptotic correlations)

• $|\tilde{\alpha}\rangle = \frac{E}{E - QT} |\alpha\rangle$ from free Green's function or via HO expansion $(E - T) |\tilde{\alpha}\rangle = \left[P \frac{1}{E - T}P\right]^{-1} |\alpha\rangle$ (Jacobi basis, HO Fourier) $|\tilde{n}\tilde{l}\rangle = \sum_{i=0}^{\infty} \tilde{g}_i(-\kappa^2; n, l) |n + i l\rangle$ (continued fractions exploiting HO ladder properties \Rightarrow hyperspherical basis) QT-summed transformation of an s-wave edge state ($\Lambda P=10$): renormalized at r=0 to show short-range behavior unchanged

$$\Delta_{QT}(\Lambda) = \frac{E}{E - TQ} \left[V \frac{1}{E - QH} QV - V \frac{1}{E - Q\Lambda H} Q\Lambda V \right] \frac{E}{E - QT}$$

QT
summed

 $\begin{array}{c} 20 \\ 1.5 \\ 1.0 \\ 0.5 \\ -1.0 \\ \end{array}$

 $\begin{array}{c} 0.5 \\ -1.0 \\ 8 \end{array}$

 $\begin{array}{c} 0.5 \\ -1.0 \\ \end{array}$

Fitting procedure uses only m.e.'s with lowest quanta: in particular, has no knowledge of the edge states

rms error based on all unconstrained H^{eff} m.e.'s (9-14)

result ~ 0.5 keV

Channel		Couplings (MeV)					$\langle M.E. \rangle_{RMS}$ (MeV)	$\langle \text{Resid.} \rangle_{RMS} \text{ (keV)}$	
	a_{LO}^S	a_{NLO}^S	$a_{NNLO}^{S,22}$	$a_{NNLO}^{S,40}$	$a_{N^{3}LO}^{S,42}$	$a_{N^{3}LO}^{S,60}$			
$^{1}S_{0} - {}^{1}S_{0}$	-32.851	-2.081E-1	-2.111E-3	-1.276E-3	-7.045E-6	-1.8891E-6		7.94	0.53
$^{3}S_{1} - ^{3}S_{1}$	-62.517	-1.399	-5.509E-2	-1.160E-2	-5.789E-4	-1.444E-4		11.97	2.71
		a_{NLO}^{SD}	$a_{NNLO}^{SD,22}$	$a_{NNLO}^{SD,04}$	$a_{N^{3}LO}^{SD,42}$	$a_{N^{3}LO}^{SD,24}$	$a_{N^{3}LO}^{SD,06}$		
$ ^{3}S_{1} - {}^{3}D_{1} $		2.200E-1	1.632E-2	2.656E-2	2.136E-4	3.041E-4	-1.504E-4	0.160	2.45
			a_{NNLO}^{D}		$a^D_{N^3LO}$				
$ ^{1}D_{2} - {}^{1}D_{2} $			-6.062E-3		-1.189E-4			0.027	1.21
$ ^{3}D_{1} - {}^{3}D_{1} $			-1.034E-2		-1.532E-4			0.051	2.27
$ ^{3}D_{2} - {}^{3}D_{2} $			-3.048E-2		-5.238E-4			0.141	1.20
$^{3}D_{3} - ^{3}D_{3}$			-9.632E-2		-4.355E-3			0.303	122^{\ddagger}
					$a_{N^3LO}^{SD}$				
$^{3}D_{3} - {}^{3}G_{3}$					3.529E-4			0.012	12.2^{\ddagger}
		a_{NLO}^P	a^P_{NNLO}		$a_{N^{3}LO}^{P,33}$	$a_{N^{3}LO}^{P,51}$			
$^{1}P_{1} - ^{1}P_{1}$		-8.594E-1	-7.112E-3		-6.822E-5	1.004E-5		0.694	0.11
$^{3}P_{0} - ^{3}P_{0}$		-1.641	-1.833E-2		-2.920E-4	-1.952E-4		1.283	2.26
$^{3}P_{1} - ^{3}P_{1}$		-1.892	-1.588E-2		-1.561E-4	-6.737E-6		1.526	0.08
$^{3}P_{2} - ^{3}P_{2}$		-4.513E-1	-1.257E-2		-5.803E-4	-1.421E-4		0.285	5.61
			a_{NNLO}^{PF}		$a_{N^{3}LO}^{PF,33}$	$a^{PF,15}_{N^3LO}$			
$^{3}P_{2} - ^{3}F_{2}$			-4.983E-3		1.729E-5	-5.166E-5		0.034	1.43
					$a_{N^3LO}^F$				
$ ^{1}F_{3} - {}^{1}F_{3} $					-3.135E-4			0.007	1.03
$ ^{3}F_{2} - {}^{3}F_{2} $					-8.537E-4			0.020	2.34
$ ^{3}F_{3} - {}^{3}F_{3} $					-2.647E-4			0.006	0.61
$3F_4 - {}^3F_4$					-5.169E-4			0.008	6.23

