Seattle INT 10-17-07

The Green's function method as a framework for datadriven extrapolations to the dripline and the extension of the density functional methods

Green' s function method/framework

- F-RPA: V ⇒ self-energy/propagator
- QP-DFT: functionals ⇒ computationally harder systems
- DOM: data ⇒ self-energy/propagator data-driven extrapolations \Rightarrow drip line
- Outlook

Self-consistent Green's functions F-RPA incarnation Faddeev Random Phase Approximation $V_{NN} \Rightarrow data$

- Ground state A-particle system
- Excited states for A, A±2 systems

RPA

- Low-lying
- Giant resonances
- \cdot ± 100 MeV from ε_F
- \cdot A \pm 2 (with ladders outside of configuration space)
- Feedback on sp propagator \Rightarrow A±1 systems \quad Faddeev

Developed for nuclei \Rightarrow Carlo Barbieri thesis WU (2002) Recent application: Neon atom Phys. Rev. A (2007)

Why atoms?

• DFT extension (QP-DFT) requires accurate self-energy in order to construct relevant functionals • Current atomic electron self-energy and electron gas self-energy incompatible ADC(3) = 2p1h/2h1p TDA vs. RPA = GW self-energy • Hence F-RPA explore quality for atoms can resolve electron-gas conundrum

Self-consistent Green's functions and the energy of the ground state of the electron gas

GW approximation

G self-consistent sp propagator W screened Coulomb interaction ⇒ RPA with dressed sp propagators

Electron gas : -XC energies (Hartrees)

Starting point

Non perturbative expansion of the self-energy: ٠

Explicit correlations enter the "three-particle irreducible" ٠ propagators:

.Both pp (ladder) and ph (ring) modes included .Pauli exchange at 2p1h/2h1p level

Faddeev summation of RPA propagators

Containing e.g.

Describing excited states Essential for the electron gas \Rightarrow Plasmon But GW yields good total energy not a good self-energy

 $SCGF \Leftrightarrow F-RPA$

Application to Neon atom

C. Barbieri, D. Van Neck, and WD, Phys. Rev. A, in press

Main peaks in brackets

* Consistent with results from Heidelberg group

Some details

1s and 2s strength Neon atom

Quasiparticles easily identified

Analysis

Energies in hartrees (27.2 eV) Brackets contain strength of largest fragment Interference!

Periodic table

Quasiparticle density functional theory QP-DFT

D.Van Neck et al. Phys. Rev. A74, 042501(2006)

- Kohn-Sham implementation of density functional theory "as simple" as Hartree-Fock but includes correlations beyond HF while still only solving sp equations (self-consistently)
- DFT not good for near degenerate systems characterized by small particle-hole gaps
- Wave functions not easily interpreted
- Quasiparticles (QPs) are missing from KS-DFT
- Near the Fermi energy QPs describe the physics (Landau) Motivation ⇒
- Develop sp equations whose solutions correspond to QP orbitals and energies, including the total energy and density matrix of the system (QP-DFT) Dimitri Van Neck, U of Ghent

New framework to do self-consistent sp theory

Ground-state energy and one-body density matrix from self-consistent sp equations that extend the Kohn-Sham scheme.

Based on separating the propagator into a quasiparticle part and a background, expressing only the latter as a functional of the density matrix. \Rightarrow in addition yields qp energies and overlap functions Reminder: DFT does not yield removal energies of atoms Relative deviation [%] The DFT HF He atom 1s 37.4 1.5

While ground-state energies are closer to exp in DFT than in HF

"Single-particle energies" from mean-field/DFT calculations of nuclei

M.Bender slide JUSTIPEN workshop Oak Ridge, March 2007

Chart of nuclides

Chart of nuclides

Interpretation: Nazarewicz

Fourier transform of G (Lehmann representation)

