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•  The form of Heff:  short-range expansion/long-range summation

•  N3LO results for two-body interaction: running with Λ, Lepage plot 

•  State-dependence and κ:  implications for Lee-Suzuki, etc.

•  Scales and long-wavelength/short-wavelength factorization:
   implications for numerical strategies with potentials or in ET



•  Much of the work on HOBET done in collaboration with
                 
                       Chang-Liang Song
                        Tom Luu

•  More complete summary of most of this talk available at

                       arXiv: 0710:0289
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HOBETp
numerical Heff

HOBET
Heff(aLO,aNLO,...)

Physical information encoded 
in a potential, effectively an 

intermediate effective theory

Bound state, continuum
observables used directly 

BH solution 
from, e.g., av18

ET parameters 
fit directly

this interplay potentially quite useful:

•  HOBETp can be used to determine the features of the systematic
   expansion that will be needed in HOBET (our main topic)
 
•  But the insight HOBET provides can also be helpful in potential-based
   approaches -- simple analytic representation for Heff



•  Low-energy P-space defined by a set of HO states with quanta
   

•  Hamiltonian a sum of relative KE and potential
 

•  HOBETp’s Heff defined by energy-dependent Bloch-Horowitz equation

•  Solved self consistently.  E is the exact eigenvalue and          the
   restriction of the exact wave function to P:   nontrivial normalization,
   non-orthogonality

    Overview of Approach

≤ ΛP h̄ω

H =
1

2

A∑

i,j=1

(Tij + Vij)

Heff
= P

[
H + H

1

E − QH
QH

]
P

H
eff |ΨP 〉 = E|ΨP 〉 |ΨP 〉 = P |Ψ〉

|ΨP 〉

P = P (b, ΛP )



•  P is thus separable:  Heff, like H, is translationally invariant

•  Solutions independent of b, ΛP if the ET is executed properly -- though
   efficiency may be influence by this choice

•  Wave function evolves simply with increments  ΛP→ΛP+2: new 

   components added to existing, norm increases, eventually → 1

•  HOBET’s Heff defined by a systematic expansion that encodes in P
   the physics residing in Q, with parameters fit to bound and continuum
   data

•  Effective operators are in HOBET/HOBETp done in analogy with Heff, 
   taking into account both operator corrections and wf normalization
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Basic attributes:

•  Slow convergence of shell-by-
   shell expansions -- “SM” missing
   a great deal of physics
•  Attractive evolution of wf
•  <Heff> hypersensitive to 
   choice of P

•  3He
•  av18 potential
   (~hard core)
•  numerical BH 
   solution



!"#

$%&' !()* + %,, '--'./01'

$%&' !)*

$%&' 2*

$%&' 3*

$%&' (*

$%&' 4*

4

5

!)
67

4

5

!)
64

4

5

!)
6!

4

5

!)
)

89
:
!
;<
=8

$%&' 5)* + %,, '--'./01'

$%&' !)*

$%&' 2*

$%&' 3*

$%&' (*

$%&' 4*

) ! 4 7 ( 5 3

< ;-
6!
=

!)
67

4

5

!)
64

4

5

!)
6!

4

5

!)
)

89
:
!
;<
=8

All observables are 
independent of the 

parameters one picks to 
describe the
 low-energy

included space



•  Usual goal in an ET is to describe the low-lying excitations in P
   
•  The HOBET Heff is more ambitious: a spectral quantity where
 
       Q contains both missing short- and long-range physics, unlike EFTs:
         can be viewed as an expansion around q ~1/b.  What is the
         systematic expansion for such a case?

       The relative importance of the missing long- and short-range
         physics is governed by the binding energy E:  one has a finely
         tuned parameter that can produce an extended state as → 0
         (balance between T,  V minimization delicate)

       P and Q are strongly coupled by T via nearest-shell interactions --
         T is a ladder operator in the HO.   Worst possible case for an ET 

•  Lovely resolution, which we learned about the hard way ... 

 Task #1: Identifying a Systematic Expansion for HOBET’s Heff



•  Initial attempt mimicked EFT approaches        (WH + Luu, NP A690 (2001) 5247)

 
       Discrete renormalization group: shell-by-shell integration

       Started with a LO contact operator at some high scale Λ, integrated
         progressively to reach ΛP, the “SM” scale

       LO was schemed independent; beyond LO introduced scheme
         dependent counterterms to make shell-by-shell evolution exact
         
•  But results were troubling:  the coefficients aLO, aNLO, etc., did not 
   evolve naturally.  The short-range expansion used was not systematically
   correcting the low-energy results 

       Tom’s thesis: dissecting this problem, identifying the right expansion

       Led to other results on making NP perturbative -- will not discuss

What is the expansion implicit in the BH “data”? 
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TABLE I: Contact-gradient expansion for relative-coordinate two-particle matrix elements. Here
→

D2
M= (

→
∇ ⊗ →

∇)2M ,
→
D0

0=

[(σ(1)⊗σ(2))2⊗D2]00,
→

F 3
M= (

→
∇ ⊗

→
D2)3M ,

→
F 1

M= [(σ(1)⊗σ(2))2⊗F 3]1M ,
→

G4
M= (

→
D2 ⊗

→
D2)4M ,

→
G2

M= [(σ(1)⊗σ(2))2⊗G4]2M ,

and the scalar product of tensor operators is defined as AJ · BJ =
∑M=J

M=−J
(−1)MAJ

MBJ
−M .

