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 Green‘s function method/framework

• F-RPA:  V ⇒ self-energy/propagator

• QP-DFT: functionals ⇒ 
computationally harder systems

• DOM: data ⇒ self-energy/propagator
data-driven extrapolations ⇒ drip line

• Outlook

Seattle INT 10-17-07
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Self-consistent Green’s functions
F-RPA incarnation

 Faddeev Random Phase Approximation
VNN ⇒ data

– Ground state A-particle system
– Excited states for A, A±2 systems

• Low-lying
• Giant resonances
• ± 100 MeV from εF

• A±2 (with ladders outside of configuration space)

– Feedback on sp propagator ⇒ A±1 systems

RPA

Faddeev

Developed for nuclei ⇒ Carlo Barbieri thesis WU (2002)
Recent application:        Neon atom Phys. Rev. A (2007)
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Why atoms?

• DFT extension (QP-DFT) requires accurate self-energy
in order to construct relevant functionals

• Current atomic electron self-energy and electron 
gas self-energy incompatible

ADC(3) = 2p1h/2h1p TDA vs. RPA = GW self-energy
• Hence F-RPA explore quality for atoms

can resolve electron-gas conundrum
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Self-consistent Green’s functions
and the energy of the ground state of the electron gas

Electron gas : -XC energies (Hartrees) 

  rs = 1   rs=2   rs=4   rs=5   rs=10   rs=20
Method Reference
QMC 0.5180 0.2742 0.1464 0.1197 0.0644 0.0344 CA80

0.5144 0.2729 0.1474 0.1199 0.0641 0.0344 OB94;OHB99
GW 0.5160 0.2727 0.1450 0.1185 0.0620 0.032 GG01

0.2741 0.1465 HB98

GW approximation
G self-consistent sp propagator
W screened Coulomb interaction

⇒ RPA with dressed sp propagators
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Starting point

Faddeev summation of RPA propagators
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Containing e.g.

TDA

RPA

Describing excited states
Essential for the electron gas ⇒ Plasmon
But GW yields good total energy not a good self-energy
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SCGF ⇔ F-RPA
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Application to Neon atom
C. Barbieri, D. Van Neck, and WD, Phys. Rev. A, in press

Main peaks in brackets

*

* Consistent with results from Heidelberg group
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Some details

1s and 2s strength
Neon atom

Quasiparticles 
easily identified
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Analysis

Energies in hartrees (27.2 eV)
Brackets contain strength of largest fragment
Interference!
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Periodic table

HF

Σ(2)
F-RPA



F-RPA, DOM and QP-DFT 12

Quasiparticle density functional theory
QP-DFT

D.Van Neck et al. Phys. Rev. A74, 042501(2006)

• Kohn-Sham implementation of density functional theory “as simple” as
Hartree-Fock but includes correlations beyond HF while still only
solving sp equations (self-consistently)
• DFT not good for near degenerate systems characterized by small
particle-hole gaps
• Wave functions not easily interpreted
• Quasiparticles (QPs) are missing from KS-DFT
• Near the Fermi energy QPs describe the physics (Landau)
Motivation ⇒
• Develop sp equations whose solutions correspond to QP orbitals and
energies, including the total energy and density matrix of the system
(QP-DFT) Dimitri Van Neck, U of Ghent
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New framework to do self-consistent sp theory

Ground-state energy and one-body density matrix from
self-consistent sp equations that extend the Kohn-Sham scheme. 

Based on separating the propagator into a quasiparticle part and a
background, expressing only the latter as a functional of the density matrix.
⇒ in addition yields qp energies and overlap functions
Reminder:  DFT does not yield removal energies of atoms
Relative deviation [%] DFT HF

He atom 1s 37.4 1.5
Ne atom 2p 38.7 6.8
Ar atom 3p 36.1 2.0

While ground-state energies are closer to exp in DFT than in HF
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“Single-particle energies” from
mean-field/DFT calculations of nuclei

M.Bender slide JUSTIPEN workshop Oak Ridge, March 2007
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Fourier transform of G (Lehmann representation)
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Density and Removal Energy Matrices

One-body density matrix
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Removal energy matrix

