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o QOutline
# The fundamental theory of nuclel is Quantum ChromoDynamics.
It contains “colored” quarks and gluons.
* But we can't solve QCD for ordinary nuclei! (Nor do we really
want to: its more complicated than necessary.)
* So how do we simplify the problem to make progress?
* Use Effective Field Theory (EFT)
© Basic principles are common to many areas of physics.
o Include dynamics explicitly at large distances and parametrize
short-range physics generically.
* Use Density Functional Theory (DFT)
o Concentrate on a subset of observables.
© Compute them reliably without the many-body wave function
or with a simple one.
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We focus on low-energy, long-range physics, and all observables
are colorless.

Hadrons (baryons and mesons) are the actual particles observed in
experiments.

Colored quarks and gluons participate only in intermediate states,
and such "off-shell" behavior is unobservable.

So pick the most efficient degrees of freedom! We have to
parametrize the hamiltonian anyway, since we don't know its true
form.

We are interested primarily in the nuclear many-body problem, so
include “collective” degrees of freedom like scalar and vector fields.

Only nucleons and pions are “real” (stable) particles; other fields are
always virtual and just parameterize the NN interaction (or EM form
factors).



Why Impose Lorentz Covariance? I

* The scalar and vector mean fields in nuclei are large (several
hundred MaV). This is a new energy scale. The scalar and vector
fields cancel to produce a small binding energy.

* Consistent with QCD sum-rule results (size and density
dependenca).

* Consistent with chiral power counting (two-body energy/nucleon
is of order pg/ f2).

* Large mean fields produce important relativistic interaction effects.

* Velocity-dependent NN i ion p a new saturation
mechanism.

* Scalar and vector mean fields add to produce correct spin-orbit
force. (Compare “fine” structure in atoms and nuclei.)

* Successful prediction of nucleon—nucleus spin observables in
the RIA and energy dependence of the optical potential.

* Explains pseudospin symmetry in nuclei.

There really is relativity in nuclei!
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[ Wiy Use Effective Fieid Theory? i

Loreniz-covariant hadronic field theories = Quantum HadreDynamics
® Interpret QHD lagrangians as nonrenormalizable Cppr's
* known long-range 15 d by
* a complete set of generic short-range interactions;

* the borderline is characterized by breakdown scale A of EFT.
For QHD, A = 600 MeV (empirically).

® When based on a local, Lorentz-invariant lagrangian density, EFT is
the most general way to parameterize observables consistent with
the principles of quantum mechanics, special relativity, unitarity,
cluster decomposition, microscopic causality, and the desired
internal symmetries.

® It's not necessary to derive £ from QCD
# Use a general L that respects the symmetries.
* By cor ion, this provides a general ization for

energies S_, A (remove redundancies).

® The freedom to redefine and transform the fields
== infinitely many representations of low-energy QCD physics



Strategy

» Assign an index to each term in the lagrangian: v/ = d+n/2+b.
+ d = number of derivatives (except on nucleons).
* n = number of nucleon fields.
* b = number of non-Goldstone bosans.

* Organize L in powers of and truncate; this gives a reliable
expansion in inverse powers of a *heavy” mass scale A= M.

» Nucleon (IV), Lorentz scalar (¢) = “sigma”) [chiral scalar]

 Lorentz vector (V, = “omega” ; =8,V, -0 Vy) (4]

ePion: U= exp(rr-'rr/f,r) . E=explitem [2fs),
together with  a,, = —3 (618, — €0,67)

vy =—1 (£T3n5+£3,,£') Ve = —ifag, @)
eRho:  pu=3Tp,. Dupu = 0up +ilou ],

puv = Dupe — Dupp +iT,lpw o] -



Modern EFT Lagrangian
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* Lqup contains all nonredundant terms through order 1 = 4.

« We see standard noninteracting hadron terms & Yukawa
nucleon—-meson couplings & anomalous-moment interactions &
pion-nuclecn and meson nonlinearities: nontrivial dynamics.



In our EFT (QHD) lagrangian:
« Chiral SU(2), x SU(2) g symmetry is nonlinear.
» Isovector subgroup SU(2)y symmetry is linear.
s These are global symmetries.
» Vector transformations: L=exp(if-T/2)=HR

» Axial-vector transformations:
L=explic-7/2), R=exp(—ia-7/2)

» Field transformations: (all objects are matrices)
U(zx) — LU(z)R',
£(z) — Lé(z)hi(c) = h(z)é(@)RT  [defines h(x)]
N(z) — h(z)N(z) [generally, () is local]
pu(z) = hiz)pu(@)h(z).
» Chirally covariant derivatives:
DuN = (0, +iw)N ¢ DuN — h(@)(DuN),
Dupy = Oupy +ilvpu] = Dupy — h(@)(Dupi )b ()



» To realize the nonlinear SU(2), x SU(2) g symmetry, the
lagrangian must include pions explicitly.

