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SciDAC 2 Project: Building a UNEDF Goals

Understand nuclear properties “for element formation, for
properties of stars, and for present and future energy and
defense applications”

Scope is all nuclei (A > 12–16), with particular interest in
reliable calculations of unstable nuclei and in reactions

Order of magnitude improvement over present capabilities
=⇒ precision calculations

Connected to best microscopic physics

Maximum predictive power with well-quantified uncertainties

Building the EDF is the heart of the project

[website at http://unedf.org]

Dick Furnstahl DFT for Nuclei



Context Conditions DME Summary Appendix UNEDF Action OPM

Parallel Development Areas
1 Momentum-space Renormalization Group (RG) methods to

evolve chiral NN and NNN potentials to more perturbative
forms as inputs to nuclear matter and ab initio methods
(coupled cluster, NCSM).

2 Controlled nuclear matter calculations based on the
RG-improved interactions, as ab initio input to Skyrme EDF
benchmarking and microscopic functional.

3 Approximate DFT functional, initially by adapting density
matrix expansion (DME) to RG-improved interactions.

4 Adaptation to Skyrme codes and allowance for fine tuning.

Points of emphasis:
Systematic upgrade path with existing and developing
technology

Theoretical error bars on interaction (vary EFT Λ and order of
calculation) and on implementation (vary SRG λ or Vlow k Λ)

Dick Furnstahl DFT for Nuclei
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Microscopic Nuclear Structure Methods

Wave function methods (GFMC/AFMC, NCSM, CC, . . . )
many-body wave functions (in approximate form!)

Ψ(x1, · · · , xA) =⇒ everything (if operators known)

limited to A < 100 (??)

Green’s functions (see W. Dickhoff, Many-Body Theory Exposed)
response of ground state to removing/adding particles

single-particle Green’s function =⇒ expectation value
of one-body operators, Hamiltonian

energy, densities, single-particle excitations, . . .

DFT (see C. Fiolhais et al., A Primer in Density Functional Theory)
response of energy to perturbations of the density

energy functional =⇒ plug in candidate density, get out
trial energy, minimize (variational)

energy and densities (TDFT =⇒ excitations)

Dick Furnstahl DFT for Nuclei
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DFT and Effective Actions (cf. Negele and Orland)

External field⇐⇒ Magnetization

Helmholtz free energy F [H]
⇐⇒ Gibbs free energy Γ[M]

Legendre
transform

=⇒ Γ[M] = F [H] + H M

H =
∂Γ[M]

∂M
ground−−−−→
state

∂Γ[M]

∂M

∣∣∣∣
Mgs

= 0

Partition function with sources that adjust densities:

Z[J] = e−W [J] ∼ Tr e−β(bH+J bρ) =⇒ path integral for W [J]

Invert to find J[ρ] and Legendre transform from J to ρ:

ρ(x) =
δW [J]

δJ(x)
=⇒ Γ[ρ] = W [J]−

∫
J ρ and J(x) = − δΓ[ρ]

δρ(x)

=⇒ Γ[ρ] ∝ energy functional E [ρ], stationary at ρgs(x)!

Dick Furnstahl DFT for Nuclei



Context Conditions DME Summary Appendix UNEDF Action OPM

DFT and Effective Actions (cf. Negele and Orland)

External field⇐⇒ Magnetization

Helmholtz free energy F [H]
⇐⇒ Gibbs free energy Γ[M]

Legendre
transform

=⇒ Γ[M] = F [H] + H M

H =
∂Γ[M]

∂M
ground−−−−→
state

∂Γ[M]

∂M

∣∣∣∣
Mgs

= 0

Partition function with sources that adjust densities:

Z[J] = e−W [J] ∼ Tr e−β(bH+J bρ) =⇒ path integral for W [J]

Invert to find J[ρ] and Legendre transform from J to ρ:

ρ(x) =
δW [J]

δJ(x)
=⇒ Γ[ρ] = W [J]−

∫
J ρ and J(x) = − δΓ[ρ]

δρ(x)

=⇒ Γ[ρ] ∝ energy functional E [ρ], stationary at ρgs(x)!

Dick Furnstahl DFT for Nuclei



Context Conditions DME Summary Appendix UNEDF Action OPM

Paths to a Nuclear Energy Functional

Emulate Coulomb DFT: LDA based on precision calculation
of uniform system E [ρ] =

∫
dr E(ρ(r)) plus constrained

gradient corrections (∇ρ factors)

SLDA (Bulgac et al.)

Fayans and collaborators
(e.g., nucl-th/0009034)

Ev = 2
3εFρ0

[
av

+
1−hv

1+x1/3
+

1−hv
2+x1/3

+

x2
+

+ av
−

1−hv
1−x1/3

+

1−hv
2−x1/3

+

x2
−

]
where x± = (ρn ± ρp)/2ρ0
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Constructive Kohn-Sham DFT with low-momentum potentials
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Construct W [J] and then Γ[ρ] order-by-order
Diagrammatic expansion (i.e., use a power counting)

LO :
����� � �

Inversion method =⇒ Split source J = J0 + J1 + . . .
cf. H = (H0 + U) + (V − U) with freedom to choose U
J0 chosen to get ρ(x) in noninteracting (Kohn-Sham) system:

Vtrap

=⇒
Vtrap− J0

Orbitals {ψα(x)} in local potential J0([ρ], x) =⇒ KS propagators

[−∇2/2m − J0(x)]ψα = εαψα =⇒ ρ(x) =
A∑

α=1

|ψα(x)|2

Self-consistency from J(x) = 0 =⇒ J0(x) = δΓint[ρ]/δρ(x)

Dick Furnstahl DFT for Nuclei
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Orbital Dependent DFT (cf. LDA)
Self-consistency from J(r) = 0 =⇒ J0(r) = δΓint[ρ]/δρ(r)

i.e., Kohn-Sham potential is functional derivative of interacting
energy functional (or Exc) wrt densities
How do we calculate this functional derivative?

