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Research goal

Unified microscopic and predictive theory of all nuclei and their low-energy reactions

Unified: Theoretical approaches overlap and need to be bridged

Microscopic description: Toward derivation of a universal Hamiltonian
by combining self-consistent mean-field theory and quantum

correlations

All nuclei: To describe the properties of "nuclei” ranging
from the deuteron to neutron star



Motivation: Opportunities for the AFMC and
Their Impact on Nuclear Structure Studies



We would like to have a theory capable of

Detailed microscopic description of heavy nuclei with realistic effective
interactions:

- accurate binding energies to define the limits of stability

- nuclear level densities (Hauser-Feshbach calculations)
- GT response functions (electron-capture rates)

- strength functions (neutron-induced reactions, astrophysics)

Towards developing a tool that will significantly enhance nuclear structure studies



Configuration Interaction

Always the choice of nuclear structure studies (capacity to describe the nuclear
dynamics either of single particle or collective nature):

v Full microscopic accounting of the residual interaction

v Make many-body wave functions to expand full solution
q)i = Ecm(pn
0flp N=4
H, H, - H), - 0 O
H21 sz R - 00
: ) Ip N=1 —O—Oi::
H,, .. Hyy - 00

diagonaize the matrix H,=(¢|Hl¢,) in the basis
to obtain eigenvalues

The conventional shell model with a full major shell has been successful up to A~70

due to large dimensions =



Challenges

v' The total number of Slater determinants within a Hilbert space:
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Current nuclear models are inadequate!

Computational scope with traditional methods
beyond the capability of any computer.

v' In the neutron rich side: two contiguous major shells have to be included in the valence
space, the Fock space representation



Defeating the Combinatorial Explosion

Have to do something else.... (Steve Koonin, early 1990)

—> B=1T
—pA2 Yy -BA /2 ﬁ Tr ﬁe—ﬁﬁ
£, -lim! Pl AR _ (900, E(p) e ﬁg-]
= @l o) (©.9..) Trle™ ]

The Hamiltonian:

T I L Strength of the TB int.

Density operator

Single-particle energy



General Strategy

1. Gaussian (HS) Transformation
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2. Break up the imaginary time-evolution operator into time slices
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3. Any observable can be defined as
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The Power of AFMC

v’ AFMC is a statistical approach
within the shell-model framework
which can provide exact results for
systems with extraordinarily large
dimensions (10%! and beyond)

v' AFMC is ideally suited for
parallel, high-performance
computing
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The “catch” in AFMC

We need to have W(o) to be positive definite!
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Our two-body Hamiltonian: E( ) EK K.M K -M

The time-reversal properties play a central role

Lang's rule for a "good" interaction: -D*m A, <0 (attractive)
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Auxiliary-field Monte Carlo Method
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Interdisciplinary Interest in the Fermionic Sign Problem

IUPAP Matthias Troyer, Uwe-Jens Wiese, Computational complexity and fundamental
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limitations to fermionic quantum Monte Carlo simulations, PRL 94 (2005)

Physics Now
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by leading physicists In the problem in the fermionic quantum Monte-Carlo algorithm, Phys. Rev. B 71 (2005)

International Union of Pure and Applied Physics

Editor
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T.D. Kieu and C.J. Grifin: Tackling the sign problem, (1993)



Defeating the Sign Problem: Shifted-Contour
Method for AFMC

- “« L . — Mean-field density
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Shift the one-body operator

- i=360,+137,(0,-(0,)) +332.(2(0.)0,-(0.))

Our two-body Hamiltonian does not change!
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This shifts each auxiliary field by (0,) with the net effect of suppressing the sign problem
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Realistic resolution within AFMC
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We Defeated the Sign Problem

We can calculate level densities:
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Scientific triple point:
nuclear structure, nuclear astrophysics, weak interactions

Nucleosynthesis in the Cosmos 1
B Stable
= Observed Unstable
Stellar \ = |
evolution 3= - ! i
P | 2. Interplay of weak and strong forces

T

plays a pivotal role in understanding
astrophysics.

» Astrophysics requires input from
nuclear physics.
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More...

Truly detailed analysis of intermediate-
mass nuclei at the limit of stability:

Binding energies
Strength functions
Weak transition rates
Even and Odd nuclei

We offer a method that can revolutionize

Nuclear Structure
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AFMC: -195.687(107) MeV
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Challenges

Coupled with LLNL supercomputing capability we will deliver the foundation
for an entirely new framework to describe the properties of nuclei

We will combine the AFMC method with Hartree-Fock to develop

a universal picture of nuclei that includes the full range quantum
effects. All nuclei from 16 < A < 120
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Complimentary...

s AFMC calculations with several major shells

< To develop a global theory of nuclear level densities

*» Tying with the continuum shell model and modern mean-field theories - allow
for the consistent treatment of bound and unbound nuclear states

< Spin projection which will allow spectroscopy

7/

<+ To bridge the ab initio calculations with three-body interactions to heavier nuclei:
we will address this issue by finding an appropriate mapping of the three-body
interaction into a density-dependent two-body interaction
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