No-core shell model with JISP16 *NN* interaction: spectroscopy of light nuclei and neutron-nucleus scattering

Seattle, INT-07-03

- <u>A. Shirokov</u> (Moscow)

- J. Vary, T. Weber and P. Maris (Iowa)
- A. Mazur (Khabarovsk)

Highlights

JISP = *J*-matrix inverse scattering potential PETs = phase-equivalent transformations No-core shell model: *ab initio* \Leftrightarrow *ab exitu* approach \Rightarrow JISP16 *NN* interaction No three-nucleon forces Spectroscopy of nuclei with $A \le 16$ *N*-nucleus scattering

JISP type NN interaction:

- Description of NN data
- Small matrix of the NN interaction in the oscillator basis:

$$V = \sum_{\Gamma, \Gamma'} \sum_{n=0}^{N_{\Gamma}} \sum_{n'=0}^{N_{\Gamma'}} |n\Gamma\rangle V_{nn'}^{\Gamma\Gamma'} \langle n'\Gamma'|$$

• Description of (light) nuclei

ab initio ⇔ ab exitu

- JISP16: *J*-matrix inverse scattering $9h\Omega NN$ potential with $h\Omega = 40$ MeV fitted to nuclei up through ¹⁶O
- Only simplest PETs generated by 2x2 unitary matrix U are used
- Ab exitu approach:
- PETs: *sd* wave fitting deuteron properties (rms radius and quadrupole moment)

various p and one of d waves - fitting few levels of ⁶Li and binding energy of ¹⁶O in relatively small model spaces

• All the rest NCSM results (other nuclei, larger model spaces) are *ab initio*

JISP16 properties

- 1992 *np* data base (2514 data): χ^2 /datum = 1.03
- 1999 *np* data base (3058 data): χ^2 /datum = 1.05

Table I: Deuteron properties.									
Potential	E May	d state	rms radius,	$O_{\rm fm}^2$	As. norm. const.	\mathscr{A}_d			
	E_d , MeV	probability, %	${ m fm}$	Q, 111-	$\mathscr{A}_s, \mathrm{fm}^{-1/2}$	$\eta = \frac{1}{\mathscr{A}_s}$			
JISP16	-2.224575	4.1360	1.9643	0.2886	0.8629	0.0252			
Nijmegen-II	-2.224575	5.635	1.968	0.2707	0.8845	0.0252			
AV18	-2.224575	5.76	1.967	0.270	0.8850	0.0250			
CD–Bonn	-2.224575	4.85	1.966	0.270	0.8846	0.0256			
Nature	-2.224575(9)	_	1.971(6)	0.2859(3)	0.8846(9)	0.0256(4)			

 6 Li spectrum with JISP16 NN interaction, h Ω =17.5 MeV

Needlerer	Ntedara	Dama	Dff - + i	$\hbar\omega$	Model	Nucl	Notur	o Done	Effective	$\hbar\omega$	Model
Nucleus	Nature	Bare	Enective	(MeV)) space	Nucle	eus Natur	e bare	Enective	(MeV	/) space
$^{3}\mathrm{H}$	8.482	8.354	8.496(20)	7	$14\hbar\omega$	$^{11}\mathrm{C}$	73.440	66.1	70.1(32)	17	$6\hbar\omega$
$^{3}\mathrm{He}$	7.718	7.648	7.797(17)	7	$14\hbar\omega$	$^{12}\mathrm{B}$	79.575	71.2	75.9(48)	15	$6\hbar\omega$
$^{4}\mathrm{He}$	28.296	28.297	28.374(57)	10	$14\hbar\omega$	$^{12}\mathrm{C}$	92.162	87.4	91.0(49)	17.5	$6\hbar\omega$
$^{6}\mathrm{He}$	29.269		28.32(28)	17.5	$12\hbar\omega$	$^{12}\mathrm{N}$	74.041	64.5	70.2(48)	15	$6\hbar\omega$
$^{6}\mathrm{Li}$	31.995		31.00(31)	17.5	$12\hbar\omega$	$^{13}\mathrm{B}$	84.453	73.5	82.1(67)	15	$6\hbar\omega$
$^{7}\mathrm{Li}$	39.245		37.59(30)	17.5	$10\hbar\omega$	$^{13}\mathrm{C}$	97.108	93.2	96.4(59)	19	$6\hbar\omega$
$^{7}\mathrm{Be}$	37.600		35.91(29)	17	$10\hbar\omega$	$^{13}\mathrm{N}$	94.105	89.7	93.1(62)	18	$6\hbar\omega$
$^{8}\mathrm{Be}$	56.500		53.40(10)	15	$8\hbar\omega$	$^{13}\mathrm{O}$	75.558	63.0	72.9(62)	14	$6\hbar\omega$
$^{9}\mathrm{Be}$	58.165	53.54	54.63(26)	16	$8\hbar\omega$	$^{14}\mathrm{C}$	105.285	101.5	106.0(93)	17.5	$6\hbar\omega$
${}^{9}\mathrm{B}$	56.314	51.31	52.53(20)	16	$8\hbar\omega$	$^{14}\mathrm{N}$	104.659	103.8	106.8(77)	20	$6\hbar\omega$
$^{10}\mathrm{Be}$	64.977	60.55	61.39(20)	19	$8\hbar\omega$	$^{14}\mathrm{O}$	98.733	93.7	99.1(92)	16	$6\hbar\omega$
$^{10}\mathrm{B}$	64.751	60.39	60.95(20)	20	$8\hbar\omega$	$^{15}\mathrm{N}$	115.492	114.4	119.5(126)	16	$6\hbar\omega$
$^{10}\mathrm{C}$	60.321	55.26	56.36(67)	17	$8\hbar\omega$	$^{15}\mathrm{O}$	111.956	110.1	115.8(126)	16	$6\hbar\omega$
$^{11}\mathrm{B}$	76.205	69.2	73.0(31)	17	$6\hbar\omega$	$^{16}\mathrm{O}$	127.619	126.2	133.8(158)	15	$6\hbar\omega$