$$
G(\alpha, \beta; E) = \left\langle \Psi_0^N \middle| a_\alpha \frac{1}{E - (\hat{H} - E_0^N) + i\eta} a_\beta^\dagger \middle| \Psi_0^N \right\rangle \Leftarrow \text{Particle part}
$$
\n
$$
+ \left\langle \Psi_0^N \middle| a_\beta^\dagger \frac{1}{E + (\hat{H} - E_0^N) - i\eta} a_\alpha \middle| \Psi_0^N \right\rangle \Leftarrow \text{Hole part}
$$
\n
$$
= \sum_n \frac{\left\langle \Psi_0^N \middle| a_\alpha \middle| \Psi_n^{N+1} \right\rangle \left\langle \Psi_n^{N+1} \middle| a_\beta^\dagger \middle| \Psi_0^N \right\rangle}{E - (E_n^{N+1} - E_0^N) + i\eta} + \sum_n \frac{\left\langle \Psi_0^N \middle| a_\beta^\dagger \middle| \Psi_n^{N-1} \right\rangle \left\langle \Psi_n^{N-1} \middle| a_\alpha \middle| \Psi_0^N \right\rangle}{E + (E_n^{N-1} - E_0^N) - i\eta}
$$
\n
$$
= \sum_n \frac{\left(z_n^{(+)}\right)_\alpha \left(z_n^{(+)}\right)_\beta^*}{E - \varepsilon_n^{(+)} + i\eta} + \sum_n \frac{\left(z_n^{(-)}\right)_\alpha \left(z_n^{(-)}\right)_\beta^*}{E - \varepsilon_n^{(-)} - i\eta}
$$

 $Poles$ $\varepsilon_n^{(-)}$ in addition domain $\left(-\infty,\varepsilon_0^{(-)}\right)$ f-RPA, DOM and QP-DFT 16 Poles $\varepsilon_n^{(+)}$ in addition domain $\left(\varepsilon_0^{(-)}\right)$ $\left(\varepsilon^{(+)}_0,+\infty\right)$ $(-\infty, \mathcal{E}_0^{\setminus})$

Density and Removal Energy Matrices

One-body density matrix

$$
N_{\alpha,\beta}^{(-)} = \int \frac{dE}{2\pi i} e^{i\eta E} G(\alpha,\beta;E) = \sum_{n} (z_n^{(-)})_{\alpha} (z_n^{(-)})_{\beta}^* = \left\langle \Psi_0^N \left| a_{\beta}^{\dagger} a_{\alpha} \right| \Psi_0^N \right\rangle
$$

Removal energy matrix

$$
M_{\alpha,\beta}^{(-)} = \int \frac{dE}{2\pi i} e^{i\eta E} E G(\alpha,\beta;E) = \sum_{n} \varepsilon_n^{(-)} (z_n^{(-)})_{\alpha} (z_n^{(-)})^*_{\beta} = \left\langle \Psi_0^N \left| a_{\beta}^{\dagger} \left[a_{\alpha}, \hat{H} \right] \right| \Psi_0^N \right\rangle
$$

Removal part of propagator yields any one-body observable plus

$$
E_0^N = \frac{1}{2} Tr\Big(\Big[H_0\Big]\Big[N^{(-)}\Big] + \Big[M^{(-)}\Big]\Big) \qquad \text{the total energy (Migdal-Galitskii)}
$$
\n
$$
F-RPA, DOM and QP-DFT 17
$$

Spectral function

Single-particle spectral function

$$
\[S(E)\] = \frac{1}{2\pi i} sign(\varepsilon_F - E) \Big([G(E)] - [G(E)]^{\dagger} \Big)
$$

$$
= \sum_n (z_n^{(+)})(z_n^{(+)})^{\dagger} \delta(E - \varepsilon_n^{(+)}) + \sum_n (z_n^{(-)})(z_n^{(-)})^{\dagger} \delta(E - \varepsilon_n^{(-)})
$$

Sum rules $N_{\alpha,\beta} = \int dE S$ −∞ +∞ $\int dE S(\alpha, \beta; E) = \left\langle \Psi_0^N \left| \left\{ a_\beta^\dagger, a_\alpha \right\} \right| \Psi_0^N \right\rangle$

$$
M_{\alpha,\beta} = \int_{-\infty}^{+\infty} dE \ E \ S(\alpha,\beta;E) = \left\langle \Psi_0^N \left| \left\{ a_\beta^\dagger, \left[a_\alpha, \hat{H} \right] \right\} \right| \Psi_0^N \right\rangle
$$

Integrations over the entire energy axis

Split integration

$$
N_{\alpha,\beta} = \int_{-\infty}^{\varepsilon_F} dE \, S(\alpha,\beta;E) + \int_{\varepsilon_F}^{+\infty} dE \, S(\alpha,\beta;E) = N_{\alpha,\beta}^{(-)} + N_{\alpha,\beta}^{(+)}
$$

and similarly for

$$
M_{\alpha,\beta} = \int_{-\infty}^{\varepsilon_F} dE \ E \ S(\alpha,\beta;E) + \int_{\varepsilon_F}^{+\infty} dE \ E \ S(\alpha,\beta;E) = M_{\alpha,\beta}^{(-)} + M_{\alpha,\beta}^{(+)}
$$