TABLE II: The effective interaction for LO through N³LO, with $\Lambda_P = 8$ and b=1.7f.[†]

[†] The appropriate LO, NLO, and NNLO interactions are obtained by truncating the table at the desired order. [‡] An N^4LO calculation in the ${}^3D_3 - {}^3D_3$ channel yields $a_{N^4LO}^{3D3,44}$ =-2.510E-4 MeV and $a_{N^4LO}^{3D3,62}$ = -7.550E-5 MeV, and reduces (Resid.)_{RMS} to 22.3 keV; and in the ${}^3D_3 - {}^3G_3$ channel yields $a_{N^4LO}^{DG,44}$ = -2.141E-5 MeV and $a_{N^4LO}^{DG,26}$ = 1.180E-5 MeV and reduces (Resid.)_{RMS} to 3.26 keV.

Various Properties of H^{eff}

- Convergence patterns similar to EFT
 - □ spin-aligned channels -- ${}^{3}S_{1}, {}^{3}P_{2}, {}^{3}D_{3}$ -- show slowest convergence
 - convergence within each channel highly regular: assume scattering in Q generates an effective local potential $V_0 e^{-r_{12}^2/a^2}$

 $a_{LO} \quad a_{NLO} \quad a_{NLO}^{22} \quad a_{NNLO}^{40} \quad a_{N^3LO}^{42} \quad a_{N^3LO}^{60}$ ${}^{1}S_{0} \quad \begin{cases} \text{predicted } 1:6.3E-3:6.7E-5:2.0E-5:3.0E-7:4.2E-8\\ \text{found} \quad 1:6.3E-3:6.4E-5:3.9E-5:2.1E-7:5.7E-8 \end{cases}$ ${}^{3}S_{1} \quad \begin{cases} \text{predicted } 1:2.2E-2:8.3E-4:2.5E-4:13.1E-6:1.9E-6\\ \text{found} \quad 1:2.2E-2:8.8E-4:1.9E-4:9.3E-6:2.3E-6 \end{cases}$

the predicted parameter governing expansion is

$$\left[\frac{a^2}{a^2+2b^2}\right]$$

 ${}^{1}S_{0}$ a ~ 0.39f V0 ~ -1.50 GeV ${}^{3}S_{1}$ a ~ 0.75f V0 ~ -0.42 GeV contrasting ranges

Consistent with ${}^{3}S_{1}$ coupling to ${}^{3}D_{1}$ to generate a more extended interaction, with corresponding enhancements due to favorable <E>

- Lepage plot: test whether contact-gradient expansion is systematic -that improvement is not a matter of additional parameters
 - errors at LO predicted to be linear in (n'+n); errors in NLO and NNLO predicted to be quadratic, cubic in (n',n)

Unconstrained m.e.s displayed; good convergence even for most exotic high (n',n) matrix elements of Heff; expected steepening with order

