Density Functional Theory for Nuclei

Dick Furnstahl

Department of Physics Ohio State University

October, 2007

Collaborators: A. Bhattacharyya, S. Bogner, T. Duguet, H.-W. Hammer, A. Nogga, R. Perry, L. Platter, S. Ramanan, V. Rotival, A. Schwenk + UNEDF

Outline

[DFT in Context](#page-2-0)

[Necessary Conditions for Constructive DFT to Work](#page-18-0)

[Near-Term Gameplan for Microscopic Nuclear DFT](#page-79-0)

[Summary](#page-104-0)

Outline

[DFT in Context](#page-2-0)

[Necessary Conditions for Constructive DFT to Work](#page-18-0)

[Near-Term Gameplan for Microscopic Nuclear DFT](#page-79-0)

[Summary](#page-104-0)

SciDAC 2 Project: Building a UNEDF Goals

- Understand nuclear properties "for element formation, for properties of stars, and for present and future energy and defense applications"
- Scope is all nuclei $(A > 12-16)$, with particular interest in reliable calculations of unstable nuclei and in reactions
- **Order of magnitude improvement over present capabilities** \implies precision calculations
- Connected to best microscopic physics
- Maximum predictive power with well-quantified uncertainties
- Building the EDF is the heart of the project

[website at http://unedf.org]

Parallel Development Areas

- **¹** Momentum-space Renormalization Group (RG) methods to evolve chiral NN and NNN potentials to more perturbative forms as inputs to nuclear matter and ab initio methods (coupled cluster, NCSM).
- **2** Controlled nuclear matter calculations based on the RG-improved interactions, as ab initio input to Skyrme EDF benchmarking and microscopic functional.
- **³** Approximate DFT functional, initially by adapting density matrix expansion (DME) to RG-improved interactions.
- **⁴** Adaptation to Skyrme codes and allowance for fine tuning.

Points of emphasis:

- Systematic upgrade path with existing and developing technology
- Theoretical error bars on interaction (vary EFT Λ and order of calculation) and on implementation (vary SRG λ or $V_{\text{low }k}$ Λ)

Microscopic Nuclear Structure Methods

- Wave function methods (GFMC/AFMC, NCSM, CC, . . .)
	- many-body wave functions (in approximate form!)
	- $\bullet \Psi(x_1, \dots, x_A) \Longrightarrow$ everything (if operators known)
	- limited to $A < 100$ (??)
- **Green's functions (see W. Dickhoff, Many-Body Theory Exposed)**
	- response of ground state to removing/adding particles
	- single-particle Green's function \implies expectation value of one-body operators, Hamiltonian
	- \bullet energy, densities, single-particle excitations, ...
- **• DFT** (see C. Fiolhais et al., A Primer in Density Functional Theory)
	- response of energy to perturbations of the density
	- energy functional \implies plug in candidate density, get out trial energy, minimize (variational)
	- energy and densities (TDFT \implies excitations)

[Context](#page-2-0) [Conditions](#page-18-0) [DME](#page-79-0) [Summary](#page-104-0) [Appendix](#page-106-0) [UNEDF](#page-3-0) [Action](#page-5-0) [OPM](#page-11-0)

DFT and Effective Actions (cf. Negele and Orland)

- External field ⇐⇒ Magnetization
- \bullet Helmholtz free energy $F[H]$ \Longleftrightarrow Gibbs free energy Γ[M]

Legendre transform ⁼[⇒] Γ[M] = ^F[H] + ^H ^M

$$
H = \frac{\partial \Gamma[M]}{\partial M} \quad \frac{\text{ground}}{\text{state}} \quad \frac{\partial \Gamma[M]}{\partial M}\bigg|_{M_{\text{gs}}} = 0
$$

[Context](#page-2-0) [Conditions](#page-18-0) [DME](#page-79-0) [Summary](#page-104-0) [Appendix](#page-106-0) [UNEDF](#page-3-0) [Action](#page-5-0) [OPM](#page-11-0)

DFT and Effective Actions (cf. Negele and Orland)

- External field ⇐⇒ Magnetization
- \bullet Helmholtz free energy $F[H]$ \Longleftrightarrow Gibbs free energy Γ[M]

Legendre transform ⁼[⇒] Γ[M] = ^F[H] + ^H ^M

$$
H = \frac{\partial \Gamma[M]}{\partial M} \quad \frac{\text{ground}}{\text{state}} \quad \frac{\partial \Gamma[M]}{\partial M}\bigg|_{M_{\text{gs}}} = 0
$$

• Partition function with sources that adjust densities:

 $\mathcal{Z}[\mathcal{J}] = e^{-W[\mathcal{J}]} \sim \text{Tr} \, e^{-\beta(H+\mathcal{J}\widehat{\rho})} \quad \Longrightarrow \quad \text{path integral for } W[\mathcal{J}]$

• Invert to find $J[\rho]$ and Legendre transform from J to ρ :

$$
\rho(\mathbf{x}) = \frac{\delta W[J]}{\delta J(\mathbf{x})} \implies \Gamma[\rho] = W[J] - \int J \rho \text{ and } J(\mathbf{x}) = -\frac{\delta \Gamma[\rho]}{\delta \rho(\mathbf{x})}
$$

\n
$$
\implies \Gamma[\rho] \propto \text{energy functional } E[\rho], \text{ stationary at } \rho_{gs}(\mathbf{x})!
$$

[Context](#page-2-0) [Conditions](#page-18-0) [DME](#page-79-0) [Summary](#page-104-0) [Appendix](#page-106-0) [UNEDF](#page-3-0) [Action](#page-5-0) [OPM](#page-11-0)

Paths to a Nuclear Energy Functional

Emulate Coulomb DFT: LDA based on precision calculation of uniform system $\bm{\mathit{E}}[\rho]=\int d\bm{\mathit{r}}\,\mathcal{E}(\rho(\bm{\mathit{r}}))$ plus constrained gradient corrections ($\nabla \rho$ factors)

- RG approach (Polonyi and Schwenk, nucl-th/0403011)
- Constructive Kohn-Sham DFT with low-momentum potentials

Construct W[J] **and then** Γ[ρ] **order-by-order**

• Diagrammatic *expansion* (i.e., use a power counting)

- Inversion method \implies Split source $J = J_0 + J_1 + \dots$
	- cf. $H = (H_0 + U) + (V U)$ with freedom to choose U
	- \bullet J₀ chosen to get $\rho(\mathbf{x})$ in noninteracting (Kohn-Sham) system:

Construct W[J] **and then** Γ[ρ] **order-by-order**

• Diagrammatic *expansion* (i.e., use a power counting)

• Inversion method \implies Split source $J = J_0 + J_1 + \dots$

- cf. $H = (H_0 + U) + (V U)$ with freedom to choose U
- \bullet J₀ chosen to get $\rho(\mathbf{x})$ in noninteracting (Kohn-Sham) system:

Orbitals $\{\psi_\alpha(\mathbf{x})\}$ in local potential $J_0([\rho],\mathbf{x}) \Longrightarrow \mathsf{KS}\limits_{A}$ propagators \bullet

$$
[-\nabla^2/2m - J_0(\mathbf{x})]\psi_\alpha = \varepsilon_\alpha \psi_\alpha \implies \rho(\mathbf{x}) = \sum_{\alpha=1} |\psi_\alpha(\mathbf{x})|^2
$$

• Self-consistency from $J(\mathbf{x}) = 0 \Longrightarrow J_0(\mathbf{x}) = \delta \Gamma_{\text{int}}[\rho]/\delta \rho(\mathbf{x})$

Orbital Dependent DFT (cf. LDA)

- **•** Self-consistency from $J(\mathbf{r}) = 0 \Longrightarrow J_0(\mathbf{r}) = \delta \Gamma_{\text{int}}[\rho]/\delta \rho(\mathbf{r})$
	- i.e., Kohn-Sham potential is functional derivative of interacting energy functional (or E_{xc}) wrt densities
	- How do we calculate this functional derivative?

