Seattle INT 10-17-07

The Green's function method as a framework for datadriven extrapolations to the dripline and the extension of the density functional methods

Green's function method/framework

- F-RPA: $V \Rightarrow$ self-energy/propagator
- QP-DFT: functionals ⇒
 computationally harder systems
- DOM: data \Rightarrow self-energy/propagator data-driven extrapolations \Rightarrow drip line
- Outlook

Self-consistent Green's functions F-RPA incarnation Faddeev Random Phase Approximation

 $V_{NN} \Rightarrow data$

- Ground state A-particle system
- Excited states for A, A±2 systems

RPA

- Low-lying
- Giant resonances
- + ± 100 MeV from ϵ_{F}
- A±2 (with ladders outside of configuration space)
- Feedback on sp propagator \Rightarrow A±1 systems Faddeev

Developed for nuclei \Rightarrow Carlo Barbieri thesis WU (2002)Recent application:Neon atomPhys. Rev. A (2007)

Why atoms?

 DFT extension (QP-DFT) requires accurate self-energy in order to construct relevant functionals
 Current atomic electron self-energy and electron gas self-energy incompatible ADC(3) = 2p1h/2h1p TDA vs. RPA = GW self-energy
 Hence F-RPA explore quality for atoms can resolve electron-gas conundrum

Self-consistent Green's functions and the energy of the ground state of the electron gas

GW approximation

G self-consistent sp propagator
 W screened Coulomb interaction
 ⇒ RPA with dressed sp propagators

Electron gas : -XC energies (Hartrees)

	r _s = 1	r _s =2	r _s =4	r _s =5	r _s =10	r _s =20	
<u>Method</u>							Reference
QMC	0.5180	0.2742	0.1464	0.1197	0.0644	0.0344	CA80
	0.5144	0.2729	0.1474	0.1199	0.0641	0.0344	OB94;OHB99
GW	0.5160	0.2727	0.1450	0.1185	0.0620	0.032	<i>GG</i> 01
		0.2741	0.1465				HB98

Starting point

٠

• Non perturbative expansion of the self-energy:

Faddeev summation of RPA propagators

Containing e.g.

Describing excited states Essential for the electron gas \Rightarrow Plasmon But *GW* yields good total energy not a good self-energy

 $SCGF \Leftrightarrow F-RPA$

Application to Neon atom

C. Barbieri, D. Van Neck, and WD, Phys. Rev. A, in press

	F-TDA 🕇	F-RPA	F-TDAc	F-RPAc	Expt.
2p	-0.807	-0.799	-0.808	-0.801 (0.94)	-0.793 (0.92)
2s	-1.802	-1.792	-1.804	-1.795 (0.91)	-1.782 (0.85)
1s	-32.136	-32.097	-32.142	-32.104 (0.81)	-31.70
E _{tot}	-128.863	-128.857	-128.883	-128.888	-128.928

Main peaks in brackets

* Consistent with results from Heidelberg group

Some details

1s and 2s strength Neon atom

Quasiparticles easily identified

Analysis

	1s	2s	2p
HF	-32.77 (1.00)	-1.931 (1.00)	-0.850 (1.00)
$\Sigma^{(2)}$	-31.84 (0.74)	-1.736 (0.88)	-0.747 (0.91)
$G_0 W_0$	-31.14 (0.85)	-1.774 (0.91)	-0.801 (0.94)
F-RPA (ring)	-31.82 (0.73)	-1.636 (0.56)	-0.730 (0.80)
F-RPA (ladder)	-32.04 (0.87)	-1.802 (0.95)	-0.781 (0.96)
F-RPA	-32.10 (0.81)	-1.792 (0.91)	-0.799 (0.94)
Exp.	-31.70	-1.782 (0.85)	-0.793 (0.92)

Energies in hartrees (27.2 eV) Brackets contain strength of largest fragment Interference!