Orbital-dependent DFT =⇒ full derivative via chain rule:

J0(r) =
δΓint[φα, εα]

δρ(r)
=

∫
dr′

δJ0(r′)
δρ(r)

∑
α

{∫
dr′′

[
δφ†α(r′′)
δJ0(r′)

δΓint

δφ†α(r′′)
+ c.c.

]
+

δεα

δJ0(r′)
∂Γint

∂εα

}
Solve the OPM equation for J0 using χs(r, r′) = δρ(r)/δJ0(r′)∫

d3r ′ χs(r, r′) J0(r′) = Λxc(r)

Λxc(r) is functional of the orbitals φα, eigenvalues εα, and G0
KS

Approximation with explicit ρ(R), τ(R), . . . dependence?
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DFT vs. Solving Skyrme HF

Orbitals and Occupation #’s

Kohn−Sham Potentials

t , t0 1 , ..., t2

Skyrme
energy

functional
HFB

solver

J0(r) =
δEint[ρ]

δρ(r)
⇐⇒ [−∇2

2m
−J0(x)]ψα = εαψα =⇒ ρ(x) =

∑
α

nα|ψα(x)|2

Dick Furnstahl DFT for Nuclei



Context Conditions DME Summary Appendix UNEDF Action OPM
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Kohn−Sham Potentials
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DFT vs. Solving Skyrme HF

Orbitals and Occupation #’s

Kohn−Sham Potentials

energy
functional

HFB
solver

DME

ρρA[  ], B[  ], ...

J0(r) =
δEint[ρ]

δρ(r)
⇐⇒ [−∇2

2m
−J0(x)]ψα = εαψα =⇒ ρ(x) =

∑
α

nα|ψα(x)|2
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DFT Looks Like Low-Order HF Approximation
WF: Best single Slater determinant in variational sense:

|ΨHF〉 = det{φi(x), i = 1 · · ·A} , x = (r, σ, τ)

where the φi(x) satisfy non-local Schrödinger equations:

−∇2

2M
φi(x) +

(
VH(x) + vext(x)

)
φi(x) +

∫
dy VE(x, y)φi(y) = εiφi(x)

with VH(x) =

∫
dy

A∑
j=1

|φj(y)|2v(x, y) , VE(x, y) = −v(x, y)
A∑

j=1

φj(x)φ∗j (y)

Self-consistent Green’s function: same result from just

+ =⇒

Kohn-Sham DFT equations always look like Hartree or
zero-range Hartree-Fock (“multiplicative potential”)

Dick Furnstahl DFT for Nuclei
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DFT Issues

Organization about mean field: need convergent expansion
like loop expansion: only mean field is nonperturbative

can DFT deal with nuclear short-range correlations?

claim: need low-momentum interactions

DFT for self-bound systems
does DFT even exist? (HK theorem for intrinic states?)

symmetry breaking and zero modes
game plans proposed:

J. Engel, find intrinsic functional (one-d boson system)
Giraud et al., use harmonic oscillator tricks
methods to deal with soliton zero modes

How to deal with long-range correlations?

Effectiveness of approximations (e.g., DME)

Dick Furnstahl DFT for Nuclei
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Low-Momentum Interactions from RG [AV18 3S1]

“Vlow k ” =⇒ Lower a cutoff Λ in relative k , k ′ [sharp]

SRG =⇒ Drive the Hamiltonian toward diagonal [λ ≡ 1/s1/4]

Other transformations also decouple (e.g., UCOM)

Isn’t chiral EFT already soft?

Dick Furnstahl DFT for Nuclei
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Low-Momentum Interactions from RG [AV18 3S1]
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]

SRG =⇒ Drive the Hamiltonian toward diagonal [λ ≡ 1/s1/4]

Other transformations also decouple (e.g., UCOM)

Isn’t chiral EFT already soft?

Dick Furnstahl DFT for Nuclei



Context Conditions DME Summary Appendix Universality BBG 3-Body Questions Misconceptions
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Block Diagonalization Via SRG

Can we get a Λ = 2 fm−1 Vlow k -like potential with SRG?

Yes! Use dHs
ds = [[Gs,Hs],Hs] with Gs =

(
PHsP 0

0 QHsQ

)

Dick Furnstahl DFT for Nuclei
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Decoupling of N 3LO Potentials ( 1S0)
1S0 from N3LO (500 MeV) of Entem/Machleidt

1S0 from N3LO (550/600 MeV) of Epelbaum et al.

See http://www.physics.ohio-state.edu/∼srg/ for more!
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Run to Lower λ via SRG =⇒ ≈Universality

Diagonal Vλ(k , k)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
k [fm−1]

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

V
λ(k

,k
) [

fm
]

450/500 [E/G/M]
550/600 [E/G/M]
600/700 [E/G/M]
500 [E/M]
600 [E/M]

λ = 5.0 fm−1

1S0

Off-Diagonal Vλ(k ,0)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
k [fm−1]

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

V
λ(k

,0
) [

fm
]
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550/600 [E/G/M]
600/700 [E/G/M]
500 [E/M]
600 [E/M]

λ = 5.0 fm−1

1S0
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Run to Lower λ via SRG =⇒ ≈Universality

Diagonal Vλ(k , k)
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Bethe-Brueckner-Goldstone Power Counting
Strong short-range repulsion
=⇒ Sum V ladders =⇒ G

vs.

