

Chairul Bahri, James P. Vary

INT, October 2007

Louisiana State University

Examples for **protons** and **proton-neutron** excitations

In addition to the $2\hbar\Omega$ 1p-1h excitations: small (~1/A) $2\hbar\Omega$ 2p-2h correction for removing spurious center-of-mass motion

Examples for **proton** excitations

Multi-particle-multi-hole $Sp(3,\mathbb{R})$ Slices 666000\$\$\$\$ • 12 $6\hbar\Omega$ *N*=6 sdgi *N*=5 pfh $4\hbar\Omega$ N=4sdg *N*=3 pf Model space of $2\hbar\Omega$ 2p-2h vertical slice N=2sd all possible N=1 $Sp(3,\mathbb{R})$ Valence shell Ŋ N=0**Filled shell** vertical slices = NCSM space

•NCSM model space... $6\hbar\Omega$

Origin of Symplectic Symmetry

Symplectic Sp(3,R) *Symmetry*

Realistic interaction possesses a Sp(3,R) symmetry + the complementary (spin-isospin) supermultiplet symmetry...

OR

...the nuclear many-body system acts as a filter: propagates Sp(3,R) symmetry in a coherent way; reduces Sp(3,R) symmetry-breaking effects.

INT, October 2007

Matrix elements in fp

J T Hsp4 GXPF1 ju is it p1/2 p1/2 p1/2 p1/2 1 0 -1.077001 -1.2431 p1/2 f5/2 p3/2 p3/2 2 1 -0.1923 -0.523662 0 p3/2 p3/2 p3/2 p3/2 0 1 -1.1165 p1/2 p1/2 p1/2 p1/2 0 1 -0.209086 -0.4469 p1/2 f5/2 p3/2 f5/2 2 0 0 -0.354 p3/2 p3/2 p3/2 p3/2 2 1 0.105489 -0.0887 p3/2 p3/2 p3/2 f5/2 p1/2 p1/2 p1/2 p3/2 -0.849 1 0 0 p1/2 f5/2 p3/2 f5/2 3 0 0 1.0151 1 0 0 0.2373 p1/2 p1/2 p3/2 p3/2 1 0 0.7675 0 p1/2 f5/2 p3/2 f5/2 2 1 0 -0.4043 p3/2 p3/2 p3/2 f5/2 30 0.2276 0 p1/2 p1/2 p3/2 p3/2 0 1 -0.444876 -1.4928 p1/2 f5/2 p3/2 f5/2 3 1 0 -0.06 p3/2 p3/2 p3/2 f5/2 2 1 -0.4631 0 p1/2 p1/2 p3/2 f5/2 1 0 0 0.8137 p1/2 f5/2 p3/2 f7/2 2 0 0 1.0933 p3/2 p3/2 p3/2 f7/2 3 0 -0.4309 p1/2 p1/2 f5/2 f5/2 1 0 0 -0.3161 p1/2 f5/2 p3/2 f7/2 0 0.7227 p3/2 p3/2 p3/2 f7/2 2 1 3 0 -0.3738 p1/2 p1/2 f5/2 f5/2 -0.54486 -0.8093 0 1 p1/2 f5/2 p3/2 f7/2 2 1 0 -0.803 p3/2 p3/2 f5/2 f5/2 1 0 0.0483 Ω p1/2 p1/2 f5/2 f7/2 1 0 -0.19283 1 0 p1/2 f5/2 p3/2 f7/2 0 -0.1814 p3/2 p3/2 f5/2 f5/2 3 0 -0.0546 1 0 p1/2 p1/2 f7/2 f7/2 0 0.0271 p1/2 f5/2 f5/2 f5/2 0 p3/2 p3/2 f5/2 f5/2 30 -0.6276 0 1 -0.770548 -1.2457 p1/2 p1/2 f7/2 f7/2 0 1 -0.816667 -0.38 p1/2 f5/2 f5/2 f5/2 2 1 0 -0.3208 p3/2 p3/2 f5/2 f5/2 0.0719 21 0 -1.077001 -2.5068 p1/2 p3/2 p1/2 p3/2 1 0 p1/2 f5/2 f5/2 f7/2 2 0 0 -0.5447 p3/2 p3/2 f5/2 f7/2 -0.8914 1 0 0 p1/2 p3/2 p1/2 p3/2 20 -1.077001 -2.3122 p1/2 f5/2 f5/2 f7/2 30 0 -0.6262 p3/2 p3/2 f5/2 f7/2 3 0 -0.6264 p1/2 p3/2 p1/2 p3/2 1 1 0.105489 -0.1594 p1/2 f5/2 f5/2 f7/2 2 1 0 0.1537 p3/2 p3/2 f5/2 f7/2 21 -0.0717 0.105489 p1/2 p3/2 p1/2 p3/2 21 -0.2938 3 1 f7/2 p1/2 f5/2 f5/2 f7/2 0 -0.1105 p3/2 p3/2 f7/2 1 0 -0.4313 p1/2 p3/2 p1/2 f5/2 2 0 -0.69 p1/2 f5/2 f7/2 f7/2 p3/2 p3/2 f7/2 f7/2 0 30 0 -0.1082 30 -0.3415 p1/2 p3/2 p1/2 f5/2 21 0 0.249 p1/2 f5/2 f7/2 f7/2 2 1 p3/2 p3/2 f7/2 f7/2 -1.154941 -0.7174 -0.1295 0 1 p1/2 p3/2 p3/2 p3/2 1 0 0 -1.8059 p1/2 f7/2 p1/2 f7/2 -1.638477 -1.6968 p3/2 p3/2 f7/2 f7/2 -0.2021 3 0 21 p1/2 p3/2 p3/2 p3/2 21 0.634 0 p1/2 f7/2 p1/2 f7/2 4 0 -1.638477 -1.0602 p3/2 f5/2 p3/2 f5/2 1 0 -1.077001-2.7262 1 0 p1/2 p3/2 p3/2 f5/2 0 0.993 p1/2 f7/2 p1/2 f7/2 31 0.08819 0.4873 p3/2 f5/2 p3/2 f5/2 2 0 -1.077001 -1.511 -0.4885 p1/2 p3/2 p3/2 f5/2 2 0 0 p1/2 f7/2 p1/2 f7/2 0.08819 -0.1347 p3/2 f5/2 p3/2 f5/2 30 -1.077001 -0.5859 4 1 p1/2 p3/2 p3/2 f5/2 1 1 0 -0.1076 p3/2 f5/2 p3/2 f5/2 p1/2 f7/2 p3/2 p3/2 30 0 -0.6411 4 0 -1.077001 -1.0882p1/2 p3/2 p3/2 f5/2 21 0 0.4545 p1/2 f7/2 p3/2 f5/2 0.0354 p3/2 f5/2 p3/2 f5/2 3 0 0 1 1 0.105489 0.3284 p1/2 p3/2 p3/2 f7/2 2 0 0 0.6228 p1/2 f7/2 p3/2 f5/2 -1.3607 p3/2 f5/2 p3/2 f5/2 0.105489 4 0 0 2 1 0.3608 p1/2 p3/2 p3/2 f7/2 2 1 0 0.4262 0.3891 p1/2 f7/2 p3/2 f5/2 31 0 p3/2 f5/2 p3/2 f5/2 31 0.105489 0.346 0.0337 p3/2 f5/2 f5/2 1 0 0 p1/2 p1/2 f7/2 p3/2 f5/2 4 1 0 0.6111 p3/2 f5/2 p3/2 f5/2 4 1 0.105489 -0.2584 p1/2 p3/2 f5/2 f5/2 2 1 0 -0.06 p1/2 f7/2 p3/2 f7/2 p3/2 f5/2 p3/2 f7/2 30 0 -1.685 2 0 0 1.2708 p1/2 p3/2 f5/2 f7/2 1 0 0 -1.4651 0 p1/2 f7/2 p3/2 f7/2 4 0 -0.1706 p3/2 f5/2 p3/2 f7/2 30 0 0.579 -0.7434 p1/2 p3/2 f5/2 f7/2 2 0 0 p1/2 f7/2 p3/2 f7/2 0 0.1048 p3/2 f5/2 p3/2 f7/2 0.7103 31 4 0 0 p1/2 p3/2 f5/2 f7/2 0.0552 1 1 0 p1/2 f7/2 p3/2 f7/2 4 1 0 0.3351 p3/2 f5/2 p3/2 f7/2 2 1 0 -0.5436 p1/2 p3/2 f5/2 f7/2 2 1 0 -0.0153 p1/2 f7/2 f5/2 f5/2 30 0 0.2621 p3/2 f5/2 p3/2 f7/2 31 0 -0.1836 p1/2 p3/2 f7/2 f7/2 1 0 -0.315 0 p1/2 f7/2 f5/2 f5/2 4 1 0 0.2248 p3/2 f5/2 p3/2 f7/2 4 1 0 -0.4546 2 1 p1/2 p3/2 f7/2 f7/2 0.0367 0 p1/2 f7/2 f5/2 f7/2 0 p3/2 f5/2 f5/2 f5/2 3 0 -0.4252 1 0 0 0.477 p1/2 f5/2 p1/2 f5/2 2 0 -1.077001 -0.3174 p1/2 f7/2 f5/2 f7/2 4 0 0 -0.3789 p3/2 f5/2 f5/2 f5/2 3 0 0 0.32 -1.077001 p1/2 f5/2 p1/2 f5/2 3 0 -1.4023 p1/2 f7/2 f5/2 f7/2 31 0 0.3224 p3/2 f5/2 f5/2 f5/2 2 1 0 -0.056 0.105489 p1/2 f5/2 p1/2 f5/2 21 -0.1519 p1/2 f7/2 f5/2 f7/2 4 1 0 0.1907 p3/2 f5/2 f5/2 f5/2 4 1 0 -0.3615 31 p1/2 f5/2 p1/2 f5/2 0.105489 0.2383 p1/2 f7/2 f7/2 f7/2 30 0 -0.8883 p3/2 f5/2 f5/2 f7/2 1 0 0 1.2721 p1/2 f5/2 p1/2 f7/2 3 0 -0.4505 0 p1/2 f7/2 f7/2 f7/2 4 1 0 0.2096 p3/2 f5/2 f5/2 f7/2 2 0 0 -0.598 p1/2 f5/2 p1/2 f7/2 31 0 0.1586 p3/2 p3/2 p3/2 p3/2 1 0 -1.077001 -0.6308 p3/2 f5/2 f5/2 f7/2 30 0 0.7716 p1/2 f5/2 p3/2 p3/2 3 0 0 0.115 p3/2 p3/2 p3/2 p3/2 3 0 -1.077001 4 0 -2.289 p3/2 f5/2 f5/2 f7/2 0 -0.6408