Periodic table

Quasiparticle density functional theory QP-DFT

D.Van Neck et al. Phys. Rev. A74, 042501(2006)

- Kohn-Sham implementation of density functional theory "as simple" as Hartree-Fock but includes correlations beyond HF while still only solving sp equations (self-consistently)
- DFT not good for near degenerate systems characterized by small particle-hole gaps
- Wave functions not easily interpreted
- Quasiparticles (QPs) are missing from KS-DFT
- Near the Fermi energy QPs describe the physics (Landau) Motivation \Rightarrow
- Develop sp equations whose solutions correspond to QP orbitals and energies, including the total energy and density matrix of the system (QP-DFT) Dimitri Van Neck, U of Ghent

New framework to do self-consistent sp theory

Ground-state energy and one-body density matrix from self-consistent sp equations that extend the Kohn-Sham scheme.

Based on separating the propagator into a quasiparticle part and a background, expressing only the latter as a functional of the density matrix. ⇒ in addition yields qp energies and overlap functions Reminder: DFT does not yield removal energies of atoms Relative deviation [%] DFT HF He atom 1s 37.4 1.5

Ne atom	2р	38.7	6.8
Ar atom	3р	36.1	2.0

While ground-state energies are closer to exp in DFT than in HF

"Single-particle energies" from mean-field/DFT calculations of nuclei

M.Bender slide JUSTIPEN workshop Oak Ridge, March 2007

Chart of nuclides

Interpretation: Nazarewicz

F-RPA, DOM and QP-DFT 15

Fourier transform of G (Lehmann representation)

$$\begin{split} G(\alpha,\beta;E) &= \left\langle \Psi_{0}^{N} \middle| a_{\alpha} \frac{1}{E - \left(\hat{H} - E_{0}^{N}\right) + i\eta} a_{\beta}^{\dagger} \middle| \Psi_{0}^{N} \right\rangle & \Leftarrow \text{Particle part} \\ &+ \left\langle \Psi_{0}^{N} \middle| a_{\beta}^{\dagger} \frac{1}{E + \left(\hat{H} - E_{0}^{N}\right) - i\eta} a_{\alpha} \middle| \Psi_{0}^{N} \right\rangle & \Leftarrow \text{Hole part} \\ &= \sum_{n} \frac{\left\langle \Psi_{0}^{N} \middle| a_{\alpha} \middle| \Psi_{n}^{N+1} \right\rangle \left\langle \Psi_{n}^{N+1} \middle| a_{\beta}^{\dagger} \middle| \Psi_{0}^{N} \right\rangle}{E - \left(E_{n}^{N+1} - E_{0}^{N}\right) + i\eta} + \sum_{n} \frac{\left\langle \Psi_{0}^{N} \middle| a_{\beta}^{\dagger} \middle| \Psi_{n}^{N-1} \right\rangle \left\langle \Psi_{n}^{N-1} \middle| a_{\alpha} \middle| \Psi_{0}^{N} \right\rangle}{E + \left(E_{n}^{N-1} - E_{0}^{N}\right) - i\eta} \\ &= \sum_{n} \frac{\left(\frac{z_{n}^{(+)}}{E - \varepsilon_{n}^{(+)} + i\eta} + z_{n}^{N} \frac{(z_{n}^{(-)})_{\alpha}(z_{n}^{(-)})_{\beta}^{*}}{E - \varepsilon_{n}^{(-)} - i\eta} \end{split}$$

Poles $\varepsilon_n^{(+)}$ in addition domain $(\varepsilon_0^{(+)}, +\infty)$ Poles $\varepsilon_n^{(-)}$ in addition domain $(-\infty, \varepsilon_0^{(-)})$ F-RPA, DOM and QP-DFT 16

Density and Removal Energy Matrices

One-body density matrix

$$N_{\alpha,\beta}^{(-)} = \int \frac{dE}{2\pi i} e^{i\eta E} G(\alpha,\beta;E) = \sum_{n} \left(z_n^{(-)} \right)_{\alpha} \left(z_n^{(-)} \right)_{\beta}^* = \left\langle \Psi_0^N \left| a_{\beta}^{\dagger} a_{\alpha} \right| \Psi_0^N \right\rangle$$