Vlow k momentum
dependence + phase space
=⇒ perturbative

Λ: |P/2 ± k| > kF and |k| < Λ

F: |P/2 ± k| < kF
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Bethe-Brueckner-Goldstone Power Counting
Strong short-range repulsion
=⇒ Sum V ladders =⇒ G
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Compare Potential and G Matrix: AV18
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Compare Potential and G Matrix: N 3LO (500 MeV)
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Compare Potential and G Matrix: N 3LO (500 MeV)
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Hole-Line Expansion Revisited (Bethe, Day, . . . )

Consider ratio of fourth-order diagrams to third-order:

k

m

a

b

l

c k

m

a
bl

c

n

b

k
m

a l
c

p
q

b

“Conventional” G matrix still couples low-k and high-k
add a hole line =⇒ ratio ≈

∑
n≤kF
〈bn|(1/e)G|bn〉 ≈ κ ≈ 0.15

no new hole line =⇒ ratio ≈ −χ(r = 0) ≈ −1 =⇒ sum all orders

Low-momentum potentials decouple low-k and high-k

add a hole line =⇒ still suppressed

no new hole line =⇒ also suppressed (limited phase space)

freedom to choose single-particle U =⇒ use for Kohn-Sham

=⇒ Density functional theory (DFT) should work!
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Two-Body Correlations at Nuclear Matter Density

Defect wf χ(r) for particular
kinematics (k = 0, Pcm = 0)

AV18: “Wound integral”
provides expansion parameter

Extreme case here, but same
pattern in general

Tensor (3S1) =⇒ larger defect

Still a sizable wound for N3LO
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(r)

  

Argonne v18

1S0 defect  χ(r) = Ψ(r) - Φ(r)

(kF = 1.35 fm-1, k = 0)
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Two-Body Correlations at Nuclear Matter Density
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Two-Body Correlations at Nuclear Matter Density
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Two-Body Correlations at Nuclear Matter Density

Defect wf χ(r) for particular
kinematics (k = 0, Pcm = 0)

AV18: “Wound integral”
provides expansion parameter

Extreme case here, but same
pattern in general

Tensor (3S1) =⇒ larger defect

Still a sizable wound for N3LO
0 1 2 3 4 5

r [fm]
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

 χ
(r)

  

Argonne v18
Λ = 4.5 fm-1

Λ = 3.5 fm-1

Λ = 2.5 fm-1

N3LO

1S0 defect  χ(r) = Ψ(r) - Φ(r)

(kF = 1.35 fm-1, k = 0)

Dick Furnstahl DFT for Nuclei



Context Conditions DME Summary Appendix Universality BBG 3-Body Questions Misconceptions

Nuclear Matter with NN Ladders Only [nucl-th/0504043]

Brueckner ladders
order-by-order

Repulsive core =⇒
series diverges

Vlow k converges

No saturation in sight!
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Nuclear Matter with NN Ladders Only [nucl-th/0504043]

Brueckner ladders
order-by-order

Repulsive core =⇒
series diverges

Vlow k converges

No saturation in sight!
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Deja Vu All Over Again?
There were active attempts to
transform away hard cores and soften
the tensor interaction in the late sixties
and early seventies.

But the requiem for soft potentials was
given by Bethe (1971):
“Very soft potentials must be excluded
because they do not give saturation;
they give too much binding and too
high density. In particular, a
substantial tensor force is required.”

Next 35+ years struggling to solve
accurately with “hard” potential

But the story is not complete:
three-nucleon forces (3NF)!
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Observations on Three-Body Forces

Three-body forces arise from
eliminating dof’s

excited states of nucleon

relativistic effects

high-momentum
intermediate states

Omitting 3-body forces leads
to model dependence

observables depend on λ

e.g., Tjon line

3-body contributions
increase with density

saturates nuclear matter

how large is 4-body? 7.6 7.8 8 8.2 8.4 8.6 8.8
Eb(

3H) [MeV]

24

25
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27

28

29

30

31

E b(4 H
e)

 [M
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]
NN potentials
SRG N3LO (500 MeV)

N3LOλ=1.0

λ=3.0
λ=1.25 λ=2.5

λ=2.25
λ=1.5 λ=2.0

λ=1.75

Expt.

A=3,4 binding energies
SRG NN only, λ in fm−1
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Observations on Three-Body Forces

Three-body forces arise from
eliminating dof’s

excited states of nucleon

relativistic effects

high-momentum
intermediate states

Omitting 3-body forces leads
to model dependence

observables depend on λ

e.g., Tjon line

3-body contributions
increase with density

saturates nuclear matter
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How Does The 3N Contribution Scale?

Saturation driven by 3NF

3N force perturbative
for Λ <∼ 2.5 fm−1

Coupled cluster results
very promising

Unnaturally large?
Chiral: 〈V3N〉 ∼ (Q/Λ)3〈VNN〉

Four-body contributions?

Power counting with
NN + 3N HF at LO?

Check ratios:

3H 4He 1.0 1.2 1.35

kF [fm-1]

0.01

0.1

1

〈V
3N

〉 /
 〈V

lo
w

 k
〉

Λ = 1.6 fm-1

Λ = 1.9 fm-1

Λ = 2.1 fm-1

Λ = 2.3 fm-1
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Compare 2nd-Order NN-Only to Empirical Point
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λ = 2nd 0rder 1.0 fm−1

SRG Nuclear Matter
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Does 3N/2N Ratio Scale Like 1/Λ3 or 1/Λ?
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Diagrams for SRG =⇒ Disconnected Cancels

V
(2)
s = [T, V

(2)
s ] = [[T, V

(2)
s ], T ] =

V
(3)
s = [T, V

(3)
s ] = [[T, V

(3)
s ], T ] =

dV
(2)
s (a, b)

ds
= ba + bca − bca

−(εa−εb)
2 V (2)

s
(a, b)