Evaluating (anti)commutators (previous slide) sum rule can be written in closed form

$$
N_{\alpha,\beta} = \delta_{\alpha,\beta} \quad \text{or} \quad [N] = [I]
$$

and
$$
M_{\alpha,\beta} = \langle \alpha | H_0 | \beta \rangle + \sum_{\gamma \delta} \langle \alpha \gamma | V | \beta \delta \rangle N_{\delta \gamma}^{(-)} \quad \text{or} \quad [M] = [H_0] + [\tilde{V}_{HF}]
$$

F-RPA, DOM and QP-DFT 19

F-RPA, DOM and QP-DFT 20

Main result: QP equations Then eigenvalue problem can be solved yielding QP energies ε_{Qj} $\left(\left[H_0 \right] + \left[\tilde{V}_{HF} \left\{ N^{(-)} \right\} \right] - \left[M_B \left\{ N^{(-)} \right\} \right] \right) u_j = \mathcal{E}_{Qj} \Big(\left[I \right] - \left[N_B \left\{ N^{(-)} \right\} \right] \Big) u_j$ and Q^p orbits $z_{Qj} = \left(\begin{bmatrix} I \end{bmatrix} - \begin{bmatrix} N_B \left\{ N^{(-)} \right\} \end{bmatrix} \right) \! u_j$ \overline{M} $\lfloor N \rfloor = \lfloor N_Q \rfloor + \lfloor N_B \rfloor$ $\lfloor M\rfloor$ = $\lfloor M_{{\mathcal Q}}\rfloor$ + $\lfloor M_{{\mathcal B}}\rfloor$ $\left[N_{\mathcal{Q}}^{(-)}\right]=\sum z_{\mathcal{Q} j}z_{\mathcal{Q} j}^{\dagger}$ *j*=1 *N* $\sum z_{Qj} z_{Qj}^{\dagger}$ $[N_{Q}^{(+)}] = \sum_{i} z_{Qj} z_{Qj}^{\dagger}$ $\left[\,M_Q^{(-)}\,\right]=\sum \varepsilon_{Qj} z_{Qj} z_{Qj}^\dagger$ *j*=1 *N* $\sum \varepsilon_{Qj} z_{Qj} z_{Qj}^{\dagger}$ $\left[M_Q^{(+)} \right] = \sum_{i} \varepsilon_{Qj} z_{Qj} z_{Qj}^{\dagger}$ *j*=*N* +1 ∞ ∑ *j*=*N* +1 ∞ ∑ Require background contributions \int \overline{M}_{B}^{\pm} $\left\lfloor \mathit{M}_{\mathit{B}}^{\,-}\right\rfloor$ N_B^\pm $\left\lfloor N_B^- \right\rfloor$ as functional of the density matrix $\left| N^{(-)} \right|$ to obtain $\frac{1}{2}$ $\left[N^{(-)} \right]$

Procedure

<code>Initial</code> estimate for $\left[N^{(-)}\right]$ allows construction of $\left[N_B\right]$ and $\left[M_B\right]$ but also $\begin{bmatrix} \tilde{V}_{HF} \end{bmatrix}$

 $\boldsymbol{\mathsf{N}}$ lowest energy solutions belong in $\boldsymbol{\mathsf{N\text{-}1}}$ and can be used to update the density matrix d can be us €

$$
\left[N_{new}^{(-)}\right] = \sum_{j=1}^{N} z_{Qj} z_{Qj}^{\dagger} + \left[N_{B}^{(-)}\left\{N^{(-)}\right\}\right]
$$

closing the self-consistency loop!

Total energy follows from

$$
E_0^N = \frac{1}{2} \sum_{j=1}^N z_{Qj}^{\dagger} \Big(\Big[H_0 \Big] + \varepsilon_{Qj} \Big) z_{Qj} + \frac{1}{2} Tr \Big(\Big[H_0 \Big] \Big[N_B^{(-)} \Big\{ N^{(-)} \Big\} \Big] + \Big[M_B^{(-)} \Big\{ N^{(-)} \Big\} \Big] \Big)
$$

Comments

• Formalism generates total energy, density matrix, and individual QP energies and orbits (with correct spectroscopic factors) starting from a representation for the background contributions [$M_{\beta}^{(\pm)}$] and [$N_{\beta}^{(\pm)}$] as a functional of the density matrix.