Removal energy matrix

$$M_{\alpha,\beta}^{(-)} = \int \frac{dE}{2\pi i} e^{i\eta E} E G(\alpha,\beta;E) = \sum_{n} \varepsilon_{n}^{(-)} \left(z_{n}^{(-)}\right)_{\alpha} \left(z_{n}^{(-)}\right)_{\beta}^{*} = \left\langle \Psi_{0}^{N} \left| a_{\beta}^{\dagger} \left[a_{\alpha},\hat{H} \right] \right| \Psi_{0}^{N} \right\rangle$$

Removal part of propagator yields any one-body observable plus

$$E_0^N = \frac{1}{2} Tr([H_0][N^{(-)}] + [M^{(-)}])$$
 the total energy (Migdal-Galitskii)
F-RPA, DOM and QP-DFT 17

Spectral function

Single-particle spectral function

$$\begin{bmatrix} S(E) \end{bmatrix} = \frac{1}{2\pi i} sign(\varepsilon_F - E) \left(\begin{bmatrix} G(E) \end{bmatrix} - \begin{bmatrix} G(E) \end{bmatrix}^{\dagger} \right)$$
$$= \sum_n \left(z_n^{(+)} \right) \left(z_n^{(+)} \right)^{\dagger} \delta \left(E - \varepsilon_n^{(+)} \right) + \sum_n \left(z_n^{(-)} \right) \left(z_n^{(-)} \right)^{\dagger} \delta \left(E - \varepsilon_n^{(-)} \right)$$

Sum rules $N_{\alpha,\beta} = \int_{-\infty}^{+\infty} dE \ S(\alpha,\beta;E) = \left\langle \Psi_0^N \left| \left\{ a_\beta^{\dagger}, a_\alpha \right\} \right| \Psi_0^N \right\rangle$

$$M_{\alpha,\beta} = \int_{-\infty}^{+\infty} dE \ E \ S(\alpha,\beta;E) = \left\langle \Psi_0^N \left| \left\{ a_\beta^{\dagger}, \left[a_\alpha, \hat{H} \right] \right\} \right| \Psi_0^N \right\rangle$$

Integrations over the entire energy axis

Split integration

$$N_{\alpha,\beta} = \int_{-\infty}^{\varepsilon_F} dE \ S(\alpha,\beta;E) + \int_{\varepsilon_F}^{+\infty} dE \ S(\alpha,\beta;E) = N_{\alpha,\beta}^{(-)} + N_{\alpha,\beta}^{(+)}$$

and similarly for

$$M_{\alpha,\beta} = \int_{-\infty}^{\varepsilon_F} dE \ E \ S(\alpha,\beta;E) + \int_{\varepsilon_F}^{+\infty} dE \ E \ S(\alpha,\beta;E) = M_{\alpha,\beta}^{(-)} + M_{\alpha,\beta}^{(+)}$$

Evaluating (anti)commutators (previous slide) sum rule can be written in closed form

and
$$M_{\alpha,\beta} = \delta_{\alpha,\beta}$$
 or $[N] = [I]$
 $M_{\alpha,\beta} = \langle \alpha | H_0 | \beta \rangle + \sum_{\gamma \delta} \langle \alpha \gamma | V | \beta \delta \rangle N_{\delta \gamma}^{(-)}$ or $[M] = [H_0] + [\tilde{V}_{HF}]$