∑

c

[(εa−εc)−(εc−εb)] V
(2)
s

(a, c) V (2)
s

(c, b)

dV
(3)
s

ds
= + + + + · · ·
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Nuclear Matter Ladders [nucl-th/0504043]

Brueckner ladders
order-by-order

3-body approximated
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 Λ = 2.7 fm-1
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Nuclear Matter Ladders [nucl-th/0504043]

Brueckner ladders
order-by-order

3-body approximated
0.8 1 1.2 1.4 1.6

kF [fm-1]

-15

-10

-5

0

5

E/
A

 [M
eV

]

2nd order
3rd order pp
4th order pp
pp Ladder

 Λ = 2.5(b) fm-1

Dick Furnstahl DFT for Nuclei



Context Conditions DME Summary Appendix Universality BBG 3-Body Questions Misconceptions

Nuclear Matter Ladders [nucl-th/0504043]
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Nuclear Matter Ladders [nucl-th/0504043]

Brueckner ladders
order-by-order

3-body approximated
0.8 1 1.2 1.4 1.6

kF [fm-1]

-15

-10

-5

0

5

E/
A

 [M
eV

]

2nd order
3rd order pp
4th order pp
pp Ladder

 Λ = 1.9 fm-1

Dick Furnstahl DFT for Nuclei



Context Conditions DME Summary Appendix Universality BBG 3-Body Questions Misconceptions

Nuclear matter: Connecting to DFT

HF + 2nd order

NN-only Vlow k or SRG
with Λ, λ ≤ 2 fm−1 doesn’t
saturate nuclear matter
=⇒ as A ↑, nuclei collapse

Typical fit to NNN from
chiral EFT at N2LO from
A = 3,4 =⇒ cD, cE (but
not fit to SRG yet)

Large uncertainty for
c-terms from πN or NN

Only symmetric nuclear
matter so far
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Nuclear matter: Connecting to DFT

Coefficients of NNN force
can be used to fine-tune
nuclear matter within error
bands

“Naturalness” implies
O(1) factors

Should also be consistent
with small A =⇒ need
NNN fits (and eventually
SRG running)

In the short term:
add short-distance
counterterms for
adjustments
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Nuclear matter: Connecting to DFT

Preliminary: may need
more binding from NN to
get naturalness and
reasonable Ksat

What is missing in NN
part at MeV/particle level?
Need accurate nuclear
matter calculation to
assess (coupled cluster!) 0 0.05 0.1 0.15 0.2

ρ [fm−3]

−25
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Observables Sensitive to 3N Interactions?
Study systematics along isotopic chains
Example: kink in radius shift 〈r2〉(A)− 〈r2〉(208)
[Reinhard/Flocard, NPA 584]

-0.2

 0
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 0.4

 0.6

 202  204  206  208  210  212  214

is
ot

op
ic

 s
hi

ft 
 r2 (A

)-
r2 (2

08
) [

fm
2 ]

total nucleon number A

Pb isotopes

exp.
SkI3

SLy6
NL3

Can we constrain 3N forces from nuclear structure?
Already practiced for light nuclei (GFMC, NCSM)

Dick Furnstahl DFT for Nuclei



Context Conditions DME Summary Appendix Universality BBG 3-Body Questions Misconceptions

Misconceptions vs. Correct Interpretations
DFT is a Hartree-(Fock) approximation to an effective
interaction

DFT can accomodate all correlations in principle,
but they are included perturbatively (which can fail for some V )

Nuclear matter is strongly nonperturbative in the potential
“perturbativeness” is highly resolution dependent

(fill in the blank) causes nuclear saturation
another resolution-dependent inference

Generating low-momentum interactions loses important
information

long-range physics is preserved

relevant short-range physics encoded in potential

Low-momentum NN potentials are just like G-matrices
important distinction: conventional G-matrix still
has high-momentum, off-diagonal matrix elements
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Outline

DFT in Context

Necessary Conditions for Constructive DFT to Work

Near-Term Gameplan for Microscopic Nuclear DFT

Summary
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SciDAC 2 Project: Building a UNEDF Goals

Understand nuclear properties “for element formation, for
properties of stars, and for present and future energy and
defense applications”

Scope is all nuclei (A > 12–16), with particular interest in
reliable calculations of unstable nuclei and in reactions

Order of magnitude improvement over present capabilities
=⇒ precision calculations

Connected to best microscopic physics

Maximum predictive power with well-quantified uncertainties

Building the EDF is the heart of the project

[website at http://unedf.org]
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Parallel Development Areas
1 Momentum-space Renormalization Group (RG) methods to

evolve chiral NN and NNN potentials to more perturbative
forms as inputs to nuclear matter and ab initio methods
(coupled cluster, NCSM).

2 Controlled nuclear matter calculations based on the
RG-improved interactions, as ab initio input to Skyrme EDF
benchmarking and microscopic functional.

