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Generalized Theory for Nuclear Structure

Ab-initio
Quantum Monte Carlo
Symplectic Ab-initio
Coupled-Cluster Techniques

Configuration interaction

Density Functional Theory

Question 3
How were the elements

from
iron to uranium made ?



Unified microscopic and predictive theory of all nuclei and their low-energy reactions

Unified: Theoretical approaches overlap and need to be bridged

Research goal

 All nuclei: To describe the properties of “nuclei” ranging 
 from the deuteron to neutron star

Microscopic description: Toward derivation of a universal Hamiltonian
by combining self-consistent mean-field theory and quantum 
correlations
 



Motivation: Opportunities for the AFMC and 
Their Impact on Nuclear Structure Studies  



We would like to have a theory capable of

   Detailed microscopic description of heavy nuclei with realistic effective
   interactions:

Towards developing a tool that will significantly enhance nuclear structure studies

      - accurate binding energies to define the limits of stability
         - nuclear level densities (Hauser-Feshbach calculations)

 - GT response functions (electron-capture rates)

 - strength functions (neutron-induced reactions, astrophysics)



Configuration Interaction

Always the choice of nuclear structure studies (capacity to describe the nuclear
dynamics either of single particle or collective nature):

 Full microscopic accounting of the residual interaction
 Make many-body wave functions  to expand full solution
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The conventional shell model with a full major shell has been successful up to A~70
due to large dimensions



 The total number of Slater determinants within a Hilbert space:
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Challenges

 In the neutron rich side: two contiguous major shells have to be included in the valence
    space, the Fock space representation

Computational limit to
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Current nuclear models are inadequate!
Computational scope with traditional methods
beyond the capability of any computer.



Defeating the Combinatorial Explosion

The Hamiltonian:

Single-particle energy

Density operator

Strength of the TB int.
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Have to do something else…. (Steve Koonin, early 1990)



General Strategy

1. Gaussian (HS) Transformation
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One-body Hamiltonian

2. Break up the imaginary time-evolution operator into time slices
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3. Any observable can be defined as

The dimension of the integral is 2

s t
N N

  

! 

ˆ O =

d"
# ,n# ,n

$% e

&
'(

2
)#

#

* " 2
#

Tr e
&'( ˆ h "1( )

Le
&'( ˆ h " Nt( )[ ]

Tr ˆ O e
&'( ˆ h "1( )

Le
&'( ˆ h " Nt( )[ ]

Tr e
&'( ˆ h "1( )

Le
&'( ˆ h " Nt( )[ ]

d"
# ,n# ,n

$% e

&
'(

2
)#

#

* " 2
#

Tr e
&'( ˆ h "1( )

Le
&'( ˆ h " Nt( )[ ]

! 

=
d"

# ,n# ,n
$% W (" ) O

"

d"
# ,n
W (" )

# ,n
$%

  

! 

W (" ) = e

#
$%

2
&'

'

( "'
2

Tr e
#$% ˆ h "1( )

Le
#$% ˆ h " Nt

( )[ ]The weight function: 

! 

     ˆ O 
MC

 =

ˆ O 
" k

W "
k

( ) W "
k

( )
k

#

W "
k

( ) W "
k

( )
k

#

The sign of the MC weight function

1022 states = 2*105 fields But W(s) must be positive



The Power of AFMC

 AFMC is a statistical approach
within the shell-model framework
which can provide exact results for
systems with extraordinarily large
dimensions (1021 and beyond)

 AFMC is ideally suited for
parallel, high-performance
computing
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We need to have W(σ) to be positive definite!

Lang’s rule for a “good” interaction:

(Lang at. al, PRC, 1993) 

The time-reversal properties play a central role
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Our two-body Hamiltonian:
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Auxiliary-field Monte Carlo Method

AFMC before: Useless with realistic interactions 



Interdisciplinary Interest in the Fermionic Sign Problem
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Defeating the Sign Problem: Shifted-Contour
Method for AFMC

Our two-body Hamiltonian does not change!

Shift the one-body operator

Mean-field density

This shifts each auxiliary field by         with the net effect of suppressing the sign problem  
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Realistic resolution within AFMC

AFMC now: First successful results



We Defeated the Sign Problem

First result ever for an odd nucleus!
We verified that we can 
solve the problem exactly
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Scientific triple point:
nuclear structure, nuclear astrophysics, weak interactions 

• Interplay of weak and strong forces
  plays a pivotal role in understanding 
  astrophysics. 
• Astrophysics requires input from 
  nuclear physics.
• The three are intertwined. 
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Probing Heavier Nuclei

We offer a method that can revolutionize 
Nuclear Structure

More…
  Truly detailed analysis of intermediate-

mass nuclei at the limit of stability:

Binding energies
Strength functions

Weak transition rates
Even and Odd nuclei
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Jz = 0 is ≈ 501M

AFMC: -195.687(107) MeV
CI: -195.901MeV



Challenges

M. Bender, G.F. Bertsch, and P.-H. Heenen, PRC73 034322 (2006)

We will combine the AFMC method with Hartree-Fock to develop
a universal picture of nuclei that includes the full range quantum
effects. All nuclei from 16 ≤ A ≤ 120

Coupled with LLNL supercomputing capability we will deliver the foundation 
for an entirely new framework to describe the properties of nuclei



Complimentary…

 AFMC calculations with several major shells

 To develop a global theory of nuclear level densities

  To bridge the ab initio calculations with three-body interactions to heavier nuclei:
      we will address this issue by finding an appropriate mapping of the three-body
      interaction into a density-dependent two-body interaction

 Tying with the continuum shell model and modern mean-field theories - allow 
    for the consistent treatment of bound and unbound nuclear states

  Spin projection which will allow spectroscopy  
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