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Overview

* Context

* DFT + Kohn-Sham

* Green’s function theory

* Quasiparticles

* Theoretical derivation of QP-DFT

[Phys.Rev.A74, 042501 (2006)]

* Applications to nuclear and electronic structure.



Context

Non-relativistic many-body problem

Hamiltonian:

Ĥ =
N∑

i=1

[
− h̄2

2mi

�∇i
2
+ Vext(�ri)

]
+

N∑
i<j=1

W (�ri, �rj)

N-body wave function Ψ(x1, . . . , xN)

Large dimension ⇒ many-body methods:

Density functional theory, Green function perturbation theory,

stochastic methods (Monte Carlo)...

DFT only feasible approach to handle electronic structure for

complex systems



DFT+KS

* Based on existence of universal density functional Exc[ρ]

(= “exchange-correlation energy functional”).

* Electronic energy E = T +Eee +Eext = TKS +EH +Eext +Exc

* xc energy functional Exc[ρ] = (T − TKS) + Eee − EH, with

TKS[ρ] = kinetic energy of noninteracting system with density ρ

* Minimize energy ⇒ KS equations:[
− h̄2

2m
�∇2 + VKS(�r)

]
φi(�r) = εiφi(�r) i = 1..N

* Unique local potental VKS(�r) = Vext(�r) + VH(�r) + Vxc(�r)

such that ρ(�r) = ρKS(�r) =
∑N

i=1 |φi(�r)|2, where Vxc(�r) = δExc
δρ(�r)



Comment

•DFT has double role:

(1) As a theoretical tool: Assuming exact xc functional is known,

one can derive insights and new relationships between various

quantities (e.g. theory of reactivity indices).

(2) As a computational tool, more judged by practical perfor-

mance than by considerations of exactness.

• ”DFT-like” approaches: any recipe to describe many-electron

system by solving single-electron problems (usually in self-consistency

loop).

• DFT-KS has its problems ⇒ interest in new approaches.



Why would more general type of DFT be useful?

• KS-DFT can treat short-range interelectronic correlations quite

well, but fails for near degenerate systems with small particle-

hole gap (e.g. dissociation limit of molecules)

• No adequate description of Fermi surface

• Concept of quasiparticles is missing in KS-DFT

Interest in generalized DFT scheme for quasiparticles.

Is there link with Green’s function description?



GFT

Propagator G(x, x′;E) =
∑

n

ϕ∗
(+)n

(x′)ϕ
(+)n

(x)

E−ε
(+)n

+iη +
∑

n

ϕ∗
(−)n

(x′)ϕ
(−)n

(x)

E−ε
(−)n

−iη

ϕ(−)n(x) = 〈ΨN−1
n |a(x)|ΨN

0 〉 (removal amplitude)

ϕ(+)n(x) = 〈ΨN
0 |a(x)|ΨN+1

n 〉 (addition amplitude)

ε(−)n = EN
0 − EN−1

n (removal energy)

ε(+)n = EN+1
n − EN

0 (addition energy)

All are experimentally accessible quantities.

Energy spectrum of N ± 1 system.

Overlap functions [(γ, e), (e, γ), (e,2e)]



Derived quantities

Density matrix:

N(−)(x, x′) =
∑
n

ϕ∗
(−)n

(x′)ϕ(−)n(x) = 〈ΨN
0 |a†(x′)a(x)|ΨN

0 〉

Removal energy matrix

M(−)(x, x′) =
∑
n

ε(−)nϕ∗
(−)n

(x′)ϕ(−)n(x)

= 〈ΨN
0 |a†(x′)[a(x), Ĥ]|ΨN

0 〉
Total energy through Migdal-Galitskii relation:

EN
0 =

1

2
Trace

{
([T ] + [Vext])[N(−)] + [M(−)]

}



Self-energy

* Dyson equation: [G(E)] = [G0(E)] + [G(E)][Σ(E)][G0(E)]

* [G0(E)] is non-interacting propagator ([H0] = [T ] + [Vext])

* Σ(E) is irreducible self-energy: Energy-dependent, nonlocal,

complex sp potential. Has well-defined perturbation expansion.

Physics input can be controlled through approximation for Σ.



Spectral function

Contains equivalent information as propagator.