Binding energies

Ground state energy E_{gs} and excitation energies E_x (in MeV), ground state point-proton rms radius r_p (in fm) and quadrupole moment Q (in $e \cdot \text{fm}^2$) of the ⁶Li nucleus; $\hbar \omega = 17.5$ MeV.

· /	1 1	•	/	/		
Interaction	Nationa	JISP6	JISP16	AV8'+TM'	AV18+UIX	AV18+IL2
Method	Nature	NCSM, $10\hbar\omega$ [6]	NCSM, $12\hbar\omega$	NCSM, $6\hbar\omega$ [2]	GFMC [8,15]	GFMC [10,15]
$E_{gs}(1_1^+,0)$	-31.995	-31.48	-31.00	-31.04	-31.25(8)	-32.0(1)
r_p	2.32(3)	2.083	2.151	2.054	2.46(2)	2.39(1)
Q	-0.082(2)	-0.194	-0.0646	-0.025	-0.33(18)	-0.32(6)
$E_x(3^+, 0)$	2.186	2.102	2.529	2.471	2.8(1)	2.2
$E_x(0^+, 1)$	3.563	3.348	3.701	3.886	3.94(23)	3.4
$E_x(2^+, 0)$	4.312	4.642	5.001	5.010	4.0(1)	4.2
$E_x(2^+, 1)$	5.366	5.820	6.266	6.482		5.5
$E_x(1_2^+, 0)$	5.65	6.86	6.573	7.621	5.1(1)	5.6

Potential	Natara	JISP16	AV8'+TM'	AV18+IL2	ChPT
Approach	nature	NCSM, $8\hbar\omega^a$	NCSM, $4\hbar\omega^b$	GFMC^{c}	NCSM, $6\hbar\omega^d$
$E_{gs}(3^+_1, 0)$	-64.751	-60.14	-60.57	-65.6(5)	-64.78
r_p	2.30(12)	2.168	2.168	2.33(1)	2.197
Q	+8.472(56)	6.484	+5.682	+9.5(2)	+6.327
$E_x(1_1^+, 0)$	0.718	0.555	0.340	0.9	0.523
$E_x(0^+, 1)$	1.740	1.202	1.259		1.279
$E_x(1_2^+, 0)$	2.154	2.379	1.216		1.432
$E_x(2_1^+, 0)$	3.587	3.721	2.775	3.9	3.178
$E_x(3^+_2, 0)$	4.774	6.162	5.971		6.729
$E_x(2_1^+, 1)$	5.164	5.049	5.182		5.315
$E_x(2_2^+, 0)$	5.92	5.548	3.987		4.835
$E_x(4^+, 0)$	6.025	5.775	5.229	5.6	5.960
$E_x(2_2^+, 1)$	7.478	7.776	7.491		7.823
$B(E2;1^+_10\rightarrow 3^+_10)$	4.13(6)	3.317	1.959		3.05
$B(E2;1^+_20\to 3^+_10)$	1.71(26)	0.627	1.010		0.50
$B(\mathrm{GT};3^+_10\rightarrow 2^+_11)$	0.083(3)	0.042	0.066		0.07
$B(\mathrm{GT};3^+_10\rightarrow 2^+_21)$	0.95(13)	1.652	1.291		1.22

^aA.M.Shirokov, J.P.Vary, A.I.Mazur, T.A.Weber, Phys. Lett. **B644**, 33 (2007).

