Pairing correla’ Cooper pairs and
exactly solv pairing models

Brief historical introduction. 50th anniversary of the BCS paper.
Richardson exact solution (1963)

Ultrasmall superconducting grains (1999).

Cooper pairs and pairing correlations from the exact solution in BCS-
BEC crossover (2005) and in atomic nuclei (2007).
@ Generalized Richardson-Gaudin Models for r>1 (2006-2007). Exact

solution of the T=0,1 p-n pairing model.




The Cooper Problem
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Bound Electron Pairs in a Degenerate
Fermi Gas*

Leon N. Coorer

Physics Department, University of Illinois, Urbana, Illinos
(Received September 21, 1956)

T has been proposed that a metal would display
superconducting properties at low temperatures if
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=(1/V) exp[i(ky-r1+ks-rs)] which satisfy periodic
boundary conditions in a box of volume V, and where
r1 and ry are the coordinates of electron one and elec-
tron two. (One can use antisymmetric functions and
obtain essentially the same results, but alternatively
we can choose the electrons of opposite spin.) Defining
relative and center-of-mass coordinates, R=4(r,+rs),
r=(r;—r), K= (k;+k;) and k=31(k:—k,), and letting
Ex+ea= (h*/m)(3K*+k®), the Schrédinger equation
can be written

(8K+ ék"E)ak+Zk' ayr (k [Hl ! k?}

X6(K—K")/8(0)=0 (1)
where
¥(R,r)= (1/4/V)e™ ®x(r,K), @
x(0,K)=2x (au//V)e'kr,
and
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V 0 phonons

Problem : A pair of electrons with an attractive interaction on top of

an inert Fermi sea.
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“Bound” pair for arbitrary small attractive interaction. The FS is unstable
against the formation of these pairs

If the many-body system could be considered (a,t
least to a lowest approximation) a collection of pairs
of this kind above a Fermi sea, we would have (whether
or not the pairs had signiﬁcant Bose properties) a model
similar to that proposed by Bardeen which would
display many of the equilibrium propertles of the

- superconducting state.




Bardeen-Cooper-Schrieffer
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Theory of Superconductivity™

J. BarpeeN, L. N. CoorEr,t axp J. R. SCHRIEFFER]
Department of Physics, University of Illinois, Urbana, Illinois
(Received July 8, 1957)

A theory of superconductivity is presented, based on the fact
that the interaction between electrons resulting from virtual
exchange of phonons is attractive when the energy difference
between the electrons states involved is less than the phonon
energy, #iw. It is favorable to form a superconducting phase when
this attractive interaction dominates the repulsive screened
Coulomb interaction. The normal phase is described by the Bloch
individual-particle model. The ground state of a superconductor,
formed from a linear combination of normal state configurations
in which electrons are virtually excited in pairs of opposite spin
and momentum, is lower in energy than the normal state by
amount proportional to an average (#w)? consistent with the
isotope effect. A mutually orthogonal set of excited states in

V) =

e |0}, I =

one-to-one correspondence with those of the normal phase is
obtained by specifying occupation of certain Bloch states and by
using the rest to form a linear combination of virtual pair con-
figurations. The theory yields a second-order phase transition and
a Meissner effect in the form suggested by Pippard. Calculated
values of specific heats and penetration depths and their temper-
ature variation are in good agreement with experiment. There is
an energy gap for individual-particle excitations which decreases
from about 3.5%7. at T=0°K to zero at T,. Tables of matrix
elements of single-particle operators between the excited-state
superconducting wave functions, useful for perturbation expan-
sions and calculations of transition probabilities, are given.
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BCS in Nuclear Structure

PHYSICAL REVIEW ~ VOLUME 110, NUMBER 4 MAY 15, 1958

Possible Analogy between the Excitation Spectra of Nuclei and Those
of the Superconducting Metallic State

A. BoHr, B. R. MoTTELSON, AND D. PINEs*
Institute for Theoretical Physics, University of Copenhagen, Copenhagen, Denmark, and Nordisk Institut jor Teoretisk Atomfysik,
Copenhagen, Denmark
(Received January 7, 1958)

The evidence for an energy gap in the intrinsic excitation spectrum of nuclei is reviewed. A possible
analogy between this effect and the energy gap observed in the electronic excitation of a superconducting
metal is suggested.