Orbital Dependent DFT (cf. LDA)

- **o** Self-consistency from $J(r) = 0 \implies J_0(r) = \delta \Gamma_{int}[\rho]/\delta \rho(r)$
	- i.e., Kohn-Sham potential is functional derivative of interacting energy functional (or E_{xc}) wrt densities
	- How do we calculate this functional derivative?

 \cdot

• Orbital-dependent DFT \implies full derivative via chain rule:

$$
J_0(\mathbf{r}) = \frac{\delta \Gamma_{int}[\phi_\alpha, \varepsilon_\alpha]}{\delta \rho(\mathbf{r})} = \int d\mathbf{r}' \frac{\delta J_0(\mathbf{r}')}{\delta \rho(\mathbf{r})} \sum_\alpha \left\{ \int d\mathbf{r}'' \left[\frac{\delta \phi_\alpha^{\dagger}(\mathbf{r}'')}{\delta J_0(\mathbf{r}')} \frac{\delta \Gamma_{int}}{\delta \phi_\alpha^{\dagger}(\mathbf{r}'')} + c.c. \right] + \frac{\delta \varepsilon_\alpha}{\delta J_0(\mathbf{r}')} \frac{\partial \Gamma_{int}}{\partial \varepsilon_\alpha} \right\}
$$

Solve the OPM equation for J_0 using $\chi_s(\mathbf{r}, \mathbf{r}') = \delta \rho(\mathbf{r})/\delta J_0(\mathbf{r}')$

$$
\int d^3r'\,\chi_{\rm s}(\mathbf{r},\mathbf{r}')\,J_0(\mathbf{r}')=\Lambda_{\rm xc}(\mathbf{r})
$$

 $\Lambda_\text{xc}(\mathbf{r})$ is functional of the orbitals ϕ_α , eigenvalues ε_α , and \mathbf{G}^0_KS

Orbital Dependent DFT (cf. LDA)

- **o** Self-consistency from $J(r) = 0 \implies J_0(r) = \delta \Gamma_{int}[\rho]/\delta \rho(r)$
	- i.e., Kohn-Sham potential is functional derivative of interacting energy functional (or E_{xc}) wrt densities
	- How do we calculate this functional derivative?
- Orbital-dependent DFT \implies full derivative via chain rule:

$$
J_0(\mathbf{r}) = \frac{\delta \Gamma_{int}[\phi_\alpha, \varepsilon_\alpha]}{\delta \rho(\mathbf{r})} = \int d\mathbf{r}' \frac{\delta J_0(\mathbf{r}')}{\delta \rho(\mathbf{r})} \sum_\alpha \left\{ \int d\mathbf{r}'' \left[\frac{\delta \phi_\alpha^\dagger(\mathbf{r}'')}{\delta J_0(\mathbf{r}')} \frac{\delta \Gamma_{int}}{\delta \phi_\alpha^\dagger(\mathbf{r}'')} + c.c. \right] + \frac{\delta \varepsilon_\alpha}{\delta J_0(\mathbf{r}')} \frac{\partial \Gamma_{int}}{\partial \varepsilon_\alpha} \right\}
$$

Solve the OPM equation for J_0 using $\chi_s(\mathbf{r}, \mathbf{r}') = \delta \rho(\mathbf{r})/\delta J_0(\mathbf{r}')$

$$
\int d^3r'\,\chi_s(\boldsymbol{r},\boldsymbol{r}')\,J_0(\boldsymbol{r}')=\Lambda_{\rm xc}(\boldsymbol{r})
$$

 $\Lambda_\text{xc}(\mathbf{r})$ is functional of the orbitals ϕ_α , eigenvalues ε_α , and \mathbf{G}^0_KS **•** Approximation with explicit $\rho(\mathbf{R}), \tau(\mathbf{R}), \ldots$ dependence?

DFT vs. Solving Skyrme HF

DFT vs. Solving Skyrme HF

DFT vs. Solving Skyrme HF

DFT Looks Like Low-Order HF Approximation

WF: Best single Slater determinant in variational sense:

$$
|\Psi_{\text{HF}}\rangle = \det\{\phi_i(\mathbf{x}), i = 1 \cdots A\}, \quad \mathbf{x} = (\mathbf{r}, \sigma, \tau)
$$

where the $\phi_i(\mathbf{x})$ satisfy *non-local* Schrödinger equations:

$$
-\frac{\boldsymbol{\nabla}^2}{2M}\phi_i(\boldsymbol{x})+\Big(V_H(\boldsymbol{x})+V_{ext}(\boldsymbol{x})\Big)\phi_i(\boldsymbol{x})+\int d\boldsymbol{y}\; V_E(\boldsymbol{x},\boldsymbol{y})\phi_i(\boldsymbol{y})=\epsilon_i\phi_i(\boldsymbol{x})
$$

with
$$
V_H(\mathbf{x}) = \int d\mathbf{y} \sum_{j=1}^A |\phi_j(\mathbf{y})|^2 \mathbf{v}(\mathbf{x}, \mathbf{y}), \quad V_E(\mathbf{x}, \mathbf{y}) = -V(\mathbf{x}, \mathbf{y}) \sum_{j=1}^A \phi_j(\mathbf{x}) \phi_j^*(\mathbf{y})
$$

• Self-consistent Green's function: same result from just

$$
\mathbf{O} \mathbf{O} + \mathbf{O} \rightarrow \mathbf{O} \mathbf{O}
$$

• Kohn-Sham DFT equations always look like Hartree or zero-range Hartree-Fock ("multiplicative potential")

Outline

[DFT in Context](#page-2-0)

[Necessary Conditions for Constructive DFT to Work](#page-18-0)

[Near-Term Gameplan for Microscopic Nuclear DFT](#page-79-0)

[Summary](#page-104-0)

DFT Issues

- **Organization about mean field: need convergent expansion**
	- like loop expansion: only mean field is nonperturbative
	- can DFT deal with nuclear short-range correlations?
	- claim: need low-momentum interactions
- DFT for self-bound systems
	- does DFT even exist? (HK theorem for intrinic states?)
	- symmetry breaking and zero modes
	- game plans proposed:
		- J. Engel, find intrinsic functional (one-d boson system)
		- Giraud et al., use harmonic oscillator tricks
		- **o** methods to deal with soliton zero modes
- How to deal with long-range correlations?
- **•** Effectiveness of approximations (e.g., DME)

Low-Momentum Interactions from RG [AV18 ³**S**1**]**

- Other transformations also decouple (e.g., UCOM)
- Isn't chiral EFT already soft?