 \cdot M_R plays different role in nuclear systems as compared to electronic systems (responsible for attraction that binds system)

• F-RPA for atoms provides complete electron self-energy

• Recent work on modeling the complete nucleon self-energy ⇒ DOM (Charity et al.) provides information to generate functionals near and at intermediate energies from the Fermi energy

• Intermediate implementations are possible

⇒ adapt Skyrme functional approach

• Formalism includes HF and KS-DFT (see Van Neck paper)

DOM = Dispersive Optical Model

C. Mahaux and R. Sartor, Adv. Nucl. Phys. **20**, 1 (1991)

Green's function formulation "Mahaux analysis"

goal: extract propagator from data

• Data-driven extrapolations / predictions to the dripline

• Input to QP-DFT for nuclei based on data

FRAMEWORK FOR EXTRAPOLATIONS BASED ON EXPERIMENTAL DATA

There is empirical information about the nucleon self-energy!!

- ⇒ Optical potential to analyze elastic nucleon scattering data
- ⇒ Extend analysis from A+1 to include structure information in A-1 ⇒ (e,e'p) data
- ⇒ Employ dispersion relation between real and imaginary part of self-energy

Recent extension

Combined analysis of protons in 40Ca and 48Ca Charity, Sobotka, & WD nucl-ex/0605026, Phys. Rev. Lett. **97**, 162503 (2006) Charity, Mueller, Sobotka, & WD, Phys. Rev. C (2007), in press.

Large energy window (> 200 MeV)

Goal: Extract asymmetry dependence \Rightarrow δ = $(N - Z)/A$ ⇒ **Predict** proton properties at large asymmetry ⇒ 60Ca ⇒ **Predict** neutron properties … the dripline **based on data!**

Correlations for nuclei with N very different from Z? \Rightarrow Radioactive beam facilities

Nuclei are TWO-component Fermi liquids

- SRC about the same between pp, np, and nn
- Tensor force disappears for n when N >> Z but …
- Any surprises?
- Ideally: quantitative predictions based on solid foundation

Some pointers: both from theory and experiment

F-RPA, DOM and QP-DFT 27

A. Gade et al., Phys. Rev. Lett. 93, 042501 (2004)

Program at MSU initiated by Gregers Hansen P. G. Hansen and J. A. Tostevin, Annu. Rev. Nucl. Part. Sci. **53**, 219 (2003)

neutrons more correlated with increasing proton number and accompanying increasing separation energy.

Dyson Equation and "experiment"

Equivalent to …

Schrödinger-like equation with: $E_n^- = E_0^N - E_n^{N-1}$

Self-energy: non-local, energy-dependent potential With energy dependence: spectroscopic factors < 1 \Rightarrow as observed in (e,e'p)

$$
-\frac{\hbar^2 \nabla^2}{2m} \left\langle \Psi_n^{N-1} \left| a_{\vec{r}m} \right| \Psi_0^N \right\rangle + \sum_{m'} \int d\vec{r} \, \Sigma^* (\vec{r} m, \vec{r} \, m'; E_n^-) \left\langle \Psi_n^{N-1} \left| a_{\vec{r} \, m'} \right| \Psi_0^N \right\rangle = E_n^- \left\langle \Psi_n^{N-1} \left| a_{\vec{r}m} \right| \Psi_0^N \right\rangle
$$

$$
S = \left| \langle \Psi_n^{N-1} | a_{\alpha_{qh}} | \Psi_0^N \rangle \right|^2 = \frac{1}{1 - \frac{\partial \Sigma^{\dagger}}{\partial \mathcal{E}} \left(\alpha_{qh}, \alpha_{qh}; E \right)} \frac{\partial E}{\partial E} \Big|_{E_n^-}
$$

DE yields
$$
\left| \Psi_n^{N-1} | a_{\vec{r}_m} | \Psi_0^N \right\rangle = \psi_n^{N-1} (\vec{r} m)
$$

$$
\left| \Psi_k^{N+1} \right\rangle = \psi_k^{N+1} (\vec{r} m)
$$

$$
\left| \Psi_E^{c, N-1} | a_{\vec{r}_m} | \Psi_0^N \right\rangle = \chi_c^{N-1} (\vec{r} m; E)
$$

$$
\left| \Psi_0^N | a_{\vec{r}_m} | \Psi_E^{c, N+1} \right\rangle = \chi_c^{N+1} (\vec{r} m; E)
$$