F-RPA, DOM and QP-DFT 20

E. Quint, Ph.D. thesis NIKHEF, 1988

Main result: QP equations $\left[M_B^{\pm}\right]$ Require background contributions $\left[N_{R}^{\pm}\right]$ $N^{(-)}$ as functional of the density matrix to obtain $\left(\left[H_0 \right] + \left[\tilde{V}_{HF} \left\{ N^{(-)} \right\} \right] - \left[M_B \left\{ N^{(-)} \right\} \right] \right) u_j = \varepsilon_{Qj} \left(\left[I \right] - \left[N_B \left\{ N^{(-)} \right\} \right] \right) u_j$ Then eigenvalue problem can be solved yielding QP energies ε_{Qi} and QP orbits $z_{Qj} = \left(\left[I \right] - \left[N_B \left\{ N^{(-)} \right\} \right] \right) u_j$ $\begin{bmatrix} N \end{bmatrix} = \begin{bmatrix} N_Q \end{bmatrix} + \begin{bmatrix} N_B \end{bmatrix} \qquad \begin{bmatrix} N_Q^{(-)} \end{bmatrix} = \sum_{i=1}^N z_{Qi} z_{Qj}^{\dagger} \qquad \begin{bmatrix} N_Q^{(+)} \end{bmatrix} = \sum_{j=N+1}^N z_{Qj} z_{Qj}^{\dagger}$ $\left[M_Q^{(-)}\right] = \sum_{i=1}^N \varepsilon_{Qi} z_{Qj} z_{Qj}^{\dagger} \quad \left[M_Q^{(+)}\right] = \sum_{j=N+1}^\infty \varepsilon_{Qj} z_{Qj} z_{Qj}^{\dagger}$ $\begin{bmatrix} M \end{bmatrix} = \begin{bmatrix} M_O \end{bmatrix} + \begin{bmatrix} M_B \end{bmatrix}$

Procedure

 $\begin{array}{l} \mbox{Initial estimate for } \left[N^{(-)}\right] \mbox{ allows construction of } \left[N_B\right] \mbox{and } \left[M_B\right] \mbox{but also } \left[\tilde{V}_{HF}\right] \end{array}$

N lowest energy solutions belong in N-1 and can be used to update the density matrix

$$\left[N_{new}^{(-)}\right] = \sum_{j=1}^{N} z_{Qj} z_{Qj}^{\dagger} + \left[N_{B}^{(-)} \left\{N^{(-)}\right\}\right]$$

closing the self-consistency loop!

Total energy follows from

$$E_0^N = \frac{1}{2} \sum_{j=1}^N z_{Qj}^{\dagger} \left(\left[H_0 \right] + \varepsilon_{Qj} \right) z_{Qj} + \frac{1}{2} Tr \left(\left[H_0 \right] \left[N_B^{(-)} \left\{ N^{(-)} \right\} \right] + \left[M_B^{(-)} \left\{ N^{(-)} \right\} \right] \right)$$

Comments

• Formalism generates total energy, density matrix, and individual QP energies and orbits (with correct spectroscopic factors) starting from a representation for the background contributions $[M_B^{(\pm)}]$ and $[N_B^{(\pm)}]$ as a functional of the density matrix.

• M_B plays different role in nuclear systems as compared to electronic systems (responsible for attraction that binds system)

• F-RPA for atoms provides complete electron self-energy

• Recent work on modeling the complete nucleon self-energy \Rightarrow DOM (Charity *et al.*) provides information to generate functionals near and at intermediate energies from the Fermi energy

• Intermediate implementations are possible

 \Rightarrow adapt Skyrme functional approach

Formalism includes HF and KS-DFT (see Van Neck paper)

DOM = Dispersive Optical Model

C. Mahaux and R. Sartor, Adv. Nucl. Phys. 20, 1 (1991)

Green's function formulation "Mahaux analysis"

goal: extract propagator from data

Data-driven extrapolations / predictions to the dripline

• Input to QP-DFT for nuclei based on data

FRAMEWORK FOR EXTRAPOLATIONS BASED ON EXPERIMENTAL DATA

There is empirical information about the nucleon self-energy!!

- \Rightarrow Optical potential to analyze elastic nucleon scattering data
- \Rightarrow Extend analysis from A+1 to include structure information in A-1 \Rightarrow (e,e'p) data
- \Rightarrow Employ dispersion relation between real and imaginary part of self-energy

Recent extension

Combined analysis of protons in ⁴⁰Ca and ⁴⁸Ca Charity, Sobotka, & WD nucl-ex/0605026, Phys. Rev. Lett. **97**, 162503 (2006) Charity, Mueller, Sobotka, & WD, Phys. Rev. C (2007), in press.