Low-Momentum Interactions from RG [AV18 ³**S**1**]**

- Other transformations also decouple (e.g., UCOM)
- Isn't chiral EFT already soft?

Low-Momentum Interactions from RG [AV18 ³**S**1**]**

- Other transformations also decouple (e.g., UCOM)
- Isn't chiral EFT already soft?

• Yes! Use
$$
\frac{dH_s}{ds} = [[G_s, H_s], H_s]
$$
 with $G_s = \begin{pmatrix} PH_sP & 0 \\ 0 & QH_sQ \end{pmatrix}$

• Yes! Use
$$
\frac{dH_s}{ds} = [[G_s, H_s], H_s]
$$
 with $G_s = \begin{pmatrix} PH_sP & 0 \\ 0 & QH_sQ \end{pmatrix}$

• Yes! Use
$$
\frac{dH_s}{ds} = [[G_s, H_s], H_s]
$$
 with $G_s = \begin{pmatrix} PH_sP & 0 \\ 0 & QH_sQ \end{pmatrix}$

• Yes! Use
$$
\frac{dH_s}{ds} = [[G_s, H_s], H_s]
$$
 with $G_s = \begin{pmatrix} PH_sP & 0 \\ 0 & QH_sQ \end{pmatrix}$

• Yes! Use
$$
\frac{dH_s}{ds} = [[G_s, H_s], H_s]
$$
 with $G_s = \begin{pmatrix} PH_sP & 0 \\ 0 & QH_sQ \end{pmatrix}$

• Yes! Use
$$
\frac{dH_s}{ds} = [[G_s, H_s], H_s]
$$
 with $G_s = \begin{pmatrix} PH_sP & 0 \\ 0 & QH_sQ \end{pmatrix}$

• Yes! Use
$$
\frac{dH_s}{ds} = [[G_s, H_s], H_s]
$$
 with $G_s = \begin{pmatrix} PH_sP & 0 \\ 0 & QH_sQ \end{pmatrix}$

• Yes! Use
$$
\frac{dH_s}{ds} = [[G_s, H_s], H_s]
$$
 with $G_s = \begin{pmatrix} PH_sP & 0 \\ 0 & QH_sQ \end{pmatrix}$

• Yes! Use
$$
\frac{dH_s}{ds} = [[G_s, H_s], H_s]
$$
 with $G_s = \begin{pmatrix} PH_sP & 0 \\ 0 & QH_sQ \end{pmatrix}$

• Yes! Use
$$
\frac{dH_s}{ds} = [[G_s, H_s], H_s]
$$
 with $G_s = \begin{pmatrix} PH_sP & 0 \\ 0 & QH_sQ \end{pmatrix}$

• Yes! Use
$$
\frac{dH_s}{ds} = [[G_s, H_s], H_s]
$$
 with $G_s = \begin{pmatrix} PH_sP & 0 \\ 0 & QH_sQ \end{pmatrix}$

Decoupling of N³LO Potentials (¹S₀)

• ¹S₀ from N³LO (550/600 MeV) of Epelbaum et al.
 $k^2 (\text{fm}^2)$ $k^2 (\text{fm}^2)$ $k^2 (\text{fm}^2)$ $k^2 (\text{fm}^2)$ $k^2 (\text{fm}^2)$

See http://www.physics.ohio-state.edu/∼srg/ for more!

Decoupling of N³LO Potentials (¹S₀)

 \bullet ³S₁ from N³LO (550/600 MeV) of Epelbaum et al.

See http://www.physics.ohio-state.edu/∼srg/ for more!
Run to Lower λ via SRG $\implies \approx$ ∪niversality

Run to Lower λ **via SRG** \Longrightarrow ≈**Universality**

Run to Lower λ **via SRG** \Longrightarrow ≈**Universality**

Run to Lower λ via SRG $\implies \approx$ ∪niversality

Run to Lower λ **via SRG** \Longrightarrow ≈**Universality**

Run to Lower λ **via SRG** \Longrightarrow ≈**Universality**

Bethe-Brueckner-Goldstone Power Counting

Bethe-Brueckner-Goldstone Power Counting

Hole-Line Expansion Revisited (Bethe, Day, . . .)

Consider ratio of fourth-order diagrams to third-order:

- "Conventional" G matrix still couples low-k and high-k
	- add a hole line \Longrightarrow ratio $\approx\sum_{n\leq k_{\rm F}}\langle bn|(1/e)G|bn\rangle\approx\kappa\approx 0.15$
	- no new hole line \implies ratio $\approx -\chi(r=0) \approx -1 \implies$ sum all orders
- Low-momentum potentials decouple low-k and high-k
	- add a hole line \implies still suppressed
	- no new hole line \implies also suppressed (limited phase space)
	- freedom to choose single-particle $U \implies$ use for Kohn-Sham

 \implies Density functional theory (DFT) should work!

- Defect wf $\chi(r)$ for particular kinematics ($k = 0$, $P_{cm} = 0$)
- AV18: "Wound integral" provides expansion parameter

- Defect wf $\chi(r)$ for particular kinematics ($k = 0$, $P_{cm} = 0$)
- AV18: "Wound integral" provides expansion parameter

- Defect wf $\chi(r)$ for particular kinematics ($k = 0$, $P_{cm} = 0$)
- AV18: "Wound integral" provides expansion parameter

- Defect wf $\chi(r)$ for particular kinematics ($k = 0$, $P_{cm} = 0$)
- AV18: "Wound integral" provides expansion parameter
- **•** Extreme case here, but same pattern in general
- Tensor $(^3S_1) \Longrightarrow$ larger defect

- Defect wf $\chi(r)$ for particular kinematics ($k = 0$, $P_{cm} = 0$)
- AV18: "Wound integral" provides expansion parameter
- **•** Extreme case here, but same pattern in general
- Tensor $(^3S_1) \Longrightarrow$ larger defect
- \bullet Still a sizable wound for N^3LO

Nuclear Matter with NN Ladders Only [nucl-th/0504043]

Nuclear Matter with NN Ladders Only [nucl-th/0504043]

Deja Vu All Over Again?

• There were active attempts to transform away hard cores and soften the tensor interaction in the late sixties and early seventies.

But the requiem for soft potentials was \bullet given by Bethe (1971): "Very soft potentials must be excluded because they do not give saturation; they give too much binding and too high density. In particular, a substantial tensor force is required."

• Next 35+ years struggling to solve accurately with "hard" potential

Deja Vu All Over Again?