3 Approximate DFT functional, initially by adapting density
matrix expansion (DME) to RG-improved interactions.

4 Adaptation to Skyrme codes and allowance for fine tuning.

Points of emphasis:
Systematic upgrade path with existing and developing
technology

Theoretical error bars on interaction (vary EFT Λ and order of
calculation) and on implementation (vary SRG λ or Vlow k Λ)
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Sources of Theoretical Error Bars

1 EFT Hamiltonian
estimate from order of
EFT power counting

lower bound from
varying ΛEFT

2 RG (Vlow k , VSRG) truncation:
NN· · ·N contributions

vary λSRG or ΛVlow k

3 Many-body
approximations

vary λSRG or ΛVlow k

4 Numerical approximations
vary basis size, etc. 0 0.05 0.1

ρ [fm-3]

5

10

15

20

E
/N

 [M
eV

]

virial
FP
T=3 MeV
T=6 MeV
T=10 MeV

0 0.05 0.1 0.15

ρ [fm-3]

Hartree-Fock (NN+3N) HF + 2nd-order NN
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Density Matrix Expansion Revisited [Negele/Vautherin]

DME: Write one-particle density matrix in Kohn-Sham basis

ρ(r1, r2) =
∑

εα≤εF

ψ†α(r1)ψα(r2)

r1 r2

R-s/2 +s/2
ρ(r1, r2) falls off with |r1 − r2| =⇒ expand in s (and resum)

Fall off well approximated by nuclear matter
=⇒ expand so that first term exact in uniform system

Change to R = 1
2(r1 + r2) and s = r1 − r2 and resum in s

ρ(R + s/2,R− s/2) = es·(∇1−∇2)/2 ρ(r1, r2)|s=0

=⇒ 3j1(skF)

skF
ρ(R) +

35j3(skF)

2sk3
F

(1
4
∇2ρ(R)− τ(R) +

3
5

k2
Fρ(R) + · · ·

)
In terms of local densities ρ(R), τ(R), . . . =⇒ DFT with these
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Density Matrix Expansion Revisited [Negele/Vautherin]

DME: Write one-particle density matrix in Kohn-Sham basis

ρ(r1, r2) =
∑

εα≤εF

ψ†α(r1)ψα(r2)

r1 r2

R-s/2 +s/2
ρ(r1, r2) falls off with |r1 − r2| =⇒ expand in s (and resum)

Fall off well approximated by nuclear matter
=⇒ expand so that first term exact in uniform system

Change to R = 1
2(r1 + r2) and s = r1 − r2 and resum in s

ρ(R + s/2,R− s/2) = es·(∇1−∇2)/2 ρ(r1, r2)|s=0

=⇒ 3j1(skF)

skF
ρ(R) +

35j3(skF)

2sk3
F

(1
4
∇2ρ(R)− τ(R) +

3
5

k2
Fρ(R) + · · ·

)
In terms of local densities ρ(R), τ(R), . . . =⇒ DFT with these
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Physics of the DME [Negele et al.]
Local rather than global properties of density matrix

Not a short-distance expansion; preserve long-range effects
Expanding the difference between exact and nuclear matter
results in powers of s (nuclear matter kF)

Exact neutron density
matrix squared in 208Pb
compared with DME
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DME With a Nonlocal Interaction
HF+ functional for two-body V is (spin/isospin implicit):

W [J0] =
1
2

∫
d3R d3(r1−r2) d3(r3−r4) ρ(r1, r3)K (r1−r2, r3−r4)ρ(r2, r4)

r1
r2

ρ(r1,r3)
ρ(r2,r4)

r3 r4

K(r1-r2, r3-r4)
where K is the
anti-symmetrized interaction

Expand about R:

r3

+∆/2
R

R + Σ/2 R - Σ/2

r4
r1

r2

-∆/2

+∆/2

-∆/2

Analogous expansion of 3N contributions
Treat frequency in K using factorization (V. Rotival et al.)
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New Aspects of the DME for UNEDF

1 EFT, Vlow k , Vsrg are strongly non-local
DME for nonlocal V never tested in original papers (not to
mention many typos! :)

2 expansions required

2 Treat 3N force contributions (N2LO NNN for now)
3 expansions needed now

3 Momentum space formulation
not tied to a 3d, operator representation of V
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DME Compared to Skyrme Hartree-Fock

E [ρ, τ, . . .] =
∫

d3R E(ρ, τ, . . .)|ρ=ρ(R),τ=τ(R),...

Phenomenological Skyrme energy functional
(here for N = Z , even-even, spin-saturated nuclei)

E =
τ

2M
+

3
8

t0ρ2 +
1

16
t3ρ2+α +

1
16

(3t1 + 5t2)ρτ+
1

64
(9t1 − 5t2)|∇ρ|2 + · · ·

DME energy functional

E =
τ

2M
+ A[ρ] + B[ρ]τ + C[ρ]|∇ρ|2 + · · ·

A, B, C, . . . are functions of ρ vs. Skyrme constants ti
=⇒ replace as inputs to codes

Beyond a short-range expansion: long-range pion in n.m.

Qualitative insight first. Fine-tuning needed for quantitative?
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DME Meets Low-Momentum V [Bogner, Platter, rjf]

E = 1
2M τ + A[ρ]+ B[ρ]τ + C[ρ]|∇ρ|2 + · · · in momentum space

=⇒ A and B functions determine bulk nuclear matter:

A[ρ] ∼ k3
F

∑
lsj

ĵ t̂
∫ kF

0
k2 dk Vlsjt(k , k) PA(k/kF) + {V3N} + · · ·

B[ρ] ∼ k−3
F

∑
lsj

ĵ t̂
∫ kF

0
k2 dk Vlsjt(k , k) PB(k/kF) + {V3N} + · · ·

PA, PB are simple polynomials in k/kF

C[ρ] has two-dimensional integral over off-diagonal V

Also spin-orbit, tensor, . . .

3-body contributions have density matrices that are expanded
in Jacobi coordinates; double-exchange is hardest
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Chiral Three-Body Interactions in DME

Direct π π

Single exchange
π π

Double exchange
π

π

ci ’s from πN or NN + short-range LEC’s
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Non-Local Interactions and the DME

Two expansions now!