Transitions LO NLO NNLO N3LO

3S1 ↔ 3S1 a3S1
LO δ(r) a3S1

NLO(
←
∇2 δ(r) + δ(r)

→
∇2) a3S1,22

NNLO

←
∇2 δ(r)

→
∇2 a3S1,42

N3LO
(
←
∇4 δ(r)

→
∇2 +

←
∇2 δ(r)

→
∇4)

or 1S0 ↔ 1S0 a3S1,40
NNLO(

←
∇4 δ(r) + δ(r)

→
∇4) a3S1,60

N3LO
(
←
∇6 δ(r) + δ(r)

→
∇6)

3S1 ↔ 3D1 aSD
NLO(δ(r)

→
D0 +

←
D0 δ(r)) aSD,22

NNLO(
←
∇2 δ(r)

→
D0 +

←
D0 δ(r)

→
∇2) aSD,42

N3LO
(
←
∇4 δ(r)

→
D0 +

←
D0 δ(r)

→
∇4)

aSD,04
NNLO(δ(r)

→
∇2
→
D0 +

←
D0
←
∇2 δ(r)) aSD,24

N3LO
(
←
∇2 δ(r)

→
∇2
→
D0 +

←
D0
←
∇2 δ(r)

→
∇2)

aSD,06
N3LO

(δ(r)
→
∇4
→
D0 +

←
D0
←
∇4 δ(r))

1D2 ↔ 1D2 a1D2
NNLO

←
D2 ·δ(r)

→
D2 a1D2

N3LO
(
←
D2
←
∇2 ·δ(r)

→
D2 +

←
D2 ·δ(r)

→
∇2
→
D2)

or 3DJ ↔ 3DJ

3D3 ↔ 3G3 aDG
N3LO

(
←
D2 ·δ(r)

→
G2 +

←
G2 ·δ(r)

→
D2)

1P1 ↔ 1P1 a1P1
NLO

←
∇ ·δ(r)

→
∇ a1P1

NNLO(
←
∇
←
∇2 ·δ(r)

→
∇ +

←
∇ ·δ(r)

→
∇2
→
∇) a1P1,33

N3LO

←
∇
←
∇2 ·δ(r)

→
∇2
→
∇

or 3PJ ↔ 3PJ a1P1,51
N3LO

(
←
∇
←
∇4 ·δ(r)

→
∇ +

←
∇ ·δ(r)

→
∇4
→
∇)

3P2 ↔ 3F2 aPF
NNLO(

←
∇ ·δ(r)

→
F 1 +

←
F 1 ·δ(r)

→
∇) aPF,33

N3LO
(
←
∇
←
∇2 ·δ(r)

→
F 1 +

←
F 1 ·δ(r)

→
∇2
→
∇)

aPF,15
N3LO

(
←
∇ ·δ(r)

→
∇2
→
F 1 +

←
F 1
←
∇2 ·δ(r)

→
∇)

1F3 ↔ 1F3 a1F3
N3LO

←
F 3 ·δ(r)

→
F 3

or 3FJ ↔ 3FJ

〈α|∆(Λ)|β〉 carrying the fewest HO quanta. Thus, in LO, a3S1
LO (Λ) would be determined from the (n′, n) = (1, 1)

matrix element. The remaining 14 P -space matrix elements are then predicted, not fit; in NNLO four coefficients
would be determined from the (1,1), (1,2), (1,3), and (2,2) matrix elements, and eleven predicted. Figures 3b-d
show the residuals – the differences between the predicted and calculated matrix elements. For successive LO, NLO,
and NNLO calculations, the scale at which residuals in ∆ are significant, say greater than 10 keV, is brought down
successively, e.g., from an initial ∼ 100h̄ω, to ∼ 60h̄ω (LO), to ∼ 30h̄ω (NLO), and finally to ∼ 20h̄ω (NNLO),
except for matrix elements involving edge states. There the improvement is not significant, with noticeable deviations
remaining at ∼ 100h̄ω even at NNLO. This irregularity indicates a flaw in the underlying physics of this approach
– specifically the use of a short-range expansion for Heff when important contributions to Heff are coming from
long-range interactions in Q. So this must be fixed.