• There were active attempts to transform away hard cores and soften the tensor interaction in the late sixties and early seventies.

• But the requiem for soft potentials was given by Bethe (1971): "Very soft potentials must be excluded because they do not give saturation; they give too much binding and too high density. In particular, a substantial tensor force is required."

- Next 35+ years struggling to solve accurately with "hard" potential
- But the story is not complete: three-nucleon forces (3NF)!

Observations on Three-Body Forces

- Three-body forces arise from eliminating dof's
	- excited states of nucleon
	- **•** relativistic effects
	- high-momentum intermediate states
- Omitting 3-body forces leads to model dependence
	- observables depend on λ
	- e.g., Tjon line
- 3-body contributions increase with density
	- **o** saturates nuclear matter
	- how large is 4-body?

Observations on Three-Body Forces

- Three-body forces arise from eliminating dof's
	- **e** excited states of nucleon
	- relativistic effects
	- high-momentum intermediate states
- Omitting 3-body forces leads to model dependence
	- observables depend on λ
	- e.g., Tjon line
- 3-body contributions increase with density
	- **o** saturates nuclear matter
	-

How Does The 3N Contribution Scale?

- Saturation driven by 3NF
- 3N force perturbative for $\Lambda \leq 2.5$ fm⁻¹
- Coupled cluster results very promising
- **•** Unnaturally large? Chiral: $\langle V_{3N} \rangle \sim (Q/\Lambda)^3 \langle V_{NN} \rangle$
- Four-body contributions?
- Power counting with NN + 3N HF at LO?

Compare 2nd-Order NN-Only to Empirical Point

Does 3N/2N Ratio Scale Like 1/Λ ³ **or** 1/Λ**?**

Diagrams for SRG =⇒ **Disconnected Cancels**

Dick Furnstahl [DFT for Nuclei](#page-0-0)

Nuclear Matter Ladders [nucl-th/0504043]

Nuclear Matter Ladders [nucl-th/0504043]

Nuclear Matter Ladders [nucl-th/0504043]

Nuclear Matter Ladders [nucl-th/0504043]

Nuclear matter: Connecting to DFT

- \bullet HF + 2nd order
- NN-only $V_{\text{low }k}$ or SRG with $\Lambda,\lambda\leq 2$ fm $^{-1}$ doesn't saturate nuclear matter \Longrightarrow as A \uparrow , nuclei collapse
- Typical fit to NNN from chiral FFT at N^2 I O from $A = 3, 4 \Longrightarrow c_D, c_F$ (but not fit to SRG yet)
- **•** Large uncertainty for c-terms from πN or NN
- Only symmetric nuclear

Nuclear matter: Connecting to DFT

- Coefficients of NNN force can be used to fine-tune nuclear matter within error bands
- **"Naturalness" implies** $\mathcal{O}(1)$ factors
- Should also be consistent with small $A \implies$ need NNN fits (and eventually SRG running)
- **o** In the short term: add short-distance counterterms for adjustments

Nuclear matter: Connecting to DFT

- **•** Preliminary: may need more binding from NN to get naturalness and reasonable K_{sat}
- What is missing in NN part at MeV/particle level? Need accurate nuclear matter calculation to assess (coupled cluster!)

Observables Sensitive to 3N Interactions?

- Study systematics along isotopic chains
- Example: kink in radius shift $\langle r^2 \rangle(A) \langle r^2 \rangle(208)$ [Reinhard/Flocard, NPA 584]

● Can we constrain 3N forces from nuclear structure? Already practiced for light nuclei (GFMC, NCSM)

Misconceptions vs. Correct Interpretations

- DFT is a Hartree-(Fock) approximation to an effective interaction
	- DFT can accomodate all correlations in principle, but they are included perturbatively (which can fail for some V)
- Nuclear matter is strongly nonperturbative in the potential
	- "perturbativeness" is highly resolution dependent
- (fill in the blank) causes nuclear saturation
	- another resolution-dependent inference
- Generating low-momentum interactions loses important information
	- long-range physics is preserved
	- relevant short-range physics encoded in potential
- Low-momentum NN potentials are just like G-matrices
	- important distinction: conventional G-matrix still has high-momentum, off-diagonal matrix elements

Outline

[DFT in Context](#page-2-0)

[Necessary Conditions for Constructive DFT to Work](#page-18-0)

[Near-Term Gameplan for Microscopic Nuclear DFT](#page-79-0)

[Summary](#page-104-0)

SciDAC 2 Project: Building a UNEDF Goals

- Understand nuclear properties "for element formation, for properties of stars, and for present and future energy and defense applications"
- Scope is all nuclei $(A > 12-16)$, with particular interest in reliable calculations of unstable nuclei and in reactions
- **Order of magnitude improvement over present capabilities** \implies precision calculations
- Connected to best microscopic physics
- Maximum predictive power with well-quantified uncertainties
- Building the EDF is the heart of the project

[website at http://unedf.org]

Parallel Development Areas

- **¹** Momentum-space Renormalization Group (RG) methods to evolve chiral NN and NNN potentials to more perturbative forms as inputs to nuclear matter and ab initio methods (coupled cluster, NCSM).
- **²** Controlled nuclear matter calculations based on the RG-improved interactions, as ab initio input to Skyrme EDF benchmarking and microscopic functional.
- **³** Approximate DFT functional, initially by adapting density matrix expansion (DME) to RG-improved interactions.
- **⁴** Adaptation to Skyrme codes and allowance for fine tuning.

Points of emphasis:

- Systematic upgrade path with existing and developing technology
- Theoretical error bars on interaction (vary EFT Λ and order of calculation) and on implementation (vary SRG λ or $V_{\text{low }k}$ Λ)

Sources of Theoretical Error Bars

- **¹** EFT Hamiltonian
	- **e** estimate from order of EFT power counting
	- **o** lower bound from varying Λ_{ΕFΤ}
- **2** RG ($V_{\text{low }k}$, V_{SRG}) truncation: NN· · · N contributions
	- $\bullet\,$ vary λ_{SRG} or $\Lambda_{V_{\text{low-}k}}$
- **³** Many-body approximations
	- $\bullet\,$ vary λ_{SRG} or $\Lambda_{V_{\text{low-}k}}$
- **4** Numerical approximations
	- vary basis size, etc.