Consider HO approximation to
fully self-consistent HF 〈V 〉
(NN only)

Schematic model to study
effect of non-locality on DME

V (r, r′) = v( r+r′
2α )× e

−
(

r−r′
β

)2

(πβ2)3/2

No problem increasing
non-locality β until ≈ 3 times
range α 0 1 2 3 4

β/α
−15

−10

−5

0

δV
(β

)/δ
V

(β
=0

)
α = 1.0 fm
α = 0.5 fm

Effects of different non-localities/ranges on the DME
(Harmonic Oscillator approximation in Ca-40)

δV = <V>dme − <V>exact
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DME for Low-momentum Interactions (HF/NN only)

Test with HO model

errors ≈ +5 MeV (NLO),
≈ −10 MeV (N3LO)

Λ–independent errors

cf. schematic V ’s (1970’s)
(finite-range direct terms)

1.5 2 2.5 3 3.5 4
Λ [fm−1]

−40

−20

0

20

40

〈V
〉 D

M
E

−
〈V

〉 ex
ac

t [M
eV

]

Negele-Vautherin G-matrix
Brink-Boeker (Sprung et. al.)
Vlow k (NLO)

Vlow k (N
3LO)

HO Model: 〈V〉DME − 〈V〉exact [MeV]

40Ca
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DME for Low-momentum Interactions (HF/NN only)

−500

−400

−300

−200

−100

0

100

〈V
〉 [

M
eV

]

Vlow k Λ = 2.0 fm−1 (N3LO)

A

B C

DME Exact
total

16O

−1400

−1200

−1000

−800

−600

−400

−200

0

200

400

〈V
〉 [

M
eV

]

Vlow k Λ = 2.0 fm−1 (N3LO)

A

B
C

DME Exact
total

40Ca

E =
τ

2M
+ A[ρ] + B[ρ]τ + C[ρ]|∇ρ|2 + · · ·
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HF Long-Range Contributions (1π, leading 2π)

−500

−400

−300

−200

−100

0

100

〈V
〉 [

M
eV

]

Vlow k Λ = 2.0 fm−1 (N3LO)

A

B C

DME Exact
total

16O

1π only
NLO 2π only −1400

−1200

−1000

−800

−600

−400

−200

0

200

400

〈V
〉 [

M
eV

]

Vlow k Λ = 2.0 fm−1 (N3LO)

A

B
C

DME Exact
total

40Ca

1π only
NLO 2π only

DME error in 1π exchange ≈ 4 MeV (out of 431 MeV) in 40Ca
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Subtleties With One-Pion Exchange

0.5 1 1.5 2
kF [fm-1]

0

2

4

6

B(
ρ)

 [M
eV

-fm
5 ]

jmax = 5
jmax = 6
jmax = 7
jmax = 9
full 3d 

1π exchange convergence in partial waves

0.6 0.8 1 1.2 1.4
kF [fm-1]

0

4

8

12

16

C(
ρ)

 [M
eV

-fm
5 ]

jmax = 5
jmax = 6
jmax = 7
jmax = 9
full 3d 

1π exchange convergence in partial waves

Poor convergence of 1π exchange DME in partial wave
expansion

Is this a fundamental limitation of the momentum-space,
non-local formulation of the DME that we employ?

Dick Furnstahl DFT for Nuclei



Context Conditions DME Summary Appendix UNEDF DME

Separating Out Finite Range Pion Physics

RG evolution only affects short-distance structure

VΛ0(k , k
′)−VΛ(k , k ′) = C̃0 +C̃2(k2 +k ′2)+ · · · [nucl-th/0308036]

Long-range (low-k) pion-physics (e.g., from χ-EFT) unchanged

short-range Cn(Λ)k2n generated to give Λ-independent
observables

Apply partial-wave DME to (Vlow k − Vπ)

Treat Vπ analytically (3D) and add it back in at the end
DME EDF splits into 2 types of terms:

1 Λ-independent finite range pion contributions that have
non-trivial density dependencies (a lot can be done analytically)

2 Λ-dependent Cn(Λ)k2n terms (Skyrme-like) with simple
density-dependencies (Λ-dependence =⇒ theoretical guidance
for fine-tuning to data!)
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DME from Perturbative Chiral Interactions
N. Kaiser et al. in ongoing series of papers (nucl-th/0212049,
0312058, 0312059, 0406038, 0407116, 0509040, 0601100, . . . )

Fourier transform of expanded density matrix defines a
momentum-space medium insertion, leading to DME:

Three-body forces from explicit ∆, e.g.,

Perturbative expansion for energy tuned to nuclear matter
Many analytic results =⇒ qualitative insight, checks for
quantitative calculations with low-momentum interactions
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DME ABC Functions: Original and Fine-Tuned
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DME ABC Functions: Original and Fine-Tuned
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Proof of Principle Calculation with HFBRAD
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Observables Sensitive to 3N Interactions?

Study systematics along isotopic chains

Example: kink in radius shift 〈r2〉(A)− 〈r2〉(208)

-0.2

 0

 0.2

 0.4

 0.6

 202  204  206  208  210  212  214

is
ot

op
ic

 s
hi

ft 
 r2 (A

)-
r2 (2

08
) [

fm
2 ]

total nucleon number A

Pb isotopes

exp.
SkI3
SLy6
NL3

Associated phenomenologically with behavior of spin-orbit
isoscalar to isovector ratio fixed in original Skyrme

Clues from chiral EFT contributions? (Kaiser et al.)
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Ratio of Isoscalar to Isovector Spin-Orbit

Ratio fixed at 3:1 for short-range spin-orbit (usual Skyrme)

Kaiser: DME spin-orbit from chiral two-body (left)
and three-body (right)
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Systematic investigation needed
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Observables Sensitive to 3N Interactions?