A. The contact-gradient expansion for HOBET

−→∇ denotes the gradient with respect to the dimensionless coordinate $r = $̇r1/b ≡ ($r1 − $r2)/b
√

2. The coefficients
aLO, aNLO, ... in Table I then carry the dimensions of MeV.

The contact-gradient expansion defined in Table I is that commonly used in plane-wave bases, where one expands
around $k = 0 with

−→∇2
exp i$k · $r

∣∣∣
!k=0

= 0. (10)

HOBET begins with a lowest-energy 1s Gaussian wave packet with a characteristic momentum ∼ 1/b. An analogous
definition of gradients such that

−→∇2
ψ1s(b) = 0 (11)

is obtained by redefining each operator appearing in Table I by

O → Ō ≡ er2/2Oer2/2. (12)

The gradients appearing in the operators of Table I then act on polynomials in r. This leads to two attractive
properties. First is the removal of operator mixing. Once a3S1

LO is fixed in LO to the (n′, n) = (1, 1) matrix element,

This is the kind of short-range expansion -- the candidate HOBET Heff -- we tried:
most general nonlocal contact-gradient potential consistent with P, T, hermiticity, etc.
                                         aLO = aLO(b,ΛP), etc
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Define 

∆(Λ) ≡ Heff
− Heff (Λ) = H

1

E − QH
QH − H

1

E − QΛH
QΛH

Λ→ΛP

→ Heff

QΛ ≡
Λ∑

α=ΛP +1

|α〉〈α| with QΛP
≡ 0

•  Q contribution 
   above scale Λ 
 
•  b = 1.7 f, av18,
   deuteron, ΛP=8

•  10 MeV is roughly
   the scale of Q’s
   contribution at
   ΛP=8
 

8 140Λ
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Repeated our troubled HOBET effort, dissecting the results at the 
individual matrix element level in HOBETp, to see why the wheels feel off:

Dashed “edge states,” those 
nearest-shell m.e.’s in

P that couple to Q by T

8 140Λ
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Marginal improvement,
N3LO worse than NLO

One measure of m.e. quality:



Formulating HOBET

•  HOBET -- and any confined basis -- excludes low- and high-momentum 
   excitations: tension between T(E) and Vhard:   sum QT to all orders

Heff
=

E

E − TQ

[
T − T

Q

E
T + V + V

1

E − QH
QV

]
E

E − QT

•  This redefines bare V,  bare T, and rescattering contributions as:

bare T : 〈α|T
E

E − QT
|β〉 = 〈α|

E

E − TQ
T |β〉

nonedge
−→ 〈α|T |β〉

bare V : 〈α|
E

E − QT
V

E

E − TQ
|β〉

nonedge
−→ 〈α|V |β〉

•  Effectively absorbs into a new P’ the “soft” physics residing in Q that
   governs the asymptotic behavior of w.f.  -- new orthogonal space

〈α|
E

E − TQ
V

1

E − QH
QV

E

E − QT
|β〉

nonedge
−→ 〈α|V

1

E − QH
QV |β〉



EFT !∇2ei!k·!r
∣
∣
!k=0

= 0 ⇒ HOBET !∇2ψ1s(b) = 0

contact − gradient operators O → Ō ≡ e
r2/2

Oe
r2/2

expansion nodal q.n.s : !∇2
∼ −4(n − 1), !∇4

∼ 16(n − 1)(n − 2)

 

no op. mixing : e.g., aLO ↔ 1s − 1s, remains fixed, higher order

a′s ∼

∫
∞

0

∫
∞

0

e−r
2

1

[
rn

′

1 V (r1, r2)r
n

2

]
e−r

2

2r2

1r
2

2dr1dr2

•  Define gradients as an expansion around r0 ~1/b
 
       

       

      

       

        
         

•  Identify contact-gradient expansion with the short-range term

E

E − TQ
V

1

E − QH
QV

E

E − QT

HOBET
−→

E

E − TQ
Ō

E

E − QT



•  Summation over QT involves single parameter, 
 
       Long-wavelength corrections severe as  κ→0:  limit of small binding
         (halo nucleus) or small b.  But significant in all cases. 