It thus appears that there may exist interesting
similarities between the low-energy spectra of nuclei
and of the electrons in the superconducting metal.
However, it must be stressed that the former are
significantly influenced by the finite size of the nuclear
system. Thus, the energy gap is observed to decrease




Richardson’s Exact Solution

1me 3, number 6 PHYSICS LETTERS 1 February 1963

A RESTRICTED CLASS OF EXACT EIGENSTATES
OF THE PAIRING-FORCE HAMILTONIAN *

R.W. RICHARDSON
H.M.Randall Laboratory of Physics,
University of Michigan, Ann Arbor, Michigan

Received 23 November 1962




Exact Solution of the BCS Model
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Eigenvalue equation:
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Ansatz for the eigenstates (generalized Cooper ansatz)
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Richardson equations

1 M 1 M
1+9 +29 =0, E=) E,
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Properties:
This is a set of M nonlinear coupled equations with M unknowns (E ).

The first and second terms correspond to the equations for the one pair
system. The third term contains the many body correlations and the

exchange symmetry.
The pair energies are either real or complex conjugated pairs.

There are as many independent solutions as states in the Hilbert space.
The solutions can be classified in the weak coupling limit (g—0).




What is an exactly solvable model?

.- A model is exactly solvable if we can write explicit expressions for the
complete set of eigenstates in terms of a set of parameters, which are in
turn solutions of an algebraic problem.

.- The exponential complexity of the many body problem is reduced to a
polynomial complexity.

.- Simplest examples of ESM are dynamical symmetry models. The
Hamiltonian is a combination of Casimir operators of a Lie algebra.
Analytically solvable. Elliot SU(3), IBM SU(3), O(6), U(5). Etc...

Why are ESM important?

.- They can unvelil physical properties that cannot described with existing
many-body theories.

.- They could constitute stringent test for many-body theories.
Benchmark models.




Recovery of the Richardson solution: Ultrasmall
superconducting grains

*A fundamental question posed by P.W. Anderson in J. Phys. Chem.
Solids 11 (1959) 26 :

“at what particle size will superconductivity actually disappear?”

 Since d~Vol! Anderson argued that for a sufficiently small metallic
particle, there will be a critical size d ~A,,, at which superconductivity
must disappear.

* This condition arises for grains at the nanometer scale.

e Main motivation from the revival of this old question came from the
WOrks:

* D.C. Ralph, C. T. Black y M. Tinkham,
PRL’'s 74 (1995) 3421 ; 76 (1996) 688 ; 78 (1997) 4087.




The model used to study metallic grains is the reduced BCS
Hamiltonian in a discrete basis:

H:jzal(gja— ) ci,C w—/’LchHcJ C;_Ci,

Single particles are assumed equally spaced

g, =jd, j=1..,Q

where Q is the total number of levels given by the Debye frequency op
and the level spacing d as

dQQ =2 w,




PBCS study of ultrasmall grains:
D. Braun y J. von Delft. PRL 81 (1998)47
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Condensation energy for even and odd grains

PBCS versus Exact
J. Dukelsky and G. Sierra, PRL 83, 172 (1999)
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Thermodynamic limit of the Richardson equations
M. Gaudin (unpublished). J.M. Roman, G. Sierra and JD, Nucl. Phys. B 634 (2002) 483.