... and more matrix elements

p3/2	f5/2	f5/2	f7/2	1 1	0	0.0521	f5/2	f5/2	f5/2	f7/2	50	l ol	-1.1302
p3/2	f5/2	f5/2	f7/2	2 1	0	0.4247	f5/2	f5/2	f5/2	f7/2	21	0	0.5022
p3/2	f5/2	f5/2	f7/2	3 1	0	-0.0268	f5/2	f5/2	f5/2	f7/2	4 1	0	0.2709
p3/2	f5/2	f5/2	f7/2	4 1	0	0.2699	f5/2	f5/2	f7/2	f7/2	1 0	0	0.6511
p3/2	f5/2	f7/2	f7/2	1 0	0	-0.0907	f5/2	f5/2	f7/2	f7/2	30	0	0.4358
p3/2	f5/2	f7/2	f7/2	3 0	0	0.0752	f5/2	f5/2	f7/2	f7/2	50	0	0.1239
p3/2	f5/2	f7/2	f7/2	2 1	0	-0.1725	f5/2	f5/2	f7/2	f7/2	0 1	-1.414508	-1.3832
p3/2	f5/2	f7/2	f7/2	4 1	0	-0.2224	f5/2	f5/2	f7/2	f7/2	21	0	-0.2038
p3/2	f7/2	p3/2	f7/2	2 0	-1.638477	-0.5391	f5/2	f5/2	f7/2	f7/2	4 1	0	-0.0331
p3/2	f7/2	p3/2	f7/2	3 0	-1.638477	-1.0055	f5/2	f7/2	f5/2	f7/2	1 0	-1.638477	-4.5802
p3/2	f7/2	p3/2	f7/2	4 0	-1.638477	-0.3695	f5/2	f7/2	f5/2	f7/2	20	-1.638477	-3.252
p3/2	f7/2	p3/2	f7/2	50	-1.638477	-2.967	f5/2	f7/2	f5/2	f7/2	30	-1.638477	-1.4019
p3/2	f7/2	p3/2	f7/2	2 1	0.08819	-0.6081	f5/2	f7/2	f5/2	f7/2	4 0	-1.638477	-2.2583
p3/2	f7/2	p3/2	f7/2	31	0.08819	0.1561	f5/2	f7/2	f5/2	f7/2	50	-1.638477	-0.6084
p3/2	f7/2	p3/2	f7/2	4 1	0.08819	-0.1398	f5/2	f7/2	f5/2	f7/2	60	-1.638477	-3.0351
p3/2	f7/2	p3/2	f7/2	51	0.08819	0.5918	f5/2	f7/2	f5/2	f7/2	1 1	0.08819	-0.0889
p3/2	f7/2	f5/2	f5/2	30	0	0.166	f5/2	f7/2	f5/2	f7/2	21	0.08819	-0.175
p3/2	f7/2	f5/2	f5/2	50	0	0.0334	f5/2	f7/2	f5/2	f7/2	31	0.08819	0.6302
p3/2	f7/2	f5/2	f5/2	2 1	0	0.088	f5/2	f7/2	f5/2	f7/2	4 1	0.08819	0.4763
p3/2	f7/2	f5/2	f5/2	4 1	0	-0.2146	f5/2	f7/2	f5/2	f7/2	51	0.08819	0.7433
p3/2	f7/2	f5/2	f7/2	2 0	0	0.6381	f5/2	f7/2	f5/2	f7/2	61	0.08819	-0.9916
p3/2	f7/2	f5/2	f7/2	30	0	-0.254	f5/2	f7/2	f7/2	f7/2	1 0	0	-1.8998
p3/2	f7/2	f5/2	f7/2	4 0	0	-0.1951	f5/2	f7/2	f7/2	f7/2	30	0	-1.0917
p3/2	f7/2	f5/2	f7/2	50	0	-0.6743	f5/2	f7/2	f7/2	f7/2	50	0	-1.2853
