Stijn De Baerdemacker Veerle Hellemans Kris Heyde

Subatomic and radiation physics Universiteit Gent, Belgium http://www.nustruc.ugent.be

INT workshop on new approaches in nuclear many-body theory October 19, 2007, Seattle WA, USA

- 1 The geometrical collective model
 - The basics of the geometrical collective model
 - The physics motivation
- 2 The collective variables in the Cartan-Weyl scheme
 - An algebraic description...
 - ... within the Cartan-Weyl scheme
- 3 Test application in quantum shape phase transitions
- 4 conclusions & outlook

- 1 The geometrical collective model
 - The basics of the geometrical collective model
 - The physics motivation
- - An algebraic description...
 - ... within the Cartan-Weyl scheme

- Macroscopically, the atomic nucleus can be compared to a charged liquid drop.
- Deviations from the sphere are developed in multipole orders. Up to 2nd order

Radius

$$R(\theta, \phi) = R_0[1 + \alpha \cdot Y_2(\theta, \phi)]$$

 \bullet α_u^2 :: collective quadrupole^a coordinates

aI = 2 tensor

A gallery of shapes

Radius

$$R(\theta, \phi) = R_0[1 + \alpha \cdot Y_2(\theta, \phi)]$$

■ Rotation to the intrinsic system

$$\left\{ \begin{array}{l} \alpha_0' = \beta \cos \gamma \\ \alpha_2' = \alpha_{-2}' = \beta/\sqrt{2} \sin \gamma \\ \alpha_1' = \alpha_{-1}' = 0 \end{array} \right.$$

 \blacksquare β is a measure for the deformation, γ for the triaxiality

The nuclear chart around Z=82 shell closure

- Collective excitation modes are very important in the low-energy spectra
- Renewed interest due to the quantum shape phase transitions

All kinds of shapes

neighbouring isotope chains

- Os :: triaxial nuclei
- Pt :: the γ -softie
- Pb :: 3 coexisting families

- Hartree-Fock mean field calculation
- A minimum can be found at $\gamma \neq 0$

A. Ansari, Phys. Rev. C 38 (1988) 953.

 Calculations in the framework of analytically solvable potentials

L. Fortunato et. al., Phys. Rev. C74 (2006) 014310.

All kinds of shapes

neighbouring isotope chains

- Os :: triaxial nuclei
- Pt :: the γ -softie
- Pb :: 3 coexisting families

■ Potential Energy Surface calculation

• Very flat γ dependence

R. Bengtsson et al., Phys. Lett. B 183 (1987) 1 (2004).

All kinds of shapes

neighbouring isotope chains

- Os :: triaxial nuclei
- Pt :: the γ -softie
- Pb :: 3 coexisting families

- Interacting Boson Model calculation
- Extension to coexisting configurations points towards spherical-oblate-prolate structure

V. Hellemans, private communication (2007)

input/output of the geometrical model

The Bohr Hamiltonian

$$\hat{H} = \hat{T} + V(\alpha)$$

- kinetical egergy describes the stiffness of the surface
- $\hat{T} = \frac{1}{B_0}\pi \cdot \pi + B_3[\pi\alpha]^2 \cdot \pi + \dots$

- α describes small deformations
- Use a Taylor expansion

$$V(\alpha) = c_2(\alpha \cdot \alpha) + c_3([\alpha \alpha]^2 \cdot \alpha) + c_4(\alpha \cdot \alpha)^2 + c_5([\alpha \alpha]^2 \cdot \alpha)(\alpha \cdot \alpha) + \dots$$

- - The basics of the geometrical collective model
 - The physics motivation
- 2 The collective variables in the Cartan-Weyl scheme
 - An algebraic description...
 - ... within the Cartan-Weyl scheme

9 / 26

The rules of the game

Commutation relations fix the structure

$$[\pi_{\mu}, \alpha_{\nu}] = -i\hbar \delta_{\mu\nu}, \quad [\alpha_{\mu}, \alpha_{\nu}] = 0, \quad [\pi_{\mu}, \pi_{\nu}] = 0$$