V, N—>o, G=g/V and p=N/V

By using electrostatic techniques and assuming that extremes of the arc
are 2ut2 1 A, Gaudln derived the BCS equations:
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For a uniform 3D system in the thermodynamic limit the Gap
equation is singular. Leggett (1980) proposed a regularization
based on the subtraction the scattering length equation.

m 1 N 1 J.da 9(8) Scattering length

The Leggett model describes the BCS-BEC crossover in terms of a
single parameter 77 = 1/ kF a, - The resulting equations can be
Integrated (Papenbrock and Bertsch PRC 59, 2052 (1999))

7,
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Evolution of the chemical potential and the gap along the crossover




WhatCooper pair in the superfluid is medium?
G. Ortiz and JD, Phys. Rev. A 72, 043611 (2005)

= A[(ﬂl (rl)% (rz)”'(”N/z (erz)—l
“Cooper” pair wavefunction qa(r) _ % Z o, akr
Kk

@ From MF BCS: BCS _

@ =Cpes—

@From pair correlations: ¢ = <BCS‘ C . Cr ‘ BCS> =CouV,

| (E)=—¢
@From Exact wavefuction: P 2¢ _E
"
 E real and <0, bound eigenstate of a zero range
c @ 'V-E/2 interaction parametrized by a.
Ve (r) = r * E complex and R (E) < 0, quasibound molecule.

* E complex and R (E) > 0, molecular resonance.

* E Real and >0 free two particle state.




BCS-BEC Crossover diagram

f=1 Re(E)<0 \

f pairs with Re(E) >0

1-f unpaired, E real >0

Im(E)
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B it el

n=-1, f=0.35(BCS)
n=0, f=0.87(BCS)
n =0.37,f= 1 (BCS-P)
n =0.55, f = 1 (P-BEC)
n=172, f=1 (BEC)

f=1 some Re(E)>0
others Re(E) <0




“Cooper” pair wave function

6 x 107

Weak coupling BCS -

r* lo(n)[*

Strong coupling BCS -

BEC (T




ODLRO and the fraction of the
condensate

For fermions ODLRO occurs in the two-body density matrix

Lo (rl ey I‘2) :<l//%F (rl I)WI(rz I)WT (rl)l//¢(r2)>

If it has a macroscopic eigenvalue

o, (10,0 ) = (wi (1) w ) () vy (R)w, (R)+ o,

For a homogeneous system in the thermodynamic limit

=) r = >, <WT() W )> W(ﬁ(h—ﬂ)
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Sizes and Fraction of the condensate
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Application to Samarium isotopes
G.G. Dussel, s. Pittel, J. Dukelsky and P. Sarriguren, PRC 76, 011302 (2007)

@72=62, 80<N<96

@ Selfconsistent Skyrme (SLy4) Hartree-Fock plus BCS in 11 harmonic
oscillator shells (40 to 48 pairs in 286 double degenerate levels).

@ The strength of the pairing force is chosen to reproduce the
experimental pairing gaps in *>*Sm (A,=0.98 MeV, A = 0.94 MeV)

@ g,=0.106 MeV and g,=0.117 MeV. A dependence g=G/A is assumed
for the isotope chain.




Correlations Energies

Mass Ec(Exact) Ec(PBCS Ec(BCS+H) | Ec(BCS)
142 -4.146 |-3.096 |-1.214 |-1.107
144 -2.9060 |-2.677 0.0 0.0

146 -4.340 |-3.140 |-1.444 |-1.384
148 -4.221 |-3.014 |-1.165 |-1.0/5
150 -3.761 |-2.932 |-0.471 |-0.386
152 -3.922 |-2.957 |-0.750 |-0.637
154 -3.678 |-2.859 [-0.479 |-0.390
156 -3.716  |-2.832 |-0.605 |-0.515
158 -3.832 |-3.014 |-1.181 |-1.0/5




Fraction of the condensate in mesoscopic systems
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From the exact solution T is the fraction of pair energies whose

distance in the complex plane to nearest single particle energy is
larger than the mean level spacing.