       Remarkable that these effects are encoded in a single parameter κ
       Summation non-perturbative in both QT and V -- strong potential
         consequences contained in |E| (correct asymptotic correlations)
         
•                                from free Green’s function or via HO expansion

                                                                     (Jacobi basis, HO Fourier)

                                                             (continued fractions exploiting
                                                                 HO ladder properties ⇒
                                                                 hyperspherical basis)

κ =
√

2|E|/h̄ω

|α̃〉 =
E

E − QT
|α〉

(E − T )|α̃〉 =

[
P

1

E − T
P

]
−1

|α〉

|ñl̃〉 =
∞∑

i=0

g̃i(−κ2;n, l)|n + i l〉
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QT-summed transformation of an s-wave edge state (ΛP=10):
renormalized at r=0 to show short-range behavior unchanged
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QT 
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∆QT (Λ) =
E

E − TQ

[
V

1

E − QH
QV − V

1

E − QΛH
QΛV

]
E

E − QT

Λ8 140
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all unconstrained 
Heff  m.e.’s (9-14)

result ~ 0.5 keV
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TABLE II: The effective interaction for LO through N3LO, with ΛP = 8 and b=1.7f.†

Channel Couplings (MeV) 〈M.E.〉RMS (MeV) 〈Resid.〉RMS (keV)

aS
LO aS

NLO aS,22
NNLO aS,40

NNLO aS,42
N3LO

aS,60
N3LO

1S0 − 1S0 -32.851 -2.081E-1 -2.111E-3 -1.276E-3 -7.045E-6 -1.8891E-6 7.94 0.53
3S1 − 3S1 -62.517 -1.399 -5.509E-2 -1.160E-2 -5.789E-4 -1.444E-4 11.97 2.71

aSD
NLO aSD,22

NNLO aSD,04
NNLO aSD,42

N3LO
aSD,24

N3LO
aSD,06

N3LO
3S1 − 3D1 2.200E-1 1.632E-2 2.656E-2 2.136E-4 3.041E-4 -1.504E-4 0.160 2.45

aD
NNLO aD

N3LO
1D2 − 1D2 -6.062E-3 -1.189E-4 0.027 1.21
3D1 − 3D1 -1.034E-2 -1.532E-4 0.051 2.27
3D2 − 3D2 -3.048E-2 -5.238E-4 0.141 1.20
3D3 − 3D3 -9.632E-2 -4.355E-3 0.303 122‡

aSD
N3LO

3D3 − 3G3 3.529E-4 0.012 12.2‡

aP
NLO aP

NNLO aP,33
N3LO

aP,51
N3LO

1P1 − 1P1 -8.594E-1 -7.112E-3 -6.822E-5 1.004E-5 0.694 0.11
3P0 − 3P0 -1.641 -1.833E-2 -2.920E-4 -1.952E-4 1.283 2.26
3P1 − 3P1 -1.892 -1.588E-2 -1.561E-4 -6.737E-6 1.526 0.08
3P2 − 3P2 -4.513E-1 -1.257E-2 -5.803E-4 -1.421E-4 0.285 5.61

aPF
NNLO aPF,33

N3LO
aPF,15

N3LO
3P2 − 3F2 -4.983E-3 1.729E-5 -5.166E-5 0.034 1.43

aF
N3LO

1F3 − 1F3 -3.135E-4 0.007 1.03
3F2 − 3F2 -8.537E-4 0.020 2.34
3F3 − 3F3 -2.647E-4 0.006 0.61
3F4 − 3F4 -5.169E-4 0.008 6.23

† The appropriate LO, NLO, and NNLO interactions are obtained by truncating the table at the desired order.
‡ An N4LO calculation in the 3D3 − 3D3 channel yields a3D3,44

N4LO
=-2.510E-4 MeV and a3D3,62

N4LO
= -7.550E-5 MeV, and reduces

〈Resid.〉RMS to 22.3 keV; and in the 3D3 − 3G3 channel yields aDG,44
N4LO

= -2.141E-5 MeV and aDG,26
N4LO

= 1.180E-5 MeV and
reduces 〈Resid.〉RMS to 3.26 keV.

fashion: one can reliably predict the size of the next omitted term. The convergence appears related to an
effective range characterizing scattering in Q.

• The convergence varies from channel to channel, but this variation reflects underlying physics, such as role of
the tensor force, governing the channel’s range. One does not find, nor perhaps should one expect to find, some
single parameter p/Λ to characterize convergence independent of channel.

• The convergence is very satisfactory in all channels: the measure used in Table II, 〈Resid.〉RMS , is an exceedingly
conservative one, as discussed below. But even by by this standard, in only one channel (3D3−3D3) do the RMS
residual discrepancies among unconstrained matrix elements exceed ∼ 10 keV. Given the arguments above, it
is perfectly sensible to work to order NNLO in rapidly-converging channels like 1S0 − 1S0 and N4LO in slowly
converging channels like 3D3 − 3D3. As noted in the table, at N4LO the residual in the 3D3 − 3D3 channel is
reduced to 22 keV.

Convergence and the “Lepage” plot: The procedure often followed in an effective theory is to use information about
the low-lying excitations to parameterize an effective Hamiltonian, which is then used to predict properties of other
states near the ground state. In contrast, the goal here has been to characterize the entire effective interaction to high
accuracy. As we describe below, the residual errors in our procedure are typically dominated by matrix elements with
the largest n and n′, corresponding to minor components in the deuteron ground state, for example. The difference
in the deuteron binding energy from calculations using exact matrix elements of Heff versus our N3LO expansion is
quite small (40 eV).