€ 

Mα,β
(−) =

dE
2πi

eiηE E G α,β;E( ) = εn
(−) zn

(−)( )α zn
(− )( )β

*

n
∑ = Ψ0

N aβ
† aα , ˆ H [ ] Ψ0

N∫

Removal part of propagator yields any one-body observable plus
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Spectral function

Single-particle spectral function
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Split integration
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Evaluating (anti)commutators (previous slide) sum rule
can be written in closed form
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Quasiholes in nuclei E. Quint, Ph.D.thesis NIKHEF, 1988

Quasihole strength or
spectroscopic factor Z(2s1/2) =0.65

n(2s 1/2) = 0.75
from elastic electron scattering

Intermediate

Strong fragmentation of
deeply-bound states
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Main result: QP equations

Then eigenvalue problem can be solved yielding QP energies εQj
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Procedure

N lowest energy solutions belong in N-1 and can be used to
update the density matrix
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Comments

• Formalism generates total energy, density matrix, and individual QP
energies and orbits (with correct spectroscopic factors) starting from
a representation for the background contributions [MB

(±)] and [NB
(±)] as

a functional of the density matrix.
• MB plays different role in nuclear systems as compared to electronic
systems (responsible for attraction that binds system)
• F-RPA for atoms provides complete electron self-energy
• Recent work on modeling the complete nucleon self-energy ⇒ DOM
(Charity et al.) provides information to generate functionals near and
at intermediate energies from the Fermi energy
• Intermediate implementations are possible

⇒ adapt Skyrme functional approach
• Formalism includes HF and KS-DFT (see Van Neck paper)
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DOM = Dispersive Optical Model

• Data-driven extrapolations / predictions to the dripline

• Input to QP-DFT for nuclei based on data

Green’s function formulation “Mahaux analysis” 

goal: extract propagator from data

C. Mahaux and R. Sartor, Adv. Nucl. Phys. 20, 1 (1991)



F-RPA, DOM and QP-DFT 25

FRAMEWORK FOR EXTRAPOLATIONS BASED ON EXPERIMENTAL DATA

 There is empirical information about the nucleon self-energy!!
⇒ Optical potential to analyze elastic nucleon scattering data
⇒ Extend analysis  from A+1 to include structure information in A-1 ⇒ (e,e’p) data
⇒ Employ dispersion relation between real and imaginary part of self-energy

Combined analysis of protons in 40Ca and 48Ca
Charity, Sobotka, & WD nucl-ex/0605026, Phys. Rev. Lett. 97, 162503 (2006)
Charity, Mueller, Sobotka, & WD, Phys. Rev. C (2007), in press.

Goal: Extract asymmetry dependence ⇒ δ = (N - Z)/A
⇒ Predict proton properties at large asymmetry ⇒  60Ca
⇒ Predict neutron properties …  the dripline

based on data!

Large energy window (> 200 MeV)

Recent extension
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Correlations for nuclei with N very different from Z?
⇒ Radioactive beam facilities

• SRC about the same between pp, np, and nn
• Tensor force disappears for n when N >> Z but …

• Any surprises?
• Ideally: quantitative predictions based on solid

foundation

Some pointers: both from theory and experiment

Nuclei are TWO-component Fermi liquids
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SCGF for isospin-polarized nuclear matter
including SRC ⇒ momentum distribution

0.16 fm-3

0.32 fm-3
neutrons

protons

asymmetry = (N-Z)/A

Frick et al.
PRC71,014313(2005)

CDBonn
ArV18
Reid

n(k=0)

SRC
can be handled
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A. Gade et al., Phys. Rev. Lett. 93, 042501 (2004)

Z=18
N=14

Z=8
N=14

neutrons more correlated with increasing proton number
and accompanying increasing separation energy.

RS ≠ not spectroscopic factor

Reduction w.r.t. shell model

Program at MSU initiated by Gregers Hansen 
P. G. Hansen and J. A. Tostevin, Annu. Rev. Nucl. Part. Sci. 53, 219 (2003)
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Dyson Equation and “experiment”
Equivalent to …
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 Bound states in N-1

 Bound states in N+1
 Scattering states in N-1
 Elastic scattering in N+1

Elastic scattering wave function for (p,p) or (n,n)
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Reaction cross section 40Ca and 48Ca

Loss of flux in the elastic channel
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Potentials
Surface potential strengthens
with increasing asymmetry
for protons

Volume integrals

rms radii
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Fit and predictions of n & p elastic scattering cross sections
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Present fit and predictions of polarization data



F-RPA, DOM and QP-DFT 34

Present fit to (e,e’p) data

radii of
bound state 
wave functions

spectroscopic
factors

widths of strength
distribution
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Pairing of protons due
to pn correlations?!