Large energy window (> 200 MeV)

Goal: Extract asymmetry dependence $\Rightarrow \delta = (N - Z)/A$ \Rightarrow Predict proton properties at large asymmetry $\Rightarrow {}^{60}Ca$ \Rightarrow Predict neutron properties ... the dripline based on data!

Correlations for nuclei with N very different from Z? ⇒ Radioactive beam facilities

Nuclei are TWO-component Fermi liquids

- SRC about the same between pp, np, and nn
- Tensor force disappears for n when N >> Z but ...
- Any surprises?
- Ideally: quantitative predictions based on solid foundation

Some pointers: both from theory and experiment

F-RPA, DOM and QP-DFT 27

A. Gade et al., Phys. Rev. Lett. 93, 042501 (2004)

Program at MSU initiated by Gregers Hansen P. G. Hansen and J. A. Tostevin, Annu. Rev. Nucl. Part. Sci. **53**, 219 (2003)

neutrons more correlated with increasing proton number and accompanying increasing separation energy.

Dyson Equation and "experiment"

Equivalent to ...

Schrödinger-like equation with: $E_n^- = E_0^N - E_n^{N-1}$

Self-energy: non-local, energy-dependent potential With energy dependence: spectroscopic factors < 1 ⇒ as observed in (e,e'p)

$$-\frac{\hbar^{2}\nabla^{2}}{2m}\left\langle\Psi_{n}^{N-1}\left|a_{\vec{r}m}\right|\Psi_{0}^{N}\right\rangle+\sum_{m'}\int d\vec{r}'\Sigma'^{*}(\vec{r}m,\vec{r}'m';E_{n})\left\langle\Psi_{n}^{N-1}\left|a_{\vec{r}'m'}\right|\Psi_{0}^{N}\right\rangle=E_{n}^{-}\left\langle\Psi_{n}^{N-1}\left|a_{\vec{r}m}\right|\Psi_{0}^{N}\right\rangle$$

$$S = \left| \left\langle \Psi_{n}^{N-1} \middle| a_{\alpha_{qh}} \middle| \Psi_{0}^{N} \right\rangle \right|^{2} = \frac{1}{1 - \frac{\partial \Sigma^{*} \left(\alpha_{qh}, \alpha_{qh}; E\right)}{\partial E}} \\ \frac{1 - \frac{\partial \Sigma^{*} \left(\alpha_{qh}, \alpha_{qh}; E\right)}{\partial E}}{\left| e_{n}^{N} \right|} \\ \sum_{E_{n}^{-}} \left| \Phi_{rm}^{N} \middle| \Psi_{0}^{N} \right\rangle = \Psi_{n}^{N-1} (\vec{r}m) \\ \left\langle \Psi_{0}^{N} \middle| a_{\vec{r}m} \middle| \Psi_{0}^{N+1} \right\rangle = \Psi_{k}^{N+1} (\vec{r}m) \\ \left\langle \Psi_{E}^{c,N-1} \middle| a_{\vec{r}m} \middle| \Psi_{0}^{N} \right\rangle = \chi_{c}^{N-1} (\vec{r}m; E) \\ \left\langle \Psi_{0}^{N} \middle| a_{\vec{r}m} \middle| \Psi_{E}^{c,N+1} \right\rangle = \chi_{c}^{N+1} (\vec{r}m; E)$$

 $lpha_{qh}$ solution of DE at E_n^-

Bound states in N-1 Bound states in N+1 Scattering states in N-1 Elastic scattering in N+1

Elastic scattering wave function for (p,p) or (n,n)

Reaction cross section ⁴⁰Ca and ⁴⁸Ca

Loss of flux in the elastic channel

Potentials

Surface potential strengthens with increasing asymmetry for protons

200 [Mev fm] -20 -400 J_w/A J_v/A a) rms radii R_{RMS} [fm] 4.5 4 R^v_{RMS} b) 3.5 50 100 150 200 0 E-E_F [MeV]