- Various spectral measures of representation of H^{eff} in ${}^{3}S_{1}$ - ${}^{3}D_{1}$
 - □ ground-state A=2 error -- 40 eV
 - □ spectral first moment accurate to 1.81 keV
 - rms average deviation in eigenvalue spacing 3.52 keV
 - eigenvalue overlaps > 99.99
- Physics: completely removed nearest-shell strong coupling of P,Q via T
 this instructs us to introduce large renormalizations of bare T,
 V, and VGV -- the cross-talk of propagating QV and QT
- Rapidly converging, systematic short-range expansion
 - reproduces all nonedge matrix elements to high accuracy
 - in our example, 78 otherwise poorly reproduced edge m.e.s are shown to be reproduced by the same set of strong parameters, but only if the analytic dependence on long-range physics encoded in K is included
 - this dependence on $\kappa = \sqrt{2|E|/\hbar\omega}$ exists for an isolated state: has nothing to do with BH or other state-dependence

- For HOBET this demonstrates that the needed expansion exist
 - a necessary condition if one hopes to fix the strong coefficients directly from data (an issue also connected to $|\tilde{\alpha}\rangle$), to avoid introducing a potential to take one from QCD to the HO scale
- But the results also important for potential-based approaches like the SM, HOBETp
 - the state-dependence handled through numerical techniques like Lee-Suzuki or in the BH equation
 - the possibility of porting SM techniques into HOBETp, to make those techniques more powerful
- Plane-wave limit (e.g., V_{low-k}): $b \to \infty$, $\Lambda_P \to \infty$, Λ_P/b fixed (thus $\kappa \to \infty$)

State-dependence and K

- The BH equation is traditionally solved numerically: self-consistency generates state-dependence in H^{eff}(E) that is essential for a proper ET.
- Alternatively, SM approaches often employ a transformation due to Lee and Suzuki to removed energy-dependence
 - Hermitian, energy-independent: this violates the basic rule of an ET that the P-space wave functions are restrictions
 - NonHermitian, energy-dependent: this can be done
- Will argue that these techniques -- nontrivial numerically -- are obscuring the fact that the state dependence is the long-range problem addressed analytically here

Reorganized BH equation identifies four sources of state dependence

• The rescattering of QT to all orders (quite sensitive to |E|)

$$\langle \alpha | T \frac{1}{E - QT} QT | \beta \rangle \stackrel{\text{new "bare"}}{\longrightarrow} \langle \alpha | T | \tilde{\beta}(\kappa) \rangle$$

• The effects of QT to all orders on matrix elements linear in V

$$\langle \alpha | \frac{E}{E - TQ} V \frac{E}{E - QT} | \beta \rangle \xrightarrow{\text{new "bare"}} \langle \tilde{\alpha}(\kappa) | T | \tilde{\beta}(\kappa) \rangle$$

• The matrix elements of the short-range operators

$$\langle \alpha | \frac{E}{E - TQ} \bar{O} \frac{E}{E - QT} | \beta \rangle \longrightarrow \langle \tilde{\alpha}(\kappa) | \bar{O} | \tilde{\beta}(\kappa) \rangle$$

• The implicit energy dependence embedded in the strong operators

$$\bar{O} \equiv V \frac{E}{E - QH} QV \to \bar{O}(E)$$

All but the last have been isolated analytically: sizes?

Large shifts ~ 2 Tw over 20 MeV

Binding energy of 20 MeV still far from asymptotic

Effects isolated in doubleedge matrix elements

Effects of QT to all orders on matrix elements linear in V:

Shifts of typically 2-3 MeV over 20 MeV

All edge-state matrix elements altered

Effects of QT to all orders on matrix elements of \overline{O} :

Factor-of-two renormalization of strong m.e.s over 20 MeV

Illustrated for double-edge s-wave matrix elements -single-edge m.e. changes would be 50% as large

The implicit dependence in $\overline{O}(E)$

I-5% effects

Correlates perfectly with convergence properties: slower convergence ⇒ larger implicit E-dependence

Higher order \Rightarrow larger spatial scale \Rightarrow lower E scale \Rightarrow stronger E dependence

Dependence linear

One concludes that 3S-3D channel is by far the most affected -- largest O, slower convergence