p3/2	f7/2	f5/2	f7/2	2 1	0	-0.0959	f5/2	f7/2	f7/2	f7/2	21	0	-0.2167
p3/2	f7/2	f5/2	f7/2	31	0	0.523	f5/2	f7/2	f7/2	f7/2	4 1	0	0.4999
p3/2	f7/2	f5/2	f7/2	4 1	0	0.2486	f5/2	f7/2	f7/2	f7/2	61	0	0.5643
p3/2	f7/2	f5/2	f7/2	51	0	0.481	f7/2	f7/2	f7/2	f7/2	1 0	-2.078472	-1.2838
p3/2	f7/2	f7/2	f7/2	30	0	-0.8807	f7/2	f7/2	f7/2	f7/2	30	-2.078472	-0.8418
p3/2	f7/2	f7/2	f7/2	50	0	-0.4265	f7/2	f7/2	f7/2	f7/2	50	-2.078472	-0.7839
p3/2	f7/2	f7/2	f7/2	2 1	0	-0.516	f7/2	f7/2	f7/2	f7/2	70	-2.078472	-2.6661
p3/2	f7/2	f7/2	f7/2	4 1	0	-0.2969	f7/2	f7/2	f7/2	f7/2	0 1	-1.845204	-2.4385
f5/2	f5/2	f5/2	f5/2	1 0	-1.077001	-0.8551	f7/2	f7/2	f7/2	f7/2	21	0.062016	-0.9352
f5/2	f5/2	f5/2	f5/2	30	-1.077001	-0.5599	f7/2	f7/2	f7/2	f7/2	4 1	0.062016	-0.1296
f5/2	f5/2	f5/2	f5/2	50	-1.077001	-2.2816	f7/2	f7/2	f7/2	f7/2	61	0.062016	0.2783
f5/2	f5/2	f5/2	f5/2	0 1	-0.838236	-1.2081							
f5/2	f5/2	f5/2	f5/2	21	0.105489	-0.4621							
f5/2	f5/2	f5/2	f5/2	4 1	0.105489	-0.1624							
f5/2	f5/2	f5/2	f7/2	1 0	0	0.2735							
f5/2	f5/2	f5/2	f7/2	30	0	-0.6378							

0.6

0.2

 $H_{\rm Q}$

- symmetry breaking patterns in realistic interactions
- •Large correlation coefficients yield similar energy spectra

0.2

0.2

0.1

0.8

0.6

- Ab-initio No Core Shell Model: successfully reproduces (low-lying) features of the deuteron, alpha particle, ¹²C and even ¹⁶O
- Comparison of converged NCSM eigenstates with Sp(3,R)-symmetric states shows:
 - Reproduction of NCSM results by a few $Sp(3,\mathbb{R})$ states-
 - ✓ 85%-90% overlap
 - ✓ 100% B(E2: $2_1^+ \rightarrow 0_1^+$)
 - Dramatic reduction in model space (several orders of magnitude)
- Symplectic-NCSM: effective model space reduction scheme
- > $Sp(3,\mathbb{R})$ symmetry found dominant in *ab initio* realistic solutions