^bP. Navrátil, W. E. Ormand, Phys. Rev. C 68, 034305 (2003).

^cS. C. Pieper, K. Varga, R. B. Wiringa, Phys. Rev. C 66, 044310 (2002).

^dP. Navrátil, V. G. Gueorguiev, J. P. Vary, W. E. Ormand, A. Nogga, Phys. Rev. Lett. 99, 042501 (2007).

 $^{10}\mathrm{B}$

⁸Be spectrum NCSM, 8hΩ model space

Role of NNN force?

W. Polyzou and W. Glöckle theorem (Few-body Syst. <u>9</u>, 97 (1990)):

$$H=T+V_{ij} \Longrightarrow H'=T+V'_{ij}+V_{ijk},$$

where V_{ij} and V'_{ij} are phase-equivalent, H and H' are isospectral.

Hope:

$$H'=T+V'_{ii}+V_{iik} \Longrightarrow H=T+V_{ii}$$

with (approximately) isospectral H and H'.

JISP16 seems to be NN interaction minimizing NNN force.

Without *NNN* force calculations are simpler, calculations are faster, larger model spaces become available.

J-matrix formalism: scattering in the oscillator basis

$n\alpha$ scattering

$n\alpha$ inverse scattering

- *J*-matrix inverse *N*-nucleus scattering analysis can be used to derive resonance parameters (position, width)
- J-matrix inverse N-nucleus scattering analysis suggests values for resonant and non-resonant states that should be compared with obtained in NCSM

$n\alpha$ inverse scattering

Table 1: S-matrix poles for $3/2^{-}$ states (energies and widths are in MeV).

	N=2		N = 3		N	=4	N = 5		
	E_r	Г	E_r	Г	E_r	Г	E_r	Г	
1	0.797	0.746	0.800	0.700	0.800	0.700	0.801	0.700	
2	24.564	60.728	12.805	53.480	7.520	44.682	5.041	42.316	
3			49.584	72.358	30.687	62.910	23.693	59.476	
<i>R</i> -matrix (A. Csótó, G.M. Hale. Phys. Rew. C55 (1997) 536):									
	$E_r = 0.80, \ \Gamma = 0.65$								

Table 2: S-matrix poles for $1/2^{-}$ states (energies and widths are in MeV).

	N=2		N = 3		N = 4		N = 5			
	E_r	Г	E_r	Г	E_r	Г	E_r	Г		
1	1.894	5.254	1.898	5.264	1.901	5.266	1.902	5.266		
2	32.950	80.408	17.185	67.992	9.651	55.774	6.299	52.252		
3					35.231	75.304	27.297	70.006		
<i>R</i> -matrix (A. Csótó, G.M. Hale. Phys. Rew. C55 (1997) 536):										
	$E_r = 2.07, \ \Gamma = 5.57$									

$n\alpha$ inverse scattering and NCSM

$n\alpha$ inverse scattering

$n\alpha$ inverse scattering and NCSM

Conclusions

- JISP16 provides a realistic description of two-body and many-body properties, comparable with modern realistic *NN* + *NNN* forces
- Convergence of NCSM calculations with JISP16 is faster, even the bare JISP16 calculation convergence is reasonable, i.e. the results are more reliable. A confidence region of the binding energy predictions can be obtained for many nuclei by comparing the bare and effective interaction results
- Combining *J*-matrix formalism and NCSM one can perform scattering calculations with bare *NN* interaction; using JISP16 we describe well *n*α scattering. *J*-matrix inverse *N*-nucleus scattering analysis suggests values for resonant and non-resonant states that should be compared with obtained in NCSM

Plans

- JISP16 improvement by the fit to the same nuclei
- Charge-dependent JISP16
- Extending the calculations to the sd shell
- NCSM + J-matrix: Scattering calculations