Density Matrix Expansion Revisited [Negele/Vautherin]

DME: Write one-particle density matrix in Kohn-Sham basis

$$
\rho(r_1,r_2)=\sum_{\epsilon_\alpha\leq\epsilon_F}\psi^\dagger_\alpha(r_1)\psi_\alpha(r_2)\qquad\qquad\overbrace{\qquad\qquad\text{-s/2}\qquad R\quad\text{-s/2}}^{\pmb{r}}\qquad2}
$$

- $\rho(\mathbf{r}_1, \mathbf{r}_2)$ falls off with $|\mathbf{r}_1 \mathbf{r}_2| \Longrightarrow$ expand in s (and resum)
- Fall off well approximated by nuclear matter \implies expand so that first term exact in uniform system

Density Matrix Expansion Revisited [Negele/Vautherin]

DME: Write one-particle density matrix in Kohn-Sham basis

$$
\rho(r_1,r_2)=\sum_{\epsilon_\alpha\leq\epsilon_F}\psi^\dagger_\alpha(r_1)\psi_\alpha(r_2)\qquad\qquad\overbrace{\qquad\qquad\text{-s/2}\qquad R\quad\text{-s/2}}^{\pmb{r}}\qquad2}
$$

- $\rho(\mathbf{r}_1, \mathbf{r}_2)$ falls off with $|\mathbf{r}_1 \mathbf{r}_2| \Longrightarrow$ expand in s (and resum)
- Fall off well approximated by nuclear matter \implies expand so that first term exact in uniform system
- Change to $R = \frac{1}{2}$ $\frac{1}{2}$ (**r**₁ + **r**₂) and **s** = **r**₁ – **r**₂ and resum in **s**

$$
\rho(\mathbf{R} + \mathbf{s}/2, \mathbf{R} - \mathbf{s}/2) = e^{\mathbf{s} \cdot (\nabla_1 - \nabla_2)/2} \rho(\mathbf{r}_1, \mathbf{r}_2)|_{\mathbf{s} = 0}
$$

\n
$$
\implies \frac{3j_1(sk_F)}{sk_F} \rho(\mathbf{R}) + \frac{35j_3(sk_F)}{2sk_F^3} \Big(\frac{1}{4} \nabla^2 \rho(\mathbf{R}) - \tau(\mathbf{R}) + \frac{3}{5}k_F^2 \rho(\mathbf{R}) + \cdots \Big)
$$

In terms of local densities $\rho(\mathbf{R}), \tau(\mathbf{R}), ... \implies \text{DFT with these}$

Physics of the DME [Negele et al.]

- Local rather than global properties of density matrix
- Not a short-distance expansion; preserve long-range effects
	- Expanding the difference between exact and nuclear matter results in powers of s (nuclear matter k_F)

DME With a Nonlocal Interaction

● HF+ functional for two-body V is (spin/isospin implicit):

$$
W[J_0] = \frac{1}{2} \int d^3 \mathbf{R} d^3(\mathbf{r}_1 - \mathbf{r}_2) d^3(\mathbf{r}_3 - \mathbf{r}_4) \rho(\mathbf{r}_1, \mathbf{r}_3) K(\mathbf{r}_1 - \mathbf{r}_2, \mathbf{r}_3 - \mathbf{r}_4) \rho(\mathbf{r}_2, \mathbf{r}_4)
$$

\n
$$
\rho(\mathbf{r}_1, \mathbf{r}_3)
$$
\nwhere *K* is the anti-symmetrized interaction
\n
$$
\mathbf{r}_1
$$
\n
$$
\mathbf{r}_2
$$
\n
$$
\mathbf{r}_3
$$
\n
$$
\mathbf{r}_4
$$
\n
$$
\mathbf{r}_1
$$
\n
$$
+\Delta/2
$$
\n
$$
\mathbf{R} + \Sigma/2
$$
\n
$$
\mathbf{R} - \Sigma/2
$$
\n
$$
\mathbf{r}_2
$$
\n
$$
\mathbf{r}_3
$$
\n
$$
\mathbf{r}_4
$$
\n
$$
\mathbf{r}_1
$$
\n
$$
\mathbf{r}_2
$$
\n
$$
\mathbf{r}_3
$$
\n
$$
\mathbf{r}_4
$$
\n
$$
\mathbf{r}_1
$$
\n
$$
\mathbf{r}_2
$$
\n
$$
\mathbf{r}_2
$$

- Analogous expansion of 3N contributions
- **•** Treat frequency in *K* using factorization (V. Rotival et al.)

New Aspects of the DME for UNEDF

\bullet EFT, $\mathsf{V}_{\mathrm{low}\,k}$, $\mathsf{V}_{\mathrm{srg}}$ are strongly non-local

- DME for nonlocal V never tested in original papers (not to mention many typos! :)
- 2 expansions required
- **2** Treat 3N force contributions (N²LO NNN for now)
	- 3 expansions needed now
- **3** Momentum space formulation
	- not tied to a 3d, operator representation of V

DME Compared to Skyrme Hartree-Fock

•
$$
E[\rho, \tau, \ldots] = \int d^3 \mathbf{R} \, \mathcal{E}(\rho, \tau, \ldots)|_{\rho = \rho(\mathbf{R}), \tau = \tau(\mathbf{R}), \ldots}
$$

• Phenomenological Skyrme energy functional (here for $N = Z$, even-even, spin-saturated nuclei)

$$
\mathcal{E}=\frac{\tau}{2M}+\frac{3}{8}t_0\rho^2+\frac{1}{16}t_3\rho^{2+\alpha}+\frac{1}{16}(3t_1+5t_2)\rho\tau+\frac{1}{64}(9t_1-5t_2)|\boldsymbol{\nabla}\rho|^2+\cdots
$$

• DME energy functional

$$
\mathcal{E} = \frac{\tau}{2M} + A[\rho] + B[\rho]\tau + C[\rho]|\nabla \rho|^2 + \cdots
$$

- A, B, C, ... are functions of ρ vs. Skyrme constants t_i \implies replace as inputs to codes
- **•** Beyond a short-range expansion: long-range pion in n.m.
- Qualitative insight first. Fine-tuning needed for quantitative?

DME Meets Low-Momentum V **[Bogner, Platter, rif]**

 $\mathcal{E}=\frac{1}{2h}$ $\frac{1}{2M}\tau+A[\rho]+B[\rho]\tau+C[\rho]|\boldsymbol{\nabla}\rho|^2+\cdots$ in momentum space \Longrightarrow A and B functions determine bulk nuclear matter:

$$
A[\rho] \sim k_{\rm F}^3 \sum_{lsj} \widehat{i} \, \widehat{t} \int_0^{k_{\rm F}} k^2 \, dk \, V_{lsjt}(k,k) \, P_A(k/k_{\rm F}) \ + \ \{ V_{3N} \} \ + \ \cdots
$$

$$
B[\rho] \sim k_{\rm F}^{-3} \sum_{lsj} \hat{j} \hat{t} \int_0^{k_{\rm F}} k^2 \,dk \,V_{lsjt}(k,k) \, P_B(k/k_{\rm F}) + \{V_{3N}\} + \cdots
$$

 \bullet P_A, P_B are simple polynomials in k/k _F

- \bullet C[ρ] has two-dimensional integral over off-diagonal V
- Also spin-orbit, tensor, ...
- 3-body contributions have density matrices that are expanded in Jacobi coordinates; double-exchange is hardest