Recent studies of tensor contributions [e.g., nucl-th/0701047]

-10

-5

0

5

50 60 70 80

∆∆ ∆∆E
(M

eV
)

1g7/2
1h11/2

1h11/2 −1g7/2

Neutron Number N

exp
-10

-5

0

5

1g
7/2

1h11/2

1h11/2 -1g
7/2-10

-5

0

5

50 60 70 80

∆∆
E

(M
eV

)

50 60 70 80
Neutron Number

te=200

te=0

HFB+SkO
∆∆∆∆Wp

SO ~ Jn

HFB+SLy4
∆∆∆∆Wp

SO ~ Jn

HFB+SkO
Wp

SO ~ 2∇ρ∇ρ∇ρ∇ρn++++∇ρ∇ρ∇ρ∇ρp

HFB+SLy4
Wp

SO ~ 2∇ρ∇ρ∇ρ∇ρp++++∇ρ∇ρ∇ρ∇ρn

See also Brown et al., PRC 74 (2006)
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Outline

DFT in Context

Necessary Conditions for Constructive DFT to Work

Near-Term Gameplan for Microscopic Nuclear DFT

Summary
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Summary: DFT from EFT and RG

Plan: Chiral EFT −→ low k VNN ,VNNN , . . . −→ DFT for nuclei

Effective action formalism provides framework

DME provides testable, improvable path to functional

Three-body contributions are critical for low-momentum
interactions

DFT Issues to resolve (partial list!)

Quantitative power counting with low-momentum V

Symmetry breaking and restoration in DFT
(self-bound systems)

Non-localities from near-on-shell particle-hole excitations

+ + + + · · ·
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Skyrme Energy Functionals (cf. Coulomb meta-GGA)

Minimize E =
∫

dx E [ρ(x), τ(x), J(x), . . .] (for N = Z ):

E [ρ, τ , J] =
1

2M
τ +

3
8

t0ρ2 +
1

16
t3ρ2+α +

1
16

(3t1 + 5t2)ρτ

+
1

64
(9t1 − 5t2)(∇ρ)2 − 3

4
W0ρ∇ · J +

1
32

(t1 − t2)J2

where ρ(x) =
∑

i |φi(x)|2 and τ(x) =
∑

i |∇φi(x)|2 (and J)

Varying the (normalized) φi ’s yields “Kohn-Sham” equation:(
−∇ 1

2M∗(x)
∇+ U(x) +

3
4

W0∇ρ ·
1
i
∇× σ

)
φi(x) = εi φi(x) ,

U = 3
4 t0ρ+ ( 3

16 t1 + 5
16 t2)τ + · · · and 1

2M∗(x) = 1
2M + ( 3

16 t1 + 5
16 t2)ρ

Iterate until φi ’s and εi ’s are self-consistent

In practice: other densities, pairing is very important (HFB),
projection needed, . . .
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Skyrme Energy Functionals (cf. Coulomb meta-GGA)

Minimize E =
∫

dx E [ρ(x), τ(x), J(x), . . .] (for N = Z ):

E [ρ, τ , J] =
1

2M
τ +

3
8

t0ρ2 +
1

16
t3ρ2+α +

1
16

(3t1 + 5t2)ρτ

+
1

64
(9t1 − 5t2)(∇ρ)2 − 3

4
W0ρ∇ · J +

1
32

(t1 − t2)J2

where ρ(x) =
∑

i |φi(x)|2 and τ(x) =
∑

i |∇φi(x)|2 (and J)

Varying the (normalized) φi ’s yields “Kohn-Sham” equation:(
−∇ 1

2M∗(x)
∇+ U(x) +

3
4

W0∇ρ ·
1
i
∇× σ

)
φi(x) = εi φi(x) ,

U = 3
4 t0ρ+ ( 3

16 t1 + 5
16 t2)τ + · · · and 1

2M∗(x) = 1
2M + ( 3

16 t1 + 5
16 t2)ρ

Iterate until φi ’s and εi ’s are self-consistent

In practice: other densities, pairing is very important (HFB),
projection needed, . . .
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Skyrme Energy Functionals (cf. Coulomb meta-GGA)

Minimize E =
∫

dx E [ρ(x), τ(x), J(x), . . .] (for N = Z ):

E [ρ, τ , J] =
1

2M
τ +

3
8

t0ρ2 +
1

16
t3ρ2+α +

1
16

(3t1 + 5t2)ρτ

+
1

64
(9t1 − 5t2)(∇ρ)2 − 3

4
W0ρ∇ · J +

1
32

(t1 − t2)J2

where ρ(x) =
∑

i |φi(x)|2 and τ(x) =
∑

i |∇φi(x)|2 (and J)

First Skyrme interaction had short-range 3N force (α = 1)

=⇒ ρ
2

=⇒ ρ
3

=⇒ ρ
4

α = 1/6, 1/3, 1/2 in modern Skyrme parameterizations.
Connection to microscopic many-body forces?
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Skyrme Effective Mass M?

τ dependence =⇒ M∗(ρ)
M

Negele: comes from
off-diagonal range of
density matrix and
long-range part of
G-matrix =⇒ long-range
part of potential
M∗(ρ)

M = 1/(1 + 2MB[ρ])

Skyrme at ρsat: 0.6–1.0

Kaiser et al., NP A750
(2005) 259: perturbative
kF expansion in ChPT
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Kohn-Sham DFT and “Mean-Field” Models

�

�

Fk k

n(k)

1

� � �����
�

�����

� ���

�
	��� �

� ���

� ���

KS propagators (lines) always have “mean-field” structure

G0
KS(x, x′;ω) =

∑
α

ψα(x)ψ∗α(x′)
[
θ(εα − εF)

ω − εα + iη
+

θ(εF − εα)

ω − εα − iη

]

where ψα(x) satisfies:
[
−∇

2

2M
− J0(x)

]
ψα(x) = εαψα(x)

We can use the Kohn-Sham basis to calculate n(k) = 〈a†
kak〉,

but this is beyond standard DFT [see nucl-th/0410105]
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Many-Body Forces in Skyrme HF?