 The algebraic structure of the geometrical model is contained in the following recoupling formula

$$(\alpha \cdot \alpha)(\pi^* \cdot \pi^*) = (\alpha \cdot \pi^*)(\alpha \cdot \pi^*) + 3i\hbar(\alpha \cdot \pi^*) - 2([\alpha \pi^*]^{(1)} \cdot [\alpha \pi^*]^{(1)} + [\alpha \pi^*]^{(3)} \cdot [\alpha \pi^*]^{(3)})$$

It comprises the generators of the direct product group

Why $SU(1,1) \times O(5)$?

algebra 00000000

The Hamiltonian

$$\hat{H} = \frac{1}{2B_2}\pi \cdot \pi + B_3\pi \cdot [\alpha\pi]^2 + c_2(\alpha \cdot \alpha) + c_3([\alpha\alpha]^2 \cdot \alpha) + c_4(\alpha \cdot \alpha)^2 + c_5([\alpha\alpha]^2 \cdot \alpha)(\alpha \cdot \alpha) + c_6(\alpha \cdot \alpha)^3 + d_6([\alpha\alpha]^2 \cdot \alpha)^2 + \dots$$

SU(1,1) basic block

$$\alpha \cdot \alpha = \beta^2$$

- The "radial" dependence
- Basis is known

O(5) basic block

$$[\alpha \alpha]^2 \cdot \alpha = \sqrt{\frac{2}{7}} \beta^3 \cos 3\gamma$$

- The "angular" dependence
- Cartan-Weyl basis

The Cartan-Weyl basis of O(5)

Cartan's theorem

Every semi simple algebra of dimension n and rank r can be rotated to a natural basis for which

$$[H_i, H_j] = 0, \quad [H_i, E_{\alpha}] = \alpha_i E_{\alpha}, \qquad \{i, j\} \in r$$

$$[E_{\alpha}, E_{\beta}] = N_{\alpha + \beta} E_{\alpha + \beta} \quad [E_{\alpha}, E_{-\alpha}] = \alpha^i H_i \qquad \{\alpha, \beta\} \in n - r$$

- Rotation $\{L_m, O_{m'}\} \rightarrow \{X_i, Y_j, T_{\mu\nu}\}$
- Group reduction is clear

$$\underbrace{O(5)}_{V} \supset \underbrace{O(4)}_{X} \cong \underbrace{SU(2)}_{(X,M_X)} \times \underbrace{SU(2)}_{(X,M_Y)}$$

A natural Cartan basis emerges

$$|vX(M_X, M_Y)\rangle$$

Action of the O(5) generators on the natural basis (i)

- $\{X_{\pm}, X_0\}$ and $\{Y_{\pm}, Y_0\}$ span standard SU(2)algebras
- According Racah: $T_{\mu,\nu}$ acts as a bispinor of character 1/2 in the $SU(2) \times SU(2)$ space

$$\begin{split} [X_0, T_{\mu\nu}^{\frac{1}{2}\frac{1}{2}}] &= \mu T_{\mu\nu}^{\frac{1}{2}\frac{1}{2}} \\ [X_{\pm}, T_{\mu\nu}^{\frac{1}{2}\frac{1}{2}}] &= \sqrt{(\frac{1}{2} \mp \mu)(\frac{1}{2} \pm \mu + 1)} T_{\mu\pm1\nu}^{\frac{1}{2}\frac{1}{2}} \end{split}$$

■ The action of $T_{\mu,\nu}$ on a basis state $|vX(M_X, M_Y)\rangle$ is thus

$$T_{\mu\nu}^{\frac{1}{2}\frac{1}{2}}|vXM_XM_Y\rangle = a_+|v,X+\frac{1}{2},M_X+\mu,M_Y+\nu\rangle \ + a_-|v,X-\frac{1}{2},M_X+\mu,M_Y+\nu\rangle$$