 α_{qh} solution of DE at E_n^{-1}

Bound states in N-1 Bound states in N+1 Scattering states in N-1 Elastic scattering in N+1

Elastic scattering wave function for (p, p) or (n, n)

Reaction cross section 40Ca and 48Ca

Loss of flux in the elastic channel

Potentials

Surface potential strengthens with increasing asymmetry for protons

200 $E = 200$
 $E = 400$ J_{W} /A J_v/A $a)$ rms radii R_{RMS} [fm] 4.5 R_{RMS}^W 4 R_{RMS}^V b) 3.5 50 200 0 100 150 $E-E_F$ [MeV]

F-RPA, DOM and QP-DFT 31

Volume integrals

Fit and predictions of n & p elastic scattering cross sections

F-RPA, DOM and QP-DFT 32

Present fit and predictions of polarization data

F-RPA, DOM and QP-DFT 33

Present fit to (e,e'p) data

Proton single-particle structure and asymmetry

Extrapolation in δ

Naïve: $p/n \Rightarrow D_1 \Rightarrow \pm (N-Z)/A$

Cannot be extrapolated for n

Less naïve:

 $D_2 \Rightarrow p \Rightarrow +(N-Z)/A$ $D_2 \Rightarrow n \Rightarrow 0$

Emphasizes coupling to GT resonance Consistent with n+AMo data

Need n+48Ca elastic scattering data!!! In progress at TUNL (Sobotka & Charity)

"D2" Extrapolation for large N of sp levels

Old 48Ca(p,pn) data J.W.Watson et al. Phys. Rev. C26,961 (1982) ~ consistent with DOM

F-RPA, DOM and QP-DFT 37

Driplines

N

Proton dripline wrong by 2

Neutron dripline more complicated: 60Ca and 70Ca particle bound

Intermediate isotopes unbound Reef?

Spectroscopic factors as a function of δ

Improvements in progress

Replace treatment of nonlocality in terms of local equivalent but energy-dependent potential by explicitly nonlocal potential ⇒ Necessary for exact solution of Dyson equation

- Yields complete spectral density as a function of energy OK
- Yields one-body density OK
- Yields natural orbits OK
- Yields charge density OK
- Yields neutron density OK
- Data for charge density can be included in fit
- Data for (e,e'p) cross sections near E_F can be included in fit
- High-momentum components can be included (Jlab data)
- \cdot E/A can be calculated/ used as constraint \Rightarrow TNI
- NN Tensor force can be included explicitly
- Generate functionals for QP-DFT

Charge density & High-momentum components

DOM Summary

Study of N≠Z nuclei based on DOM framework and experimental data

- Description of huge amounts of data
- Sensible extrapolations to systems with large asymmetry
- More data necessary to improve/pin down extrapolation
- More theory

Predictions

- N≠Z p more correlated while n similar (for N>Z) and vice versa
- Proton closed-shells with $N\gg Z \Rightarrow$ may favor pp pairing
- Neutron dripline may be more complicated (reef)

Future of Green's function method in nuclear systems

Calculations starting from V_{NN}

- Faddeev-RPA method (Barbieri) including $N \neq Z$ systems in order to understand DOM results (\Rightarrow GT connection)
- Pairing & SRC in neutron stars & nuclear matter / EOS (Polls, Rios)

Extensions of DOM

- Include aspects of V_{NN} (\Rightarrow tensor force)
- More data on stable systems (48Ca) and nuclei like 36Ca
- Analyze more systems
- Include (e,e) and (e,e'p) data by treating nonlocality (Van Neck)
- Radioactive beam data including (p,2p)
- Include higher-energy (p,p') data

Construction of QP-DFT functionals (Van Neck)

- starting with extension of Skyrme functionals
- then including aspects of realistic interactions
- or microscopic calculations

Conclusion

F-RPA

- Self-energy of small atoms accurate with F-RPA
- Contains the relevant ingredients for the electron gas including a (possibly) correct self-energy

DOM

- suggests new experiments (some in the pipeline)
- data-driven extrapolation to the dripline

QP-DFT

- F-RPA⇒ study background functionals for QP-DFT
- DOM ⇒ study background functionals for QP-DFT