Fraction

1,0 -

0,4

0,2

0,0

BEC

00 (@

0 0,2

1,0




0_ T ICI T 'C T T i -20_ T o T T T T T T T T o T
- 5 4 ©0o 00°
0L © 0 o o) o | Oop 000
20§ - 0 0 o\ \C ,‘ 40| 0000
0L (0] (¢} i :
% 40. Cl 2 C3 °go° C3 2 Cl -60}
A -60r 1 -
T 80 G=0.106 % o 5
o . G=0.2
-100} 8
QX 100} 9 1 _ o
-120-_ ° 1 -120t ©
10 05 00 05 10 20-15-10 5 0 5 10 15 20
-20 T T T T T T T T T T T T T T T T T T T T T T T T
e o | o7 %% o’
-40r "Ooy, S -60r 9% o°
£ -60} 1 -0r
S . | gol
O g} |
© | 0 |90
L -10p G033 | 400l G04 g
1201 0 | -110t o
1 L 1 L 1 L 1 L 1 _120 PR N (T S ST N SN S R N
40 20 0 20 40 80 -60 40 20 0 20 40 60 80
Imaginary Part Imaginary Part




l(K)|”




Some models derived from rank 1 RG

@BCS Hamiltonian (Fermion and Boson)

@Generalized Pairing Hamiltonians (Fermion and Bosons)
@Central Spin Model

@Gaudin magnets

@Lipkin Model

@Two-level boson models (IBM, molecular, etc..)
@Atom-molecule Hamiltonians (Feshbach resonances)
@Generalized Jaynes-Cummings models

@Breached superconductivity. LOFF and breached LOFF states.

Reviews: J.Dukelsky, S. Pittel and G. Sierra, Rev. Mod. Phys. 76, 643 (2004);
G. Ortiz, R. Somma, J. Dukelsky y S. Rombouts. Nucl. Phys. B 7070 (2005) 401




Exactly Solvable RG models for simple Lie algebras

Cartan classification of Lie algebras

rank A, su(n+1) B, so(2n+1) C, sp(2n) D,, so(2n)
su(2), su(1,1)
1 Sairing 0(3)-su(2) | sp2)~su2) | so(2)~u()
su(3) Three s0(5), s0(3,2) _ so(4)
2 level Lipkins pn-pairing p(4) ~s0(5) ~su(2)xsu(2)
3 4) Wi so(7) 6) FDSM 6)~su(4
su(4) Wigner | Z | sp(6) s0(6)~su(4)
so(8) pairing
4 su) so(9) P(8) GiJn:o%iﬁio.
3/2 fermions




Exactly Solvable Pairing Hamiltonians

1) SU(2), Rank 1 algebra

2) SO(5), Rank 2 algebra

H:Zi:gi Z ir jT

ijz
J. Dukelsky, V. G. Gueorguiev, P. Van Isacker, S. Dimitrova, B. Erreay S. Lerma H. PRL 96 (2006) 072503.

3) SO(8), Rank 4 algebra

H = Zgini - gTZR:PJT - gSZ DD

ks ijo

S. Lerma H., B. Errea, J. Dukeslky and W. Satula. PRL 99, 032501 (2007).




The exact solution
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80 Nucleons in L=50 equidistant levels
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Ef=——T(T+4), El=——T(T+4)+AE

T 2T

J+: iso-Mol, A: Wigner energy , AE: 2qp excitation (V=2)
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FIG. 2: (a) Inverse of the iso-Mol (1/J7), (b) signature split-
ting der and (c) linear term enhancement factor A versus T
for pure T=0 model (circles). pure T=1 model (diamonds)
and the SO(8) model (triangles). Filled (open) symbols re-
fer to even-{odd-)T branches of E(T). The calculations were
done for g = 0,16 except for gray triangles in the lowest panel
which mark the SO(8) solution for g = 0.22.




‘ Summary \

* From the analysis of the exact BCS wavefunction we proposed a new
pictorial view to the nature of the Cooper pairs

e Alternative definition of the fraction of the condensate. Consistent with
change of sign of the chemical potential.

* For finite system, PBCS improves significantly over BCS but it is still far
from the exact solution. Typically, PBCS misses of order 1 MeV in
binding energy.

*The T=0,1 pairing model could be a benchmark to study different
approximations like the isocranking model or approximations dealing
with alpha correlations and alpha condensation. It can be also describe
the Ginnocchio model with non-degenerate orbits or spin 3/2 cold atom
models.

 SP(6) RG model: A deformed-superfluid benchmark model?
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