Applying the Wigner Eckart theorem twice

$$a_{\pm} = (-)^k \left(egin{array}{ccc} X \pm rac{1}{2} & rac{1}{2} & X \ -M_X - \mu & \mu & M_X \end{array}
ight) \left(egin{array}{ccc} X \pm rac{1}{2} & rac{1}{2} & X \ -M_Y -
u &
u & M_Y \end{array}
ight) \langle
u X \pm rac{1}{2} || T ||
u X
angle$$

Action of the O(5) generators on the natural basis (ii)

For every v and X :: two unknown matrix elements rtwo conditions needed

$$C_2[O(5)] = 2(X^2 + Y^2 - 2[TT]^{(00)})$$
$$[T_{\mu\nu}, T_{\mu'\nu'}] = c_m^X X_0 + c_m^Y Y_0 \quad m = \{\mu\nu, \mu'\nu'\}$$

- norm $rac{v}{}$ selection rules $(X = 0 \dots \frac{v}{2})$
- intermediate state method renders double reduced matrix elements

Example: Action of $\overline{T}_{1/2,1/2}$

$$T_{\frac{1}{2}\frac{1}{2}}|vXM_XM_Y\rangle = \frac{\sqrt{(X+M_X+1)(X+M_Y+1)(v-2X)(v+2X+3)}}{2\sqrt{(2X+1)(2X+2)}}|vX + \frac{1}{2}M_X + \frac{1}{2}M_Y + \frac{1}{2}\rangle - \frac{\sqrt{(X-M_X)(X-M_Y)(v-2X+1)(v+2X+2)}}{2\sqrt{(2X)(2X+1)}}|vX - \frac{1}{2}M_X + \frac{1}{2}M_Y + \frac{1}{2}\rangle$$

Tensor character of the α variables

basis block of the potential

$$\beta^3 \cos(3\gamma) \sim [\alpha \alpha]^{(2)} \cdot \alpha$$

Need for matrix elements

$$\langle vX(M_X,M_Y)|\alpha_\mu|v'X'(M_X',M_Y')\rangle$$

 $lacksquare \{lpha_0\}$ and $\{lpha_{-2}, lpha_{-1}, lpha_1, lpha_2\}$ have bispinor 0 and $\frac{1}{2}$ character respectively

$$\alpha_0 \to \alpha_{00}^{00}, \qquad \{\alpha_{-2}, \alpha_{-1}, \alpha_1, \alpha_2\} \to \alpha_{\mu\nu}^{\frac{1}{2}\frac{1}{2}}$$

Wigner Eckart

$$\langle vXM_XM_Y|\alpha_{\mu\nu}^{\lambda\lambda}|v'X'M_X'M_Y'\rangle \\ = (-)^k \begin{pmatrix} X & \lambda & X' \\ -M_X & \mu & M_X' \end{pmatrix} \begin{pmatrix} X & \lambda & X' \\ -M_Y & \nu & M_Y' \end{pmatrix} \langle vX||\alpha^{\lambda}||v'X'\rangle$$

Closed expressions for the α matrix elements

What is used

$$\begin{split} [T_{\mu\nu}, \alpha_{\mu'\nu'}^{\frac{1}{2}\frac{1}{2}}] &= \frac{(-)^{\mu-\nu}}{\sqrt{2}} \delta_{-\mu\mu'} \delta_{-\nu\nu'} \alpha_{00}^{00} \\ [T_{\mu\nu}, \alpha_{00}^{00}] &= \frac{1}{\sqrt{2}} \alpha_{\mu,\nu}^{\frac{1}{2}\frac{1}{2}} \\ [\alpha_{\mu,\nu}^{\lambda\lambda}, \alpha_{\mu'\nu'}^{\lambda'\lambda'}] &= 0 \\ \alpha \cdot \alpha &= \beta^2 = Z_1 \end{split}$$

