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| Overview

* Context

* DFT 4+ Kohn-Sham

* Green’s function theory
* Quasiparticles

* Theoretical derivation of QP-DFT
[Phys.Rev.A74, 042501 (2006)]

* Applications to nuclear and electronic structure.



| Context

Non-relativistic many-body problem
Hamiltonian:

N 2
. h
H = Z 5 V _l'Ve:ct(Tz) + Z W(Twrj)
i=1 my i<j=1
N-body wave function W(zq,...,xzx)

Large dimension = many-body methods:
Density functional theory, Green function perturbation theory,
stochastic methods (Monte Carlo)...

DFT only feasible approach to handle electronic structure for
complex systems



IDFT+KS|

* Based on existence of universal density functional Egq[p]
(= "“exchange-correlation energy functional”).

* Electronic energy E =T + FEee+ Fext = Tis+ Eg + Eext + Euxc

* xc energy functional Eiclpl = (T — Tkgg) + Eece — Ep, with
T slp] = Kinetic energy of noninteracting system with density p

* Minimize energy = KS equations:
7:1,2

- 2m

V2 4+ Vis(P)| ¢i(F) = ;¢;(F) i=1.N

* Unique local potental Vi g(7) = Vgt (7) + V(7)) + Vae(7)

such that p(7) = prs(7) = SN 1 1¢;(7)|?, where Viye(7) = gf(ffc)




| Comment

eDF T has double role:

(1) As a theoretical tool: Assuming exact xc functional is known,
one can derive insights and new relationships between various
quantities (e.g. theory of reactivity indices).

(2) As a computational tool, more judged by practical perfor-
mance than by considerations of exactness.

e "DFT-like" approaches: any recipe to describe many-electron
system by solving single-electron problems (usually in self-consistency
loop).

e DFT-KS has its problems = interest in new approaches.



Why would more general type of DFT be useful?

e KS-DFT can treat short-range interelectronic correlations quite
well, but fails for near degenerate systems with small particle-
hole gap (e.g. dissociation limit of molecules)

e NO adequate description of Fermi surface
e Concept of quasiparticles is missing in KS-DFT

Interest in generalized DFT scheme for quasiparticles.
Is there link with Green’s function description?



|GFT|

(@D, y, (@) 90 ()¢ ()
Propagator G(z,z'; E) =5, (+E)”_( )(_T_),m n L)?n € )(—)m

Py, (@) = (WAN=Lg(x)|wl)  (removal amplitude)
gy (T) = (W la(x)|WwN T (addition amplitude)
N N—1

6(—)71 — EO — En

€4y = E,,];H'l — Eév (addition energy)

(removal energy)

All are experimentally accessible quantities.

Energy spectrum of N £ 1 system.
Overlap functions [(v,e), (e,v), (e, 2¢)]



| Derived quantities|

Density matrix:
N N * / - WN T / WN
(_)(33755) — ZSO(_)”(CB )QO(_)n(CC) = ( 0 la'(z")a(x)| 0 )
n
Removal energy matrix
M(_) (33755/) — ane(_)nwzk_)n(fcl)@(_)n(x)
= (Vg la'(@")[a(z), AI[WY)
Total energy through Migdal-Galitskii relation:

EY = %Trace {([T] + [Veat DIN )] + [M(_)]}



| Self-energy |

* Dyson equation: [G(E)] = [Go(E)] + [G(E)][Z(E)][Go(E)]
* [Go(E)] is non-interacting propagator ([Hg] = [T] 4+ [Vext])

* 3 (F) is irreducible self-energy: Energy-dependent, nonlocal,
complex sp potential. Has well-defined perturbation expansion.
Physics input can be controlled through approximation for 2.

&) =0« )




|Spectral function

Contains equivalent information as propagator.
Distribution of single-particle strength over energy:

S(x, 33/; E) = Z 6(E — 6(_)n)90>(k_)n(33/)90(_)n($)

+ ; S(E — €(+)n)902<+)n(37/)50(+)n(x)

Important Oth and 1st energy-weighted sumrules:

N(a,a') = [aBS(e,a'; B) = (W |{al ('), ()} W)

M(z,z") =/dEE S(z,x'; E)=(\Uév|{aT(x/), [a(x), Ff]}|\|f‘6v>



Sumrules can be worked out as:

[N] = [1]

[M] [T] + [Veat]l + [VEF]
where Vg p is Hartree-Fock type potential

N(_) (33”7 33”) B N(_) (337 33/)

|

Vir(z,z) = 6(z — ') /da:”

but evaluated with the exact density matrix.

7 — 7 — |

These sumrules are all that is needed for remainder. Complete
energy dependence of spectral function is not needed.



| Quasiparticles|

- In normal Fermi systems: bulk of spectral strength resides in
quasiparticle states (QP) states = elementary sp excitations,
evolving adiabatically from the N =1 eigenstates of unperturbed
hamiltonian (Landau-Migdal picture).

= in 1-1 correspondence with non-interacting sp states

- Characterized by position, strength, and width.

(a2’ B ﬁv: ZQj(CB)ZZQj(CB/) n i sz(:c)zZQj(a:/)

olz,x, = : :
j=1 b —eqj — 1wq; j=N+1 B —eqj + 1wg;

The concept of QP excitations is totally missing in KS-DFT,

since the individual Kohn-Sham orbitals have no special signifi-

cance.

Can we derive single-particle equations for the QP orbitals (QPDFT)?




QP contribution to Oth and 1st moment

e QP width does not contribute to Oth and 1st moment of spec-
tral distribution: [Ngl = S92, 20205 [Mg) = ¥3%1 egj20;2),

Note 1: Given arbitrary, hermitian matrices [Ng] and [Mg] with
[NQ] positive definite, one has unique decomposition.
How? Solve generalized eigenvalue problem

Then eg; = A; and zg; = [Nglu; are solution.