Old NDA analysis:

c
[
ψ†ψ

f 2
πΛ

]l [∇
Λ

]n

f 2
πΛ2

=⇒
ρ←→ ψ†ψ
τ ←→ ∇ψ† · ∇ψ
J ←→ ψ†∇ψ

Density expansion?

1
7
≤ ρ0

f 2
πΛ
≤ 1

4
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kF = 1.35 fm−1
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Many-Body Forces in Skyrme HF?

Old NDA analysis:
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Many-Body Forces in Skyrme HF?

Old NDA analysis:

c
[
ψ†ψ

f 2
πΛ

]l [∇
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=⇒
ρ←→ ψ†ψ
τ ←→ ∇ψ† · ∇ψ
J ←→ ψ†∇ψ

Density expansion?
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eV
)

ε0

natural (Λ=600 MeV)
Skyrme ρn

RMFT-II ρn net
RMFT-I ρn net
Vlow k HF + 2nd order

kF = 1.35 fm−1
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Outline Mean-Field Old vs New Sources

Many-Body Forces are Inevitable in EFT!

What if we have three
nucleons interacting?

Successive two-body
scatterings with short-lived
high-energy intermediate
states unresolved =⇒ must
be absorbed into
three-body force

� �

A feature, not a bug!

How do we organize
(3,4, · · · )–body forces?
EFT! [nucl-th/0312063]

2N forces 3N forces 4N forces

��� ������ �
	

���� ������ ��	

������ � ���� � 	

������� � ���� � 	
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Outline Mean-Field Old vs New Sources

(Nuclear) Many-Body Physics: “Old” vs. “New”

One Hamiltonian for all
problems and energy/length
scales

Infinite # of low-energy
potentials; different
resolutions =⇒ different dof’s
and Hamiltonians

Find the “best” potential There is no best potential
=⇒ use a convenient one!

Two-body data may be
sufficient; many-body forces
as last resort

Many-body data needed and
many-body forces inevitable

Avoid (hide) divergences Exploit divergences (cutoff
dependence as tool)

Choose diagrams by “art” Power counting determines
diagrams and truncation error
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Outline Mean-Field Old vs New Sources

Beyond Kohn-Sham LDA [Bhattacharyya, rjf, nucl-th/0408014]

Add additional sources to Lagrangian, e.g., η(x) ∇ψ† ·∇ψ

Γ[ρ, τ ] = W [J, η]−
∫

J(x)ρ(x)−
∫
η(x)τ(x)

Two Kohn-Sham potentials: [ρ ≡ 〈ψ†ψ〉, τ ≡ 〈∇ψ† ·∇ψ〉]

J0(x) =
δΓint[ρ, τ ]

δρ(x)
and η0(x) =

δΓint[ρ, τ ]

δτ(x)

Kohn-Sham equation =⇒ defines 1
2M∗(x) ≡

1
2M − η0(x):(

−∇ · 1
2M∗(x)

∇− J0(x)
)
φα(x) = εα φα(x)

HF dilute energy density with ρ only vs. ρ and τ (for ν = 2) :

C2

8

[3
5

(
6π2

ν

)2/3

ρ8/3
]

+ . . . =⇒ C2

8

[
ρτ +

3
4

(∇ρ)2] + . . .
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Outline Mean-Field Old vs New Sources

Pairing in DFT [Hammer, rjf, Puglia nucl-th/0612086]

Add source j coupled to anomalous density:

Z [J, j] = e−W [J,j] =

∫
D(ψ†ψ) exp

{
−

∫
d4x [L+J(x)ψ†αψα+j(x)(ψ†↑ψ

†
↓ + ψ↓ψ↑)]

}
Densities found by functional derivatives wrt J, j :

ρ(x) =
δW [J, j]
δJ(x)

∣∣∣∣
j
, φ(x) ≡ 〈ψ†↑(x)ψ†↓(x) + ψ↓(x)ψ↑(x)〉J,j =

δW [J, j]
δj(x)

∣∣∣∣
J

Find Γ[ρ, φ] from W [J0, j0] by inversion method

Kohn-Sham system looks like short-range HFB with j0 as gap(
h0(x)− µ0 j0(x)

j0(x) −h0(x) + µ0

) (
ui(x)
vi(x)

)
= Ei

(
ui(x)
vi(x)

)

where h0(x) ≡ −∇2

2M
− J0(x)
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Outline Mean-Field Old vs New Sources

Constructive DFT via Effective Action [nucl-th/0212071]
Partition function with sources that adjust densities:
Z[J] = e−W [J] ∼ Tr e−β(bH+J bρ) =⇒ path integral for W [J]

Invert to find J[ρ] and Legendre transform from J to ρ:

ρ(x) =
δW [J]

δJ(x)
=⇒ Γ[ρ] = W [J]−

∫
J ρ and J(x) = − δΓ[ρ]

δρ(x)
=⇒ Γ[ρ] ∝ ground-state energy, stationary at ρgs(x)!
Diagrammatic expansion (e.g., use BBG power counting)

LO :
����� � �

Orbitals {ψi(x)} in local Kohn-Sham (KS) potential J0([ρ], x)

[−∇2/2m + J0(x)]ψα = εαψα =⇒ ρ(x) =
A∑

i=1

|ψα(x)|2

KS propagators (lines):

G0
KS(x, x′;ω) =

∑
α

ψα(x)ψ∗α(x′)
[
θ(εα − εF)

ω − εα + iη
+

θ(εF − εα)

ω − εα − iη

]
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