- Seniority selection rules :: α is a $\nu = 1$ tensor
- Bispinor $\{\frac{1}{2}, \frac{1}{2}\}$ can be expressed in terms of biscalar $\{00\}$ matrix elements
- Closed expressions for the matrix elements result

What is obtained: matrix elements of α

$$\langle vXM_XM_Y|\alpha_{00}^{00}|v+1, XM_XM_Y\rangle = \beta\sqrt{\frac{(v-2X+1)(v+2X+3)}{(2v+3)(2v+5)}}$$
$$\langle vXM_XM_Y|\alpha_{00}^{00}|v-1, XM_XM_Y\rangle = \beta\sqrt{\frac{(v-2X)(v+2X+2)}{(2v+1)(2v+3)}}$$

Projection to the physical basis

- Experimental spectra have good angular momentum quantum number L
- The Hamiltonian is a scalar with respect to the angular momentum algebra O(3)

$$[L \cdot L, \mathcal{C}_G] \neq 0$$
$$[L_0, \mathcal{C}_G] = 0$$

- Only the angular momentum projection is a good quantum number in the Cartan basis
- A rotation brings the natural- to the physical basis

All ingredients are ready

- α Matrix elements in O(5) basis are derived
- Inclusion of SU(1,1) basis is straightforward in a similar fashion
- Diagonalising = choosing a basis
- Harmonic oscillator = choosing $\hbar\omega$
- $H = \frac{1}{2B_0}\pi \cdot \pi + \xi V_{\text{vib}} + (1 \xi) V_{\gamma \text{-ind}}$
- Margetan & Williams Phys. Rev. C25 (1982) 1602

- Computer code is now under continuous development to diagonalise general collective potentials.
- Present status: upto β^4

- - The basics of the geometrical collective model
 - The physics motivation
- - An algebraic description...
 - ... within the Cartan-Weyl scheme
- 3 Test application in quantum shape phase transitions

Test application in quantum shape phase transitions

- Quantum shape phase transitions cover a large part of the model Hilbert space
- Ideal testground for the method
- Upto β^4 , 3 meaningful limits result

3 limits

- vibrational limit
- \bullet γ -independent rotor
- axial deformed rotor

3 limits

3 limits

- vibrational limit
- $\sim \gamma$ -independent rotor
- axial deformed rotor

Trivial limit

quantum shape phase transitions

0000

- Large degeneracies
- B(E2) addition rule

3 limits

3 limits

- \bullet γ -independent rotor
- axial deformed rotor

Remaining seniority symmetry

quantum shape phase transitions

0000

β-excitation band

3 limits

- vibrational limit
- $\sim \gamma independent rotor$
- axial deformed rotor

- Highly pronounced bands
- Rotation-Vibration model

INT

Along the transition path: energy spectrum

Along the transition path: quadrupole moments

Quadrupole moments

$$Q=\langle\hat{Q}_{\mu}
angle_{\mathbf{2}_{1}}=rac{3ZR_{0}^{2}}{4\pi}\langlelpha_{\mu}
angle_{\mathbf{2}_{1}}$$

- \bullet α_{μ} is seniority $\nu = 1$ tensor
- $Q \equiv 0 for vib. \gamma-ind.$ rotor transition
 - Other observables $(B(E2), \rho(E0))$

 γ -ind. rotor \rightarrow axial rotor \rightarrow vibrator

- - The basics of the geometrical collective model
 - The physics motivation
- - An algebraic description...
 - ... within the Cartan-Weyl scheme
- 4 conclusions & outlook

- Collectivity accounts for a lot of the physics around Z=82 shell closure
- All necessary matrix elements of a more general type of potential can be calculated in a Cartan-Weyl scheme
- First test applications in the framework of quantum shape phase transitions renders reliable results
- Further terms need to be included to study more general collective structures (e.g. triaxiality, shape coexistence), needed for the collectivity around the Z=82 closed shell
- Possible extension to higher rank algebras (O(7) octupole degrees of freedom and beyond)