We can fold these effects together to examine impact on 3S-3D channel

Term	Parameter	1st Moment Shift (MeV)	RMS Level Variation (MeV)	Wave Function Overlaps
$\langle \alpha T \widetilde{\beta} \rangle$	κ	2.554	1.107	95.75-99.74%
$\langle \widetilde{\alpha} V \widetilde{\beta} \rangle$	κ	0.272	0.901	99.35- $99.82%$
$\langle \widetilde{lpha} \overline{O} \widetilde{eta} angle$	κ	-0.239	0.957	$99.51 extrm{-}99.99\%$
$\langle \alpha \bar{O}(E) \beta \rangle$	implicit	0.135	0.107	$99.95 ext{-} 100\%$

TABLE III: Spectral property variations in $H^{eff}(E)$ over 10 MeV

- By our various spectral measures, 95% of the energy dependence in the 3S-3D channel is explicit, isolated in κ
 - ignoring implicit dependence induces ~100 keV drift over 20 MeV

• If one reaches a numerical accuracy where corrections are desired,

$$V\frac{1}{E-QH}QV \sim V\frac{1}{E_0 - QH}QV + V\frac{1}{E_0 - QH}(E_0 - E)\frac{1}{E_0 - QH}QV + \dots$$

$$\sim \bar{O}(E_0) + (E_0 - E)\bar{O}'(E_0)$$

Remarkably simple result: The long-range physics imbedded in κ that is needed in constructing a systematic expansion for the HOBET H^{eff} in the case of an isolated state, operationally also defines the state dependence

Not at all surprising: QT is the only source of strong nearest-shell coupling of P and Q

Short-range physics in Q corresponds to large excitation scales, thus making binding energy differences largely irrelevant

Scales and Calculations

~ 400 MeV

 $V_{
m hard}$ core

Very difficult problem numerically if one's numerical machinery has to bridge all of these scales

The long-distance behavior is a function of |E| clearly: shortcomings in one's SM capabilities will become increasingly apparent for small binding energy

HO scale b normally has to be tuned to nuclear size -- no other way to capture the spatial extent -- despite the relatively short range of the potential

$1/m_{\pi} \sim 1.4 { m f}$	$1/\sqrt{ E M} \sim$	2 - 6.5 f
	GFMC	I.d. variational input
	S.M.	

Could one thus absorb the strong physics into P as well, if Λ is sufficient?

bare HOBET, tuned b, but asymptotically correct extended states

- That is, we have a result in bare-order: this is the HOBET analog of usual potential theory
- HOBETp defines $P|\Psi\rangle$ as the restriction of the true wave function to the chosen HO basis. What is $\frac{E}{E-QT}P|\Psi\rangle \equiv |\Psi'\rangle$?
 - □ it is a solution of a S.E. with the full T, and exact eigenvalue E

$$\left[T + P\frac{E}{E - QT}(V + \bar{O})\right] |\Psi'\rangle = E|\Psi'\rangle$$

 \square to the extent that we tune b and A to make effective contributions very small, by calculating the norm of $~P|\Psi\rangle~$ find

$$|\Psi'\rangle \rightarrow |\Psi\rangle \text{ as } \bar{O}(b,\Lambda_P) \rightarrow 0$$

the full, normalized wf of HOBETp in bare limit

Summary

- Demonstrated that a systematic expansion exists for the HOBET H^{eff} consisting of a set of short-range coefficients augmented by κ, a variable that links a ET parameter b with an observable |E|
- This expansion, through K, also isolates simply the state-dependence that is important to proper ET behavior -- $P|\Psi\rangle$
- The summing of QT to all orders introduces extended states with proper asymptotic behavior, which mix with compact HO states ⇒ focus machinery of direct diagonalization on the scales relevant to the internucleon potential, rather than the nuclear size
 - The next HW problem for HOBETp is to repeat the bare deuteron calculation for other light nuclei
- Our extended states include the continuum (E>0) : our next HOBET HW problem is scattering via the free-T equation, fitting the strong coefficients of H^{eff} directly to experiment, eliminating the potential