No-core shell model with JISP16 NN interaction: spectroscopy of light nuclei and neutron-nucleus scattering

Seattle, INT-07-03

– A. Shirokov (Moscow)

– J. Vary, T. Weber and P. Maris (Iowa)

– A. Mazur (Khabarovsk)

Highlights

JISP = *J*-matrix inverse scattering potential PETs = phase-equivalent transformations No-core shell model: *ab initio* ! *ab exitu* approach \Rightarrow JISP16 *NN* interaction No three-nucleon forces Spectroscopy of nuclei with $A \leq 16$ *N*-nucleus scattering

JISP type *NN* interaction:

- Description of *NN* data
- Small matrix of the *NN* interaction in the oscillator basis:

$$
V = \sum_{\Gamma,\,\Gamma'}\,\sum_{n=0}^{N_\Gamma}\,\sum_{n'=0}^{N_{\Gamma'}}\,\left|n\Gamma\right\rangle\,V_{nn'}^{\Gamma\Gamma'}\left\langle n'\Gamma'\right|
$$

• Description of (light) nuclei

ab initio ! *ab exitu*

- JISP16: J-matrix inverse scattering 9h Ω *NN* potential with $h\Omega$ = 40 MeV fitted to nuclei up through ¹⁶O
- Only simplest PETs generated by 2x2 unitary matrix *U* are used
- *Ab exitu* approach:
- PETs: *sd* wave fitting deuteron properties (rms radius and quadrupole moment)

various *p* and one of *d* waves - fitting few levels of 6Li and binding energy of ¹⁶O in relatively small model spaces

• All the rest NCSM results (other nuclei, larger model spaces) are *ab initio*

JISP16 properties

- 1992 *np* data base (2514 data): χ^2 /datum = 1.03
- 1999 *np* data base (3058 data): χ^2 /datum = 1.05

 6 Li spectrum with JISP16 NN interaction, h Ω =17.5 MeV

Binding energies

Ground state energy E_{gs} and excitation energies E_x (in MeV), ground state point-proton rms radius r_p (in fm) and quadrupole moment Q (in $e \cdot \text{fm}^2$) of the ⁶Li nucleus; $\hbar \omega = 17.5 \text{ MeV}$.

Interaction		JISP6	JISP16	$AV8' + TM'$	$AV18+UIX$	$AV18 + IL2$
Method	Nature	NCSM, $10\hbar\omega$ [6]	NCSM, $12\hbar\omega$	NCSM, $6\hbar\omega$ 2	GFMC [8,15]	GFMC [10,15]
$E_{gs}(1^+_1,0)$	-31.995	-31.48	-31.00	-31.04	$-31.25(8)$	$-32.0(1)$
r_p	2.32(3)	2.083	2.151	2.054	2.46(2)	2.39(1)
Q	$-0.082(2)$	-0.194	-0.0646	-0.025	$-0.33(18)$	$-0.32(6)$
$E_x(3^+,0)$	2.186	2.102	2.529	2.471	2.8(1)	2.2
$E_x(0^+, 1)$	3.563	3.348	3.701	3.886	3.94(23)	3.4
$E_x(2^+,0)$	4.312	4.642	5.001	5.010	4.0(1)	4.2
$E_x(2^+,1)$	5.366	5.820	6.266	6.482		5.5
$E_x(1^+_2,0)$	5.65	6.86	6.573	7.621	5.1(1)	5.6

 a A.M.Shirokov, J.P.Vary, A.I.Mazur, T.A.Weber, Phys. Lett. $\bf{B644}$, 33 (2007).

^bP. Navrátil, W. E. Ormand, Phys. Rev. C $68,~034305~(2003).$

^cS. C. Pieper, K. Varga, R. B. Wiringa, Phys. Rev. C 66, 044310 (2002).

^dP. Navrátil, V. G. Gueorguiev, J. P. Vary, W. E. Ormand, A. Nogga, Phys. Rev. Lett. 99, 042501 (2007).

 ${}^{10}{\rm B}$

 8 Be spectrum NCSM, $8h\Omega$ model space

Role of *NNN* force?

• W. Polyzou and W. Glöckle theorem (Few-body Syst. **9**, 97 (1990)):

$$
H = T + V_{ij} \Longrightarrow H' = T + V'_{ij} + V_{ijk},
$$

where V_{ij} and V'_{ij} are phase-equivalent, *H* and *H'* are isospectral.

Hope:

$$
H' = T + V'_{ij} + V_{ijk} \implies H = T + V_{ij}
$$

with (approximately) isospectral *H* and *H'* .

JISP16 seems to be *NN* interaction minimizing *NNN* force.

Without *NNN* force calculations are simpler, calculations are faster, larger model spaces become available.

J-matrix formalism: scattering in the oscillator basis

*n*α scattering

$n\alpha$ inverse scattering

- *J*-matrix inverse *N-*nucleus scattering analysis can be used to derive resonance parameters (position, width)
- *J*-matrix inverse *N-*nucleus scattering analysis suggests values for resonant and non-resonant states that should be compared with obtained in **NCSM**

$n\alpha$ inverse scattering

Table 1: S-matrix poles for $3/2^-$ states (energies and widths are in MeV).

	$N=2$		$N=3$		$N=4$		$N=5$				
	E_r		E_r		E_r		E_r				
			0.797 0.746 0.800 0.700		0.800 ± 0.700		0.801	0.700			
2	24.564		60.728 12.805 53.480 7.520			$ 44.682 $ 5.041		42.316			
3 ¹						49.584 72.358 30.687 62.910 23.693 59.476					
<i>R</i> -matrix (A. Csótó, G.M. Hale. Phys. Rew. C55 (1997) 536):											
$E_r = 0.80, \Gamma = 0.65$											

Table 2: S-matrix poles for $1/2^-$ states (energies and widths are in MeV).

$n\alpha$ inverse scattering and NCSM

$n\alpha$ inverse scattering

$n\alpha$ inverse scattering and NCSM

Conclusions

- JISP16 provides a realistic description of two-body and many-body properties, comparable with modern realistic *NN + NNN* forces
- Convergence of NCSM calculations with JISP16 is faster, even the bare JISP16 calculation convergence is reasonable, i.e. the results are more reliable. A confidence region of the binding energy predictions can be obtained for many nuclei by comparing the bare and effective interaction results
- Combining *J-*matrix formalism and NCSM one can perform scattering calculations with bare *NN* interaction; using JISP16 we describe well $n\alpha$ scattering. *J*-matrix inverse *N-*nucleus scattering analysis suggests values for resonant and non-resonant states that should be compared with obtained in NCSM

Plans

- JISP16 improvement by the fit to the same nuclei
- Charge-dependent JISP16
- Extending the calculations to the *sd* shell
- NCSM + J-matrix: Scattering calculations