Distribution of single-particle strength over energy:

S(x, x′;E) =
∑
n

δ(E − ε(−)n)ϕ
∗
(−)n

(x′)ϕ(−)n(x)

+
∑
n

δ(E − ε(+)n)ϕ
∗
(+)n

(x′)ϕ(+)n(x)

Important 0th and 1st energy-weighted sumrules:

N(x, x′) =
∫
dES(x, x′;E) = 〈ΨN

0 |{a†(x′), a(x)}|ΨN
0 〉

M(x, x′) =
∫
dEE S(x, x′;E)=〈ΨN

0 |{a†(x′), [a(x), Ĥ]}|ΨN
0 〉



Sumrules can be worked out as:

[N ] = [1]

[M ] = [T ] + [Vext] + [VHF ]

where VHF is Hartree-Fock type potential

VHF (x, x′) = δ(x − x′)
∫

dx′′
N(−)(x

′′, x′′)
|�r − �r′′| −

N(−)(x, x′)
|�r − �r′|

but evaluated with the exact density matrix.

These sumrules are all that is needed for remainder. Complete

energy dependence of spectral function is not needed.



Quasiparticles

- In normal Fermi systems: bulk of spectral strength resides in

quasiparticle states (QP) states = elementary sp excitations,

evolving adiabatically from the N ±1 eigenstates of unperturbed

hamiltonian (Landau-Migdal picture).

⇒ in 1-1 correspondence with non-interacting sp states

- Characterized by position, strength, and width.

GQ(x, x′;E) =
N∑

j=1

zQj(x)z
∗
Qj(x

′)
E − εQj − iwQj

+
∞∑

j=N+1

zQj(x)z
∗
Qj(x

′)
E − εQj + iwQj

The concept of QP excitations is totally missing in KS-DFT,

since the individual Kohn-Sham orbitals have no special signifi-

cance.

Can we derive single-particle equations for the QP orbitals (QPDFT)?



QP contribution to 0th and 1st moment

• QP width does not contribute to 0th and 1st moment of spec-

tral distribution: [NQ] =
∑∞

j=1 zQjz
†
Qj; [MQ] =

∑∞
j=1 εQjzQjz

†
Qj

Note 1: Given arbitrary, hermitian matrices [NQ] and [MQ] with

[NQ] positive definite, one has unique decomposition.

How? Solve generalized eigenvalue problem

[MQ]uj = λj[NQ]uj; u
†
Qj[NQ]uQk = δj,k

Then εQj = λj and zQj = [NQ]uj are solution.

Note 2: Split of QP in removal and addition part is obvious :

[N
Q(−)] =

N∑
j=1

zQjz
†
Qj; [M

Q(−)] =
N∑

j=1

εQjzQjz
†
Qj



Quasiparticle equations

* Split spectral function into dominant quasi-particle (QP) ex-

citations and a residual small background part (which is a good

candidate for “universal” modelling).

* Full energy dependence of [SB(E)] is not needed, only 0th and

1st order moment:

[N ] = [NQ] + [NB]; [M ] = [MQ] + [MB]

Since [N ] and [M ] are known, modeling of the (small) contri-

butions [NB] and [MB] as a functional of the density matrix is

sufficient to generate selfconsistency problem.

[MQ]uj = λj[NQ]uj

([H0] + [VHF{N(−)}] − [MB{N(−)}])uj = λj([I] − [NB{N(−)}])uj



Selfconsistency problem

* Initial estimate for [N(−)] ⇒ construct [NB], [MB] and [VHF ].

* Solve s.p. eigenvalue problem ⇒ QP energies εQj = λj and

orbitals zQj = ([I] − [NB{N(−)}])uj

* N solutions with lowest energy are used to update density

matrix

[Nnew
(−)

] =
N∑

i=1

zQjz
†
Qj + [N

B(−){N(−)}]

* This closes selfconsistency loop, iterate to convergence.

* Energy can be obtained from

EN
0 =

1

2

N∑
j=1

z
†
Qj([H0] + εQj)zQj

+
1

2
Trace([H0][NB(−){N(−)}] + [M

B(−){N(−)}])



Properties (1)

* QP-DFT generates total energy, density matrix and individual

QP energies and orbitals, starting from a model for the back-

ground contributions as a functional of the density matrix.