Chiral Three-Body Interactions in DME

 c_i 's from πN or NN + short-range LEC's

Non-Local Interactions and the DME

- **•** Two expansions now!
- Consider HO approximation to fully self-consistent HF $\langle V \rangle$ (NN only)
- Schematic model to study effect of non-locality on DME $V(\mathbf{r}, \mathbf{r}') = V(\frac{\mathbf{r} + \mathbf{r}'}{2\alpha})$ $\frac{e^{-\left(\frac{\mathbf{r}-\mathbf{r}^{\prime}}{\beta}\right)}}{(\pi\beta^{2})^{3}} \times \frac{e^{-\left(\frac{\mathbf{r}-\mathbf{r}^{\prime}}{\beta}\right)}}{(\pi\beta^{2})^{3}}$ $\frac{-r'}{\beta}\Big)^2$ $(\pi \beta^2)^{3/2}$
- No problem increasing non-locality β until \approx 3 times range α

Effects of different non-localities/ranges on the DME (Harmonic Oscillator approximation in Ca-40)

DME for Low-momentum Interactions (HF/NN only)

- **•** Test with HO model
- \bullet errors $\approx +5$ MeV (NLO), ≈ -10 MeV (N³LO)
- Λ–independent errors
- cf. schematic V's (1970's) (finite-range direct terms)

DME for Low-momentum Interactions (HF/NN only)

 $\mathcal{E} = \frac{\tau}{2}$ $\frac{1}{2M} + A[\rho] + B[\rho]\tau + C[\rho]|\nabla \rho|^2 + \cdots$

Dick Furnstahl [DFT for Nuclei](#page-0-0)

HF Long-Range Contributions (1π**, leading** ²π**)**

DME error in 1 π exchange \approx 4 MeV (out of 431 MeV) in ⁴⁰Ca

Subtleties With One-Pion Exchange

- Poor convergence of 1π exchange DME in partial wave expansion
- Is this a fundamental limitation of the momentum-space, non-local formulation of the DME that we employ?

Separating Out Finite Range Pion Physics

• RG evolution only affects short-distance structure

 $V_{\Lambda_0}(k, k') - V_{\Lambda}(k, k') = C_0 + C_2(k^2 + k'^2) + \cdots$ [nucl-th/0308036]

- Long-range (low-k) pion-physics (e.g., from χ -EFT) unchanged
- short-range $C_n(\Lambda) k^{2n}$ generated to give Λ-independent observables
- Apply partial-wave DME to $(V_{\text{low }k} V_{\pi})$
- Treat V_{π} analytically (3D) and add it back in at the end
- DME EDF splits into 2 types of terms:
	- **¹** Λ-independent finite range pion contributions that have non-trivial density dependencies (a lot can be done analytically)
	- **2** Λ-dependent $C_n(\Lambda)k^{2n}$ terms (Skyrme-like) with simple density-dependencies (Λ-dependence = theoretical quidance for fine-tuning to data!)

[Context](#page-2-0) [Conditions](#page-18-0) [DME](#page-79-0) [Summary](#page-104-0) [Appendix](#page-106-0) [UNEDF](#page-80-0) [DME](#page-86-0)

DME from Perturbative Chiral Interactions

- N. Kaiser et al. in ongoing series of papers (nucl-th/0212049, 0312058, 0312059, 0406038, 0407116, 0509040, 0601100, . . .)
- **•** Fourier transform of expanded density matrix defines a momentum-space medium insertion, leading to DME:

Three-body forces from explicit ∆, e.g.,

- **•** Perturbative expansion for energy tuned to nuclear matter
- Many analytic results \Longrightarrow qualitative insight, checks for quantitative calculations with low-momentum interactions

DME ABC Functions: Original and Fine-Tuned

Dick Furnstahl [DFT for Nuclei](#page-0-0)

DME ABC Functions: Original and Fine-Tuned

Dick Furnstahl [DFT for Nuclei](#page-0-0)

Proof of Principle Calculation with HFBRAD

Observables Sensitive to 3N Interactions?

- Study systematics along isotopic chains
- Example: kink in radius shift $\langle r^2 \rangle(A) \langle r^2 \rangle(208)$

- Associated phenomenologically with behavior of spin-orbit
	- **•** isoscalar to isovector ratio fixed in original Skyrme
- Clues from chiral EFT contributions? (Kaiser et al.)

[Context](#page-2-0) [Conditions](#page-18-0) [DME](#page-79-0) [Summary](#page-104-0) [Appendix](#page-106-0) [UNEDF](#page-80-0) [DME](#page-86-0)

Ratio of Isoscalar to Isovector Spin-Orbit

- Ratio fixed at 3:1 for short-range spin-orbit (usual Skyrme)
- Kaiser: DME spin-orbit from chiral two-body (left) and three-body (right)

• Systematic investigation needed

Observables Sensitive to 3N Interactions?

Recent studies of tensor contributions [e.g., nucl-th/0701047]

See also Brown et al., PRC **74** (2006)

Outline

[DFT in Context](#page-2-0)

[Necessary Conditions for Constructive DFT to Work](#page-18-0)

[Near-Term Gameplan for Microscopic Nuclear DFT](#page-79-0)

[Summary](#page-104-0)

Summary: DFT from EFT and RG

- Plan: Chiral EFT \longrightarrow low k V_{NN} , V_{NNN} , ... \longrightarrow DFT for nuclei
	- **•** Effective action formalism provides framework
	- DME provides testable, improvable path to functional
	- Three-body contributions are critical for low-momentum interactions
- DFT Issues to resolve (partial list!)
	- Quantitative power counting with low-momentum V
	- Symmetry breaking and restoration in DFT (self-bound systems)
	- Non-localities from near-on-shell particle-hole excitations

Skyrme Energy Functionals (cf. Coulomb meta-GGA)

Minimize $\boldsymbol{E} = \int d\boldsymbol{\mathrm{x}} \, \mathcal{E}[\rho(\boldsymbol{\mathrm{x}}), \tau(\boldsymbol{\mathrm{x}}), \boldsymbol{\mathrm{J}}(\boldsymbol{\mathrm{x}}), \ldots]$ (for $N\! =\! Z$):

$$
\mathcal{E}[\rho,\tau,\mathbf{J}] = \frac{1}{2M}\tau + \frac{3}{8}t_0\rho^2 + \frac{1}{16}t_3\rho^{2+\alpha} + \frac{1}{16}(3t_1 + 5t_2)\rho\tau
$$

$$
+ \frac{1}{64}(9t_1 - 5t_2)(\nabla\rho)^2 - \frac{3}{4}W_0\rho\nabla\cdot\mathbf{J} + \frac{1}{32}(t_1 - t_2)\mathbf{J}^2
$$

where $\rho(\pmb{x}) = \sum_i |\phi_i(\pmb{x})|^2$ and $\tau(\pmb{x}) = \sum_i |\nabla \phi_i(\pmb{x})|^2$ (and **J**)
Skyrme Energy Functionals (cf. Coulomb meta-GGA)