* Note that U, £, and p,, are 2 x 2 matrices.
® For isospin transformations, L = R = h (constants); the

transformations are linear.
# For general transformations: L # R. [Axial transformations have
L=Ri)
* Now h(z) is nontrivial and contains pion fields.
* So h(z)N(z) mixes nucleons with any number of pions: the
transformation is nonlinear.
® The only field or tensor that transforms inhomogeneously is
v, — huyht — ih8,ht. This allows for the construction of
chirally covariant derivatives.
® This is NOT the linear sigma model; the scalar field ¢ is a chiral
scalar. It is NOT the chiral partner of the pion.



I Important Things to Remember I

« Off-shell behavior is not observable. Choose the dynamical
variables that are most efficient.

® Vacuum dynamics involves shori-range physics. Don't calculate it,
but parametrize it in a few fitted constants. (Computation of hadronic
loops = unnatural coefficients.) Use valence nucleons only.

& Although fields and couplings are local, nucleon substructure is also
included:

* Example: NNe — g(o)NNeo

* But define: ¢ = g(o)o ,[g(0) = 1]; then invert for o(¢).

* Then: g(¢)NNo + plo) = NN + ad® + b +e¢* + -+
» Nucleon EM structure included in a derivative expansion:

Ear e
Lem = —ENA‘ YL+ )N — o F N{xs + MeTs}o N

- iz O F N (Be + Bors}r)N

= 5100, T({E. + FershWN + -+ +VND,

which generates e, A, s, -«
This works at long distances (low momenta).



| (Naive) Dimensional Analysis: NDA |

[Georgi & Manohar, 1984)
* Low-energy QCD is expected to contain two mass scales:

f= = 93MeV, A= 500 to 800 MeV

« NDA rules for a generic term in the energy functional:

c.‘lf,?!\z’][(%)!% (%)m$ (%)(%)”]

® “Naturalness” = dimensionless (' is of order unity.

» Provides expansion parameters at finite density:

& W . Pa oo o 0
K’“‘I‘"‘W‘ m».f?».lf.) at pp

« Allows truncation and calibration with quantitatively accurate fits to
bulk nuclear observables or “properties of nuclear matter” (plus
“mg" in nuclei).



Density Functional Theory

« Construct the ground-state energy functional from the lagrangian
using a mean-fiekd ) approxi
* A functional of scalar (ps) and baryon (ps) densities.
# Lorentz scalar and vector fields are interpreted as Kohn—Sham
single-particle potentials. Dirac (quasi)nucleons move in these
local potentials.

# Kohn—Sham theorem [1965]: The exact ground-state scalar and
wvector densities, energy, and chemical potential for the fully
interacting many-fermion system can be reproduced by a collection
of (quasi)fermions moving in appropriately defined, self-consistent,
local, classical fields.

Mean-field energy functional provides a parametrization of the exact
energy functional. Fit the parameters [define a x"] to (29) nuclear
abservables from 150, 40Ca, 48Ca, #8sr, and 2°%Pb. There are
more than enough parameters at the typical level of truncation.
Parameters encode both short-range (vacuum, QCD) effects and
long-range (many-body) effects.



® Kohn-Sham quasi-particle orbitals are tailored to the generation of
the ground-state density, so they include exchange, correlation, and
short-range effects (approximately).

® Verify naturalness by examining the convergence of the truncation
(and make predictions).

® Note the large scalar and vector fields! The scale of the
lowest-order term in the energy/particle is given by

Pea/ f2 ~ 130MeV

and is independent of A. This is a general result!



Table 1: Parameter sets from fits to finite nuclei. The parameters in the
lower partion of the table are fitted to the (free) nucleon charge and mag-

natic form factors.
v Wl 1 Q1 Q2 Gl G2
me/M 2 060805 053874 053735 054268 0.53063 0.55410
g/dm 2 098797 077756 081024 078661 078532 0.83522
go/dm 2 113652 096486 1.02125 007202 096512 1.01560
gp/d™ 2 077787 065053 070261 0.68096  0.69844 0.75467
m 3 020577 007080  0.84992
xs 3 16608 16582 17424 22067  3.2467
N 8 —0.2722  0.3901
n2 4 —0.96161 0.10975
Ky 4 —6.8045 —B.4836 —10.080 063152
G 4 —1.7750 35249 26416
a5 1.8549  1.7234
o 5 1.7880 —1.5798
fu/de 3 01079  0.1734
fo/4 8 08332 11158 10332 10660 10383 09619
B9 4 —038482 —0.01915 —0.10689 001181  0.02844 —0.09328
A% 4 —054618 —0.07120 —0.26545 —0.18470 —0.24992 —0.45964
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Binding Energy (MeV)
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FIG. 3. Comparison between experimental and calculated total
binding energies for Sn isotopes using the G2 parameter set.
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FIG. 4. Percentage deviation of the total binding energy for Sn
isotopes using Q1, G1, and G2 parameter