Note 2: Split of QP in removal and addition part is obvious :
A a ;
(Noyl = 22 20570 Moyl = X €Qi7Q5%0;

=1 =1



|Quasipartic|e equations

* Split spectral function into dominant quasi-particle (QP) ex-
citations and a residual small background part (which is a good
candidate for “universal” modelling).

* Full energy dependence of [Sp(FE)] is not needed, only Oth and
1st order moment:

[N] = [Ngl + [Ngl; [M] = [Mg] + [Mp]

Since [N] and [M] are known, modeling of the (small) contri-
butions [Ng] and [Mpg] as a functional of the density matrix is
sufficient to generate selfconsistency problem.

[Mg]u;
([Hol + [Var{N_y}] = [Mp{N_y}Du;

(U]~ INB{N_, 3D



| Selfconsistency problem|

* Initial estimate for [N(_)] = construct [Ng], [Mg] and [Vyg].

* Solve s.p. eigenvalue problem = QP energies €Qj = A; and
orbitals zg; = ([I] — [NB{N(_)}])uj

* N solutions with lowest energy are used to update density
matrix

N
[INETT= 2. 2Qi%; + [Ng L, IN )}

=1
* This closes selfconsistency loop, iterate to convergence.
* Energy can be obtained from
v 1 ¥
By = 2321 Q]([HO] + €Qj)2Q;

+—= Trace([HO][ ){N )}]"'[ ){N )}])



Properties (1)

* QP-DFT generates total energy, density matrix and individual
QP energies and orbitals, starting from a model for the back-
ground contributions as a functional of the density matrix.

* Reasonable strategy: external potential influences primarily
QP part.

* Special case [Ng] =0, [Mg] = 0O is equivalent to HF.

* Any KS-DFT model is also included as special case of QP-
DFT with [Ng] = 0 and [Mpg] determined by FEy..

* “Potentially exact” (or as exact as KS-DFT...)



Properties (2)

* For finite systems, the QP orbitals have the right asymp-

totics in coordinate space, provided the background operators
are short-ranged.

* Can deal with soft Fermi surface (e.g. we checked that QP-
DFT provides a correct description of Ho, dissociation in the
spin-singlet state, eventhough it remains a s.p. description)

* Electron gas limit exists (see later).

How to model [Ng] and [Mpg]?



|Bui|ding models for QP-DFT functionals

(1) Calculate spectral function in a series of test systems, using
reasonable microscopic model for self-energy.

(2) Analyze QP-background separation.

(3) Parametrize background contribution to Oth and 1st mo-
ment.

* Already experience with (1-2) through series of calculations
using selfconsistent Green’s function formalism, on light atoms
[J.Chem.Phys. 115, 15 (2001);J.Chem.Phys. 117, 4095 (2002)],
the electron gas [PRB 71, 245122 (2005)], and nuclear systems
[PRL 90, 152501 (2003); PRC 68, 064307 (2003)].

* In each case QP-background separation was studied.

E.g.: electron gas results.



|Electron gas in GW approximation

* GW = Self-energy including screening diagrams (coupling to
plasmon), done selfconsistently (Hedin's equations).
Phys.Rev.B 71, 245122 (2005)

* QP-background separation was used to discretize the spectral
function during the iterations towards a selfconsistent solution.

* Nice result: energy per particle is insensitive to precise pre-
scription for QP-background separation, as long as sumrules are
respected.
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Energy per particle:
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GoWp approximation in closed-shell atoms|

* Green’'s function calculation for He, Be, Ne, Mg, Ar, Ca, Zn,
Kr, with self-energy at GgWy level [PRA74, 062503 (2006)]

* QP-background separation for spectral function of 2s orbital
in Ne
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First moment of background addition strength ng)(eg;) — €p)
versus HF energy (relative to ep) for all hole orbitals in all atoms.
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First moment of background addition strength th)(e("')
versus average density, for all hole orbitals in all atoms.
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| Construction of QP-DFT functional

* The background moments are not scattered randomly, but
follow clear trends as a function of e.g. HF orbital energy /
density.

* This can be used to parametrize the background moments
with a functional form. Additional variables to describe situation

around Fermi energy: HF particle-hole gap, average density of
ionization orbital.

* The resulting QP-DFT functional is able to reproduce the
main results of the microscopic GgWg calculation.

* Only proof-of-principle: not yet selfconsistent.

* Dependence on particle-hole gap is crucial.



Results of QP-DFT functional for separate contributions to the
energy




Results of QP-DFT functional for total energy and ionization
energy
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Nuclear applications

* Nuclear DFT ~ Skyrme Hartree-Fock parametrizations

* QP-DFT has extra degrees of freedom. More realistic model

for nuclei as correlated systems, while keeping description at the

S.p. level.

* What is the connection of QP-DFT with the dispersive optical
model approach (Mahaux and co-workers) 7

* Modelling of self-energy, including energy-dependence, versus
modelling of background contributions to the spectral function.

* Recent self-energy model for Ca isotopes [Charity,Sobotka, Dickhoff,
PRL 97, 162503 (2006)] allows to study this in detail.



|Summary

It is possible to derive DFT-like equations for QP orbitals.

A given QP-DFT functional yields predictions for the total en-
ergy and the density matrix of the system, as well as the QP
orbitals, energies, and spectroscopic factors.

Finding suitable parametrizations for the background part in elec-
tronic systems is in progress.

Nuclear case: possibility of extending Skyrme mean-field models
with terms that include explicit (short-range, long-range) cor-
relation effects. More realistic description of nuclei at the s.p.
level.