Minimize $\boldsymbol{E} = \int d\boldsymbol{\mathrm{x}} \, \mathcal{E}[\rho(\boldsymbol{\mathrm{x}}), \tau(\boldsymbol{\mathrm{x}}), \boldsymbol{\mathrm{J}}(\boldsymbol{\mathrm{x}}), \ldots]$ (for $N\! =\! Z$):

$$
\mathcal{E}[\rho,\tau,\mathbf{J}] = \frac{1}{2M}\tau + \frac{3}{8}t_0\rho^2 + \frac{1}{16}t_3\rho^{2+\alpha} + \frac{1}{16}(3t_1 + 5t_2)\rho\tau + \frac{1}{64}(9t_1 - 5t_2)(\nabla\rho)^2 - \frac{3}{4}W_0\rho\nabla\cdot\mathbf{J} + \frac{1}{32}(t_1 - t_2)\mathbf{J}^2
$$

where $\rho(\pmb{x}) = \sum_i |\phi_i(\pmb{x})|^2$ and $\tau(\pmb{x}) = \sum_i |\nabla \phi_i(\pmb{x})|^2$ (and **J**)

Varying the (normalized) ϕ_i 's yields "Kohn-Sham" equation: $\left(-\nabla \frac{1}{2M^*(\mathbf{x})}\nabla + U(\mathbf{x}) + \frac{3}{4}\right)$ $\frac{3}{4}W_0\nabla\rho\cdot\frac{1}{i}$ $\frac{1}{i}\nabla \times \sigma\right) \phi_{\mathbf{i}}(\mathbf{x}) = \epsilon_{\mathbf{i}} \phi_{\mathbf{i}}(\mathbf{x}),$

 $U = \frac{3}{4}$ $\frac{3}{4}b\rho+(\frac{3}{16}t_1+\frac{5}{16}t_2)\tau+\cdots$ and $\frac{1}{2M^*(\mathbf{x})}=\frac{1}{2M}+(\frac{3}{16}t_1+\frac{5}{16}t_2)\rho$

- Iterate until ϕ_i 's and ϵ_i 's are self-consistent
- In practice: other densities, pairing is very important (HFB), projection needed, . . .

Skyrme Energy Functionals (cf. Coulomb meta-GGA)

Minimize $\boldsymbol{E} = \int d\boldsymbol{\mathrm{x}} \, \mathcal{E}[\rho(\boldsymbol{\mathrm{x}}), \tau(\boldsymbol{\mathrm{x}}), \boldsymbol{\mathrm{J}}(\boldsymbol{\mathrm{x}}), \ldots]$ (for $N\! =\! Z$):

$$
\mathcal{E}[\rho,\tau,\mathbf{J}] = \frac{1}{2M}\tau + \frac{3}{8}t_0\rho^2 + \frac{1}{16}t_3\rho^{2+\alpha} + \frac{1}{16}(3t_1 + 5t_2)\rho\tau
$$

$$
+ \frac{1}{64}(9t_1 - 5t_2)(\nabla\rho)^2 - \frac{3}{4}W_0\rho\nabla\cdot\mathbf{J} + \frac{1}{32}(t_1 - t_2)\mathbf{J}^2
$$

where $\rho(\pmb{x}) = \sum_i |\phi_i(\pmb{x})|^2$ and $\tau(\pmb{x}) = \sum_i |\nabla \phi_i(\pmb{x})|^2$ (and **J**)

• First Skyrme interaction had short-range 3N force ($\alpha = 1$)

 α = 1/6, 1/3, 1/2 in modern Skyrme parameterizations. Connection to microscopic many-body forces?

Skyrme Effective Mass M?

•
$$
\tau
$$
 dependence $\Longrightarrow \frac{M^*(\rho)}{M}$

• Negele: comes from off-diagonal range of density matrix and long-range part of G -matrix \Longrightarrow long-range part of potential

$$
\bullet \ \frac{M^*(\rho)}{M}=1/(1+2MB[\rho])
$$

- Skyrme at ρ_{sat} : 0.6–1.0
- Kaiser et al., NP **A750** (2005) 259: perturbative k_F expansion in ChPT

Kohn-Sham DFT and "Mean-Field" Models

• KS propagators (lines) always have "mean-field" structure

$$
G_{\text{KS}}^{0}(\mathbf{x}, \mathbf{x}'; \omega) = \sum_{\alpha} \psi_{\alpha}(\mathbf{x}) \psi_{\alpha}^{*}(\mathbf{x}') \left[\frac{\theta(\epsilon_{\alpha} - \epsilon_{\text{F}})}{\omega - \epsilon_{\alpha} + i\eta} + \frac{\theta(\epsilon_{\text{F}} - \epsilon_{\alpha})}{\omega - \epsilon_{\alpha} - i\eta} \right]
$$

where $\psi_{\alpha}(\mathbf{x})$ satisfies: $\left[-\frac{\nabla^{2}}{2M} - J_{0}(\mathbf{x}) \right] \psi_{\alpha}(\mathbf{x}) = \epsilon_{\alpha} \psi_{\alpha}(\mathbf{x})$

We can use the Kohn-Sham basis to calculate $n(\mathbf{k}) = \langle a^{\dagger}_{\mathbf{k}} \rangle$ \mathbf{k} a \mathbf{k} ⁾, but this is beyond standard DFT [see nucl-th/0410105]

Many-Body Forces in Skyrme HF?

• Old NDA analysis:

$$
c \left[\frac{\psi^{\dagger} \psi}{f_{\pi}^2 \Lambda} \right]' \left[\frac{\nabla}{\Lambda} \right]^{n} f_{\pi}^2 \Lambda^2
$$
\n
$$
\rho \longleftrightarrow \psi^{\dagger} \psi
$$
\n
$$
\longrightarrow \tau \longleftrightarrow \nabla \psi^{\dagger} \cdot \nabla \psi
$$

$$
\implies \tau \longleftrightarrow \nabla \psi^{\dagger} \cdot \nabla \psi
$$

$$
\mathbf{J} \longleftrightarrow \psi^{\dagger} \nabla \psi
$$

Density expansion? \bullet

$$
\frac{1}{7}\leq \frac{\rho_0}{f_\pi^2\Lambda}\leq \frac{1}{4}
$$

Many-Body Forces in Skyrme HF?

• Old NDA analysis:

$$
c \left[\frac{\psi^{\dagger} \psi}{f_{\pi}^2 \Lambda} \right]' \left[\frac{\nabla}{\Lambda} \right]'' f_{\pi}^2 \Lambda^2
$$

$$
\rho \longleftrightarrow \psi^{\dagger} \psi
$$

$$
\implies \tau \longleftrightarrow \nabla \psi^{\dagger} \cdot \nabla \psi
$$

 $\mathsf{J} \longleftrightarrow \psi^\dagger \nabla \psi$

• Density expansion?

$$
\frac{1}{7}\leq \frac{\rho_0}{f_\pi^2\Lambda}\leq \frac{1}{4}
$$

Many-Body Forces in Skyrme HF?