 Various Properties of Heff

•  Convergence patterns similar to EFT

  spin-aligned channels -- 3S1,3P2,3D3 -- show slowest convergence

      convergence within each channel highly regular: assume scattering
        in Q generates an effective local potential  

   

      the predicted parameter governing expansion is

V0e
−r2

12
/a2

predicted 1 : 6.3E − 3 : 6.7E − 5 : 2.0E − 5 : 3.0E − 7 : 4.2E − 8

found 1 : 6.3E − 3 : 6.4E − 5 : 3.9E − 5 : 2.1E − 7 : 5.7E − 8

predicted 1 : 2.2E − 2 : 8.3E − 4 : 2.5E − 4 : 13.1E − 6 : 1.9E − 6

found 1 : 2.2E − 2 : 8.8E − 4 : 1.9E − 4 : 9.3E − 6 : 2.3E − 6

{

{

1S0

3S1

aLO aNLO a
22
NNLO a

40
NNLO a

42

N3LO a
60

N3LO

[
a2

a2 + 2b2

]
1S0
3S1

a ~ 0.39f       V0 ~ -1.50 GeV
a ~ 0.75f       V0 ~ -0.42 GeV

contrasting ranges
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FIG. 19: The left panel shows the radial dependence of the av18 potential in the 1S0 − 1S0,
3S1 − 3S1, and 3S1 − 3D1 (tensor)

channels. The last is clearly more extended. The right panel is a “Lepage plot” displaying fractional errors as a function of the
order of the calculation, on log scales. The steepening of the slope with order is the sign of a well behaved, converging effective
theory.

1 suggests factor-of-two changes in the Q-space contribution to the deuteron binding energy can result from ∼ 20%
changes in b. At the outset, the dependence on |E| and b seems like a difficulty for nuclear physics, as modest changes
in these parameters alter predictions.

One of the marvelous properties of the HO is that the QT sum can be done. The two effects discussed above turn
out to be governed by a single parameter, κ. The associated effects are nonperturbative in both QT and QV . In the
case of QT this is explicit – we sum this interaction to all orders. But it is important to recognize that these effects
are also implicitly nonperturbative in QV , because of the dependence on |E|. This is why the BH approach is so
powerful: because |E| is determined self-consistently, it is trivial to incorporate this physics directly into the iterative
process (which has been shown to converge very rapidly in the HOBET test cases we have explored, A=2 and 3).
When this is done, one finds that κ affects results in three ways:

• the rescattering of QT to all orders, T (E−QT )−1QT , is absorbed into a new “bare” matrix element 〈α|T |β̃(κ)〉;
• the new “bare” matrix element 〈α̃(κ)|V |β̃(κ)〉 captures the effects of QT in all orders on the contribution

first-order in V ; and

• the matrix elements of the short-range operators Ō, which contain all the multiple scattering of QV , are similarly
modified, 〈α̃(κ)|Ō|β̃(κ)〉.

So far the discussion has focused on the problem of a single bound state of fixed binding energy |E|, the deuteron
ground state. No discussion has occurred of expectations for problems in which multiple bound states, each with a
different Heff (|E|), might arise. But 1) we have pointed out that the dependence of Heff (|E|) on κ arises already
in the single-state case, which was not a priori obvious; and 2) we know state dependence (energy dependence in the
case of BH) must arise in the case of multiple states, as this is the source of the required nonorthogonality of states
when restricted to P , a requirement for a proper effective theory. So a question clearly arises about the connection
between the explicit κ dependence we found for fixed |E|, and the additional energy dependence that might occur for
a spectrum of states.

Because other techniques, like Lee-Suzuki, have been used to address problem 2), it is appropriate to first stress the
relationship between κ and the strong interaction parameters provided in Table II. Our choice ΛP =8 is helpful, as
it shows there is no relation. Every short-range coefficient arising through order N3LO was determine from nonedge
matrix elements: our fitting procedure matches the coefficients to the set of matrix elements with n′ + n ≤ 5, and
there are no edge states satisfying this constraint. Nothing in our treatment of the strong interaction “knows” about
edge states. This then makes clear how efficiently κ captures the remaining missing physics. Without κ one would

Consistent with 3S1 coupling to 3D1 to generate a more extended 
interaction, with corresponding enhancements due to favorable <E>

〈VSD〉
1

〈E〉
〈VDS〉



•  Lepage plot:  test whether contact-gradient expansion is systematic -- 
   that improvement is not a matter of additional parameters

  errors at LO predicted to be linear in (n’+n); errors in NLO and
         NNLO predicted to be quadratic, cubic in (n’,n)
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FIG. 19: The left panel shows the radial dependence of the av18 potential in the 1S0 − 1S0,
3S1 − 3S1, and 3S1 − 3D1 (tensor)

channels. The last is clearly more extended. The right panel is a “Lepage plot” displaying fractional errors as a function of the
order of the calculation, on log scales. The steepening of the slope with order is the sign of a well behaved, converging effective
theory.