Proton single-particle structure and asymmetry

Increased correlations
with increasing asymmetry!



F-RPA, DOM and QP-DFT 36

Extrapolation in δ
Naïve: p/n ⇒ D1 ⇒ ± (N-Z)/A

Cannot be extrapolated for n

Less naïve:

D2⇒ p ⇒ +(N-Z)/A
D2⇒ n ⇒ 0

Emphasizes coupling to GT resonance
Consistent with n+AMo data

Need n+48Ca elastic scattering data!!!
In progress at TUNL (Sobotka & Charity)

D1
D2
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“D2” Extrapolation
for large N
of sp levels

Old 48Ca(p,pn) data
J.W.Watson et al.
Phys. Rev. C26,961 (1982)
~ consistent with DOM
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Driplines

Proton dripline wrong by 2

Neutron dripline more complicated:  60Ca and 70Ca particle bound
Intermediate isotopes unbound
Reef?
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Spectroscopic factors as a function of δ

Occupation numbers

neutrons

Protons more correlated with δ
Neutrons not much change
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Improvements in progress
 Replace treatment of nonlocality in terms of local equivalent
 but energy-dependent potential by explicitly nonlocal potential
 ⇒ Necessary for exact solution of Dyson equation

• Yields complete spectral density as a function of energy  OK
• Yields one-body density OK
• Yields natural orbits OK
• Yields charge density OK
• Yields neutron density OK
• Data for charge density can be included in fit
• Data for (e,e’p) cross sections near EF can be included in fit
• High-momentum components can be included (Jlab data)
• E/A can be calculated/ used as constraint ⇒ TNI
• NN Tensor force can be included explicitly
• Generate functionals for QP-DFT
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Charge density & High-momentum components

Only 2% high-momentum strength
⇒ Modify self-energy to include more
    high-momentum strength
Consistent with theoretical experience
and Jlab data!
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DOM Summary

Study of N≠Z nuclei based on DOM framework and experimental data

• Description of huge amounts of data
• Sensible extrapolations to systems with large asymmetry
• More data necessary to improve/pin down extrapolation
• More theory

Predictions

• N≠Z p more correlated while n similar (for N>Z) and vice versa
• Proton closed-shells with N>>Z ⇒ may favor pp pairing
• Neutron dripline may be more complicated (reef)
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protons in Ca

electrons in Ne
Data from (e,2e)

protons in stable
closed-shell nuclei

(e,e’p) DOM

Neutron-proton asymmetry

ZFZF

weak correlations

very strong correlations
Data from (n,n’)asymmetry 

(BE) “knob”
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Future of Green’s function method in nuclear systems

 Calculations starting from VNN

• Faddeev-RPA method (Barbieri) including N ≠ Z systems
   in order to understand DOM results (⇒ GT connection)
• Pairing & SRC in neutron stars & nuclear matter / EOS (Polls, Rios)

 Extensions of DOM
• Include aspects of VNN (⇒ tensor force)
• More data on stable systems (48Ca) and nuclei like 36Ca
• Analyze  more systems
• Include (e,e) and (e,e’p) data by treating nonlocality (Van Neck)
• Radioactive beam data including (p,2p)
• Include higher-energy (p,p’) data

 Construction of QP-DFT functionals (Van Neck)
• starting with extension of Skyrme functionals
• then including aspects of realistic interactions
• or microscopic calculations
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Conclusion
F-RPA 
• Self-energy of small atoms accurate with F-RPA
• Contains the relevant ingredients for the electron gas
  including a (possibly) correct self-energy

DOM
• suggests new experiments (some in the pipeline)
• data-driven extrapolation to the dripline

QP-DFT
• F-RPA⇒ study background functionals for QP-DFT
• DOM ⇒ study background functionals for QP-DFT