* Reasonable strategy: external potential influences primarily

QP part.

* Special case [NB] = 0, [MB] = 0 is equivalent to HF.

* Any KS-DFT model is also included as special case of QP-

DFT with [NB] = 0 and [MB] determined by Exc.

* “Potentially exact” (or as exact as KS-DFT...)



Properties (2)

* For finite systems, the QP orbitals have the right asymp-

totics in coordinate space, provided the background operators

are short-ranged.

* Can deal with soft Fermi surface (e.g. we checked that QP-

DFT provides a correct description of H2 dissociation in the

spin-singlet state, eventhough it remains a s.p. description)

* Electron gas limit exists (see later).

How to model [NB] and [MB]?



Building models for QP-DFT functionals

(1) Calculate spectral function in a series of test systems, using

reasonable microscopic model for self-energy.

(2) Analyze QP-background separation.

(3) Parametrize background contribution to 0th and 1st mo-

ment.

* Already experience with (1-2) through series of calculations

using selfconsistent Green’s function formalism, on light atoms

[J.Chem.Phys. 115, 15 (2001);J.Chem.Phys. 117, 4095 (2002)],

the electron gas [PRB 71, 245122 (2005)], and nuclear systems

[PRL 90, 152501 (2003); PRC 68, 064307 (2003)].

* In each case QP-background separation was studied.

E.g.: electron gas results.



Electron gas in GW approximation

* GW = Self-energy including screening diagrams (coupling to

plasmon), done selfconsistently (Hedin’s equations).

Phys.Rev.B 71, 245122 (2005)

* QP-background separation was used to discretize the spectral

function during the iterations towards a selfconsistent solution.

* Nice result: energy per particle is insensitive to precise pre-

scription for QP-background separation, as long as sumrules are

respected.



Background (+)

Quasiparticle

Background (-)

Energy Strength



Energy per particle:



G0W0 approximation in closed-shell atoms

* Green’s function calculation for He, Be, Ne, Mg, Ar, Ca, Zn,

Kr, with self-energy at G0W0 level [PRA74, 062503 (2006)]

* QP-background separation for spectral function of 2s orbital

in Ne
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First moment of background addition strength s
(+)
Bh (ε(+)

Bh − εF )

versus HF energy (relative to εF ) for all hole orbitals in all atoms.
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First moment of background addition strength s
(+)
Bh (ε(+)

Bh − εF )

versus average density, for all hole orbitals in all atoms.
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Construction of QP-DFT functional

* The background moments are not scattered randomly, but

follow clear trends as a function of e.g. HF orbital energy /

density.

* This can be used to parametrize the background moments

with a functional form. Additional variables to describe situation

around Fermi energy: HF particle-hole gap, average density of

ionization orbital.

* The resulting QP-DFT functional is able to reproduce the

main results of the microscopic G0W0 calculation.

* Only proof-of-principle: not yet selfconsistent.

* Dependence on particle-hole gap is crucial.



Results of QP-DFT functional for separate contributions to the

energy
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Results of QP-DFT functional for total energy and ionization

energy
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Nuclear applications

* Nuclear DFT ≈ Skyrme Hartree-Fock parametrizations

* QP-DFT has extra degrees of freedom. More realistic model

for nuclei as correlated systems, while keeping description at the

s.p. level.

* What is the connection of QP-DFT with the dispersive optical

model approach (Mahaux and co-workers) ?

* Modelling of self-energy, including energy-dependence, versus

modelling of background contributions to the spectral function.

* Recent self-energy model for Ca isotopes [Charity,Sobotka,Dickhoff,

PRL 97, 162503 (2006)] allows to study this in detail.



Summary

It is possible to derive DFT-like equations for QP orbitals.

A given QP-DFT functional yields predictions for the total en-

ergy and the density matrix of the system, as well as the QP

orbitals, energies, and spectroscopic factors.

Finding suitable parametrizations for the background part in elec-

tronic systems is in progress.

Nuclear case: possibility of extending Skyrme mean-field models

with terms that include explicit (short-range, long-range) cor-

relation effects. More realistic description of nuclei at the s.p.

level.