• Old NDA analysis:

$$
c \left[\frac{\psi^{\dagger} \psi}{f_{\pi}^2 \Lambda} \right]' \left[\frac{\nabla}{\Lambda} \right]'' f_{\pi}^2 \Lambda^2
$$

$$
\rho \longleftrightarrow \psi^{\dagger} \psi
$$

$$
\implies \tau \longleftrightarrow \nabla \psi^{\dagger} \cdot \nabla \psi
$$

$$
\implies \tau \longleftrightarrow \nabla \psi^{\dagger} \cdot \nabla \psi
$$

$$
\mathbf{J} \longleftrightarrow \psi^{\dagger} \nabla \psi
$$

Density expansion? \bullet

$$
\frac{1}{7}\leq \frac{\rho_0}{f_\pi^2\Lambda}\leq \frac{1}{4}
$$

Many-Body Forces are Inevitable in EFT!

- What if we have three nucleons interacting?
- Successive two-body scatterings with short-lived high-energy intermediate states unresolved \implies must be absorbed into three-body force

- A feature, not a bug!
- How do we organize $(3, 4, \cdots)$ -body forces? EFT! [nucl-th/0312063]

(Nuclear) Many-Body Physics: "Old" vs. "New"

Beyond Kohn-Sham LDA [Bhattacharyya, rjf, nucl-th/0408014]

Add additional sources to Lagrangian, e.g., $\eta(\textbf{x})\,\boldsymbol{\nabla}\psi^\dagger\cdot\boldsymbol{\nabla}\psi$

$$
\Gamma[\rho,\tau] = W[J,\eta] - \int J(x)\rho(x) - \int \eta(x)\tau(x)
$$

Two Kohn-Sham potentials: [$\rho \equiv \langle \psi^\dagger \psi \rangle$, $\;\tau \equiv \langle {\bm \nabla} \psi^\dagger \cdot {\bm \nabla} \psi \rangle$]

$$
J_0(\mathbf{x}) = \frac{\delta \Gamma_{\text{int}}[\rho, \tau]}{\delta \rho(\mathbf{x})} \quad \text{and} \quad \eta_0(\mathbf{x}) = \frac{\delta \Gamma_{\text{int}}[\rho, \tau]}{\delta \tau(\mathbf{x})}
$$

Kohn-Sham equation \Longrightarrow defines $\frac{1}{2M^*(\mathbf{x})} \equiv \frac{1}{2M} - \eta_0(\mathbf{x})$:

$$
\left(-\nabla\cdot\frac{1}{2M^*(\mathbf{x})}\nabla-J_0(\mathbf{x})\right)\phi_\alpha(\mathbf{x})=\epsilon_\alpha\,\phi_\alpha(\mathbf{x})
$$

• HF dilute energy density with ρ only vs. ρ and τ (for $\nu = 2$) :

$$
\frac{C_2}{8}\Big[\frac{3}{5}\left(\frac{6\pi^2}{\nu}\right)^{2/3}\rho^{8/3}\Big]+\ldots \quad \Longrightarrow \quad \frac{C_2}{8}\big[\rho\tau+\frac{3}{4}(\boldsymbol{\nabla}\rho)^2\big]+\ldots
$$

Pairing in DFT [Hammer, rjf, Puglia nucl-th/0612086]

• Add source *j* coupled to anomalous density:

$$
Z[J,j] = e^{-W[J,j]} = \int D(\psi^{\dagger}\psi) \exp\left\{-\int d^4x \left[{\cal L}+J(x)\,\psi^{\dagger}_{\alpha}\psi_{\alpha}+j(x)(\psi^{\dagger}_{\uparrow}\psi^{\dagger}_{\downarrow}+\psi_{\downarrow}\psi_{\uparrow})\right]\right\}
$$

 \bullet Densities found by functional derivatives wrt J, j:

$$
\rho(\mathbf{x}) = \left. \frac{\delta W[J,j]}{\delta J(\mathbf{x})} \right|_j, \quad \phi(\mathbf{x}) \equiv \langle \psi_1^{\dagger}(\mathbf{x}) \psi_1^{\dagger}(\mathbf{x}) + \psi_1(\mathbf{x}) \psi_1(\mathbf{x}) \rangle_{J,j} = \left. \frac{\delta W[J,j]}{\delta j(\mathbf{x})} \right|_J
$$

- Find $\Gamma[\rho, \phi]$ from $W[J_0, j_0]$ by inversion method
- Kohn-Sham system looks like short-range HFB with j_0 as gap

$$
\begin{pmatrix}\nh_0(\mathbf{x}) - \mu_0 & j_0(\mathbf{x}) \\
j_0(\mathbf{x}) & -h_0(\mathbf{x}) + \mu_0\n\end{pmatrix}\n\begin{pmatrix}\nu_i(\mathbf{x}) \\
v_i(\mathbf{x})\n\end{pmatrix} = E_i \begin{pmatrix}\nu_i(\mathbf{x}) \\
v_i(\mathbf{x})\n\end{pmatrix}
$$

$$
\quad \text{where} \qquad h_0(\textbf{x}) \equiv -\frac{\boldsymbol{\nabla}^2}{2M} - J_0(\textbf{x})
$$

Constructive DFT via Effective Action [nucl-th/0212071]

- Partition function with sources that adjust densities: $\mathcal{Z}[\mathcal{J}] = e^{-W[\mathcal{J}]} \sim \text{Tr} \, e^{-\beta(H+\mathcal{J}\widehat{\rho})} \quad \Longrightarrow \quad \text{path integral for } W[\mathcal{J}]$
- Invert to find $J[\rho]$ and Legendre transform from J to ρ : $\rho(\mathbf{x}) = \frac{\delta W[\mathcal{J}]}{\delta \mathcal{J}(\mathbf{x})}$ $\frac{\delta W[J]}{\delta J(x)} \implies \Gamma[\rho] = W[J] - \int J \rho \text{ and } J(x) = -\frac{\delta \Gamma[\rho]}{\delta \rho(x)}$ δρ(**x**) \Rightarrow Γ[ρ] \propto ground-state energy, stationary at $\rho_{gs}(\mathbf{x})!$
- O Diagrammatic *expansion* (e.g., use BBG power counting)

- **o** Orbitals $\{\psi_i(\mathbf{x})\}$ in local Kohn-Sham (KS) potential $J_0([\rho], \mathbf{x})$ $[-\nabla^2/2m+J_0(\mathbf{x})]\psi_\alpha=\varepsilon_\alpha\psi_\alpha \implies \rho(\mathbf{x})=\sum$ A $i=1$ $|\psi_\alpha(\mathbf{x})|^2$
- KS propagators (lines):

$$
G_{\rm KS}^0(\mathbf{x}, \mathbf{x}'; \omega) = \sum_{\alpha} \psi_{\alpha}(\mathbf{x}) \psi_{\alpha}^*(\mathbf{x}') \left[\frac{\theta(\varepsilon_{\alpha} - \varepsilon_{\rm F})}{\omega - \varepsilon_{\alpha} + i\eta} + \frac{\theta(\varepsilon_{\rm F} - \varepsilon_{\alpha})}{\omega - \varepsilon_{\alpha} - i\eta} \right]
$$