Volume integrals

Fit and predictions of n & p elastic scattering cross sections

F-RPA, DOM and QP-DFT 32

Present fit and predictions of polarization data

F-RPA, DOM and QP-DFT 33

Present fit to (e,e'p) data

Proton single-particle structure and asymmetry

Extrapolation in δ

Naïve: $p/n \Rightarrow D_1 \Rightarrow \pm (N-Z)/A$

Cannot be extrapolated for n

Less naïve:

 $\begin{array}{l} \mathsf{D}_2 \Rightarrow \mathsf{p} \Rightarrow \textbf{+}(\mathsf{N}\textbf{-}\mathsf{Z})/\mathsf{A} \\ \mathsf{D}_2 \Rightarrow \mathsf{n} \Rightarrow 0 \end{array}$

Emphasizes coupling to GT resonance Consistent with n+^AMo data

Need *n*+⁴⁸Ca elastic scattering data!!! In progress at TUNL (Sobotka & Charity)

"D2" Extrapolation for large N of sp levels

Old ⁴⁸Ca(p,pn) data J.W.Watson et al. Phys. Rev. C26,961 (1982) ~ consistent with DOM

Driplines

Ν

Proton dripline wrong by 2

Neutron dripline more complicated:

⁶⁰Ca and ⁷⁰Ca particle bound Intermediate isotopes unbound Reef?

Spectroscopic factors as a function of δ

Improvements in progress

Replace treatment of nonlocality in terms of local equivalent but energy-dependent potential by explicitly nonlocal potential \Rightarrow Necessary for exact solution of Dyson equation

- Yields complete spectral density as a function of energy
- Yields one-body density
- Yields natural orbits
- Yields charge density
- Yields neutron density
- Data for charge density can be included in fit
- Data for (e,e'p) cross sections near E_F can be included in fit
- High-momentum components can be included (Jlab data)
- E/A can be calculated/ used as constraint \Rightarrow TNI
- NN Tensor force can be included explicitly
- Generate functionals for QP-DFT

OK OK OK OK

Charge density & High-momentum components

DOM Summary

Study of NZ nuclei based on DOM framework and experimental data

- Description of huge amounts of data
- Sensible extrapolations to systems with large asymmetry
- More data necessary to improve/pin down extrapolation
- More theory

Predictions

- N≠Z p more correlated while n similar (for N>Z) and vice versa
- Proton closed-shells with N>>Z \Rightarrow may favor pp pairing
- Neutron dripline may be more complicated (reef)

Future of Green's function method in nuclear systems

Calculations starting from V_{NN}

- Faddeev-RPA method (Barbieri) including $N \neq Z$ systems in order to understand DOM results (\Rightarrow GT connection)
- Pairing & SRC in neutron stars & nuclear matter / EOS (Polls, Rios)

Extensions of DOM

- Include aspects of V_{NN} (\Rightarrow tensor force)
- More data on stable systems (⁴⁸Ca) and nuclei like ³⁶Ca
- Analyze more systems
- Include (e,e) and (e,e'p) data by treating nonlocality (Van Neck)
- Radioactive beam data including (p,2p)
- Include higher-energy (p,p') data
- Construction of QP-DFT functionals (Van Neck)
 - starting with extension of Skyrme functionals
 - then including aspects of realistic interactions
 - or microscopic calculations

Conclusion

F-RPA

- Self-energy of small atoms accurate with F-RPA
- Contains the relevant ingredients for the electron gas including a (possibly) correct self-energy

DOM

- suggests new experiments (some in the pipeline)
- data-driven extrapolation to the dripline

QP-DFT

- $\bullet \text{ F-RPA} \Rightarrow \text{study background functionals for QP-DFT}$
- $\boldsymbol{\cdot}$ DOM \Rightarrow study background functionals for QP-DFT