1 suggests factor-of-two changes in the Q-space contribution to the deuteron binding energy can result from ∼ 20%
changes in b. At the outset, the dependence on |E| and b seems like a difficulty for nuclear physics, as modest changes
in these parameters alter predictions.

One of the marvelous properties of the HO is that the QT sum can be done. The two effects discussed above turn
out to be governed by a single parameter, κ. The associated effects are nonperturbative in both QT and QV . In the
case of QT this is explicit – we sum this interaction to all orders. But it is important to recognize that these effects
are also implicitly nonperturbative in QV , because of the dependence on |E|. This is why the BH approach is so
powerful: because |E| is determined self-consistently, it is trivial to incorporate this physics directly into the iterative
process (which has been shown to converge very rapidly in the HOBET test cases we have explored, A=2 and 3).
When this is done, one finds that κ affects results in three ways:

• the rescattering of QT to all orders, T (E−QT )−1QT , is absorbed into a new “bare” matrix element 〈α|T |β̃(κ)〉;
• the new “bare” matrix element 〈α̃(κ)|V |β̃(κ)〉 captures the effects of QT in all orders on the contribution

first-order in V ; and

• the matrix elements of the short-range operators Ō, which contain all the multiple scattering of QV , are similarly
modified, 〈α̃(κ)|Ō|β̃(κ)〉.

So far the discussion has focused on the problem of a single bound state of fixed binding energy |E|, the deuteron
ground state. No discussion has occurred of expectations for problems in which multiple bound states, each with a
different Heff (|E|), might arise. But 1) we have pointed out that the dependence of Heff (|E|) on κ arises already
in the single-state case, which was not a priori obvious; and 2) we know state dependence (energy dependence in the
case of BH) must arise in the case of multiple states, as this is the source of the required nonorthogonality of states
when restricted to P , a requirement for a proper effective theory. So a question clearly arises about the connection
between the explicit κ dependence we found for fixed |E|, and the additional energy dependence that might occur for
a spectrum of states.

Because other techniques, like Lee-Suzuki, have been used to address problem 2), it is appropriate to first stress the
relationship between κ and the strong interaction parameters provided in Table II. Our choice ΛP =8 is helpful, as
it shows there is no relation. Every short-range coefficient arising through order N3LO was determine from nonedge
matrix elements: our fitting procedure matches the coefficients to the set of matrix elements with n′ + n ≤ 5, and
there are no edge states satisfying this constraint. Nothing in our treatment of the strong interaction “knows” about
edge states. This then makes clear how efficiently κ captures the remaining missing physics. Without κ one would

Unconstrained m.e.s displayed;
good convergence even for
most exotic high (n’,n) matrix
elements of Heff;
expected steepening with order



•  Various spectral measures of representation of Heff in 3S1-
3D1 

  ground-state A=2 error -- 40 eV
  spectral first moment accurate to 1.81 keV

      rms average deviation in eigenvalue spacing 3.52 keV
  eigenvalue overlaps > 99.99

•  Physics: completely removed nearest-shell strong coupling of P,Q via T 
  this instructs us to introduce large renormalizations of bare T,

         V, and VGV -- the cross-talk of propagating QV and QT

•  Rapidly converging, systematic short-range expansion 
  reproduces all nonedge matrix elements to high accuracy
  in our example, 78 otherwise poorly reproduced edge m.e.s

        are shown to be reproduced by the same set of strong parameters,
        but only if the analytic dependence on long-range physics encoded
        in κ is included

  this dependence on                          exists for an isolated state:
        has nothing to do with BH or other state-dependence 

κ =
√

2|E|/h̄ω



•  For HOBET this demonstrates that the needed expansion exist

 a necessary condition if one hopes to fix the strong coefficients
         directly from data (an issue also connected to     ), to avoid
         introducing a potential to take one from QCD to the HO scale  

•  But the results also important for potential-based approaches like
   the SM, HOBETp 
 

  the state-dependence handled through numerical techniques
        like Lee-Suzuki or in the BH equation

  the possibility of porting SM techniques into HOBETp, to make
        those techniques more powerful

•  Plane-wave limit (e.g., Vlow-k):  b→∞, ΛP→∞  , ΛP/b fixed (thus κ→∞ )

|α̃〉



 State-dependence and κ
•  The BH equation is traditionally solved numerically: self-consistency
   generates state-dependence in Heff(E) that is essential for a proper ET.
   
•  Alternatively, SM approaches often employ a transformation due to Lee
   and Suzuki to removed energy-dependence
 
       Hermitian, energy-independent: this violates the basic rule of an
         ET that the P-space wave functions are restrictions

       NonHermitian, energy-dependent: this can be done

•  Will argue that these techniques -- nontrivial numerically -- are
   obscuring the fact that the state dependence is the long-range
   problem addressed analytically here



 Reorganized BH equation identifies four sources of state dependence

•  The rescattering of QT to all orders (quite sensitive to |E|)

   

•  The effects of QT to all orders on matrix elements linear in V
 

•  The matrix elements of the short-range operators

•  The implicit energy dependence embedded in the strong operators

〈α|T
1

E − QT
QT |β〉

new “bare”
−→ 〈α|T |β̃(κ)〉

〈α|
E

E − TQ
V

E

E − QT
|β〉

new “bare”
−→ 〈α̃(κ)|T |β̃(κ)〉

〈α|
E

E − TQ
Ō

E

E − QT
|β〉

new “bare”
−→ 〈α̃(κ)|Ō|β̃(κ)〉

Ō ≡ V
E

E − QH
QV → Ō(E)

All but the last have been isolated analytically: sizes?
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 We can fold these effects together to examine impact on 3S-3D channel
33

TABLE III: Spectral property variations in Heff (E) over 10 MeV

Term Parameter 1st Moment Shift (MeV) RMS Level Variation (MeV) Wave Function Overlaps

〈α|T |β̃〉 κ 2.554 1.107 95.75-99.74%

〈α̃|V |β̃〉 κ 0.272 0.901 99.35-99.82%

〈α̃|Ō|β̃〉 κ -0.239 0.957 99.51-99.99%

〈α|Ō(E)|β〉 implicit 0.135 0.107 99.95-100%

associated with excitations. However, the effects are encoded into a subset of the matrix elements, so that the overall
scale of the κ dependence on spectral properties is, at this point, still not obvious.

This leaves us with one remaining term that, qualitatively, seems quite different,

V
1

E −QH
QV ↔ {aLO(|E|), aNLO(|E|), aNNLO(|E)|, aN3LO(|E|), ...}. (42)

Here the energy dependence is implicit, encoded in the parameters we have fitted to the lowest energy matrix elements
of Heff . The underlying potentials are dominated by strong, short-ranged potentials, much larger than nuclear binding
energies. Thus the implicit ratio governing this energy dependence – |E| vs. the strength of the hard-core potential –
is a small parameter. For this reason one anticipates that the resulting energy dependence might be gentler than in
the other cases we have explored

After repeating the fitting procedure over a range of energies, one obtains the results shown in Fig. 21. Because
the energy variation is quite small, results are provided only for the channels that contribute in low order, 1S0, 3S1,
1P1 and 3PJ . The variations with |E| are very nearly linear, well fit by the assumption (motivated by the form of
V 1/(E −QH)QV )

a(E) =
a(10MeV )
1 + α|E| ,

and are typically at the level of a few percent, over 20 MeV. The progression in the slopes within each channel, order
by order, correspond to expectation: the lowest order terms, which account for the hardest part of the scattering in
Q, have the weakest dependence on |E|. Comparisons between channels also reflect our expectations. In the earlier
discussion of naturalness, we noted the rapid convergence in the 1S0 channel, order by order, was consistent with very
short range interactions in Q. Accordingly, we find that a1S0

LO varies by just 0.72% over a 10 MeV interval, and a1S0
NLO

by 1.10%. We contrasted this channel with the 3S1 channel, where convergence in the contact-gradient expansion
is slower, consistent with somewhat longer range interactions in Q. For the 3S1 case one finds 2.64% variations in
aLO(3S1) and 5.17% variations in aNLO(3S1) per 10 MeV interval.

Are such variations of any numerical significance, compared to the explicit variations isolated in κ? That is, if one
were to determine a HOBET interaction directly from bound-state properties of light nuclei, would the neglect of
this implicit energy dependence lead to significant errors in binding energies? One can envision doing such a fit over
bound-state data spanning, say, 10 MeV, deducing average couplings aLO(|Ē|) by neglecting the energy dependence,
then finding the corrections associated with the calculated variations in those couplings with |E|. Specifically, we
look at the variations in the matrix elements to which these couplings were fit, as these low-n matrix elements will
dominate low-lying spectra. Examining each channel, we find only two where drifts ∆ in excess of 15 keV, over a 10
MeV interval, would be expected,

a1S0
LO : ∆ ∼ ±21 keV a3S1

LO : ∆ ∼ ±148 keV a3S1
NLO : ∆ ∼ ±32 keV

One concludes that the 3S1 channel is, by a large factor, the dominant source of implicit energy dependence in the
HOBET interaction.

This allows one to do a more quantitative calculation that focuses on the most difficult channel (3S1) and compares
the relative sizes of the κ-dependent and implicit energy dependences, as reflected in changes in the matrix Heff (|E|).
Thus this matrix is constructed at |E| = 10 MeV and at |E| ∼ 0 MeV (including the coupling to 3D1), and changes in
global quantities of that matrix over 10 MeV are examined: shifts in the first moment (the average eigenvalue) , the
RMS shifts of levels relative to the first moment (related to the stability of level splittings), and eigenvalue overlaps.
The four energy-dependent effects discussed here are separately turned on and off. Thus this exercise should provide
a good test of the relative importance of these effects. The results are shown in Table III.

Despite the selection of the worst channel, 3S1, the implicit energy dependence is small, intrinsically and in compar-
ison with the implicit energy dependence embedded in κ. The implicit dependence in the first moment – a quantity

•  By our various spectral measures, 95% of the energy dependence in
   the 3S-3D channel is explicit, isolated in κ 

  ignoring implicit dependence induces ~100 keV drift over 20 MeV 
  1S0 effects would be ~ 20 keV

•  If one reaches a numerical accuracy where corrections are desired,

V
1

E − QH
QV ∼ V

1

E0 − QH
QV + V

1

E0 − QH
(E0 − E)

1

E0 − QH
QV + ...

∼ Ō(E0) + (E0 − E)Ō′(E0)



Remarkably simple result:   The long-range physics imbedded in κ
that is needed in constructing a systematic expansion for the HOBET
Heff in the case of an isolated state, operationally also defines the
state dependence

Not at all surprising:  QT is the only source of strong nearest-shell
coupling of P and Q

Short-range physics in Q corresponds to large excitation scales, thus
making binding energy differences largely irrelevant  



 Scales and Calculations

HOBETp
numerical Heff

HOBET
Heff(aLO,aNLO,...)

Physical information encoded 
in a potential, effectively an 

intermediate effective theory

Bound state, continuum
observables used directly 



1/
√

|E|M ∼ 2 − 6.5f

~ 400 MeV

1/mπ ∼ 1.4f

V
h
a
r
d

c
o
r
e

Very difficult problem numerically if one’s 
numerical machinery has to bridge all of 

these scales

The long-distance behavior is a function of 
|E| clearly: shortcomings in one’s SM 

capabilities will become increasingly apparent 
for small binding energy

HO scale b normally has to be tuned to 
nuclear size -- no other way to capture the 
spatial extent -- despite the relatively short 

range of the potential

                                                   GFMC                                 l.d. variational input

                                                     S.M.                             



1/
√

|E|M ∼ 2 − 6.5f

~ 400 MeV

1/mπ ∼ 1.4f

V
h
a
r
d

c
o
r
e

HOBET’s summation of QT introduces into 
the problem extended states with the 

proper asymptotic behavior

It also contains a HO basis of resolution 
scale b, and spatial extent b √Λ

Propagates to all scales via S.E., because 
states of all scales are linked by Heff

suggests we tune...

b

b√Λ
E

E − QT
|α〉

Could one thus absorb the strong physics into P as well,
if Λ is sufficient?
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•  That is, we have a result in bare-order:  this is the HOBET analog
   of usual potential theory

•  HOBETp defines          as the restriction of the true wave function
   to the chosen HO basis.  What is                                   ?

  it is a solution of a S.E. with the full T, and exact eigenvalue E

  
      to the extent that we tune b and Λ to make effective contributions
        very small, by calculating the norm of           find     

   

      the predicted parameter governing expansion is

P |Ψ〉
E

E − QT
P |Ψ〉 ≡ |Ψ′〉

P |Ψ〉

|Ψ′〉 → |Ψ〉 as Ō(b, ΛP ) → 0

the full, normalized wf of HOBETp in bare limit

[
T + P

E

E − QT
(V + Ō)

]
|Ψ′〉 = E|Ψ′〉



 Summary

•  Demonstrated that a systematic expansion exists for the HOBET Heff

   consisting of a set of short-range coefficients augmented by κ, a
   variable that links a ET parameter b with an observable |E|
   
•  This expansion, through κ, also isolates simply the state-dependence that
   is important to proper ET behavior -- 
        
•  The summing of QT to all orders introduces extended states with
   proper asymptotic behavior, which mix with compact HO states ⇒
   focus machinery of direct diagonalization on the scales relevant to the
   internucleon potential, rather than the nuclear size
       The next HW problem for HOBETp is to repeat the bare
         deuteron calculation for other light nuclei

 •  Our extended states include the continuum (E>0) : our next HOBET
    HW problem is scattering via the free-T equation, fitting the strong
    coefficients of Heff directly to experiment, eliminating the potential

P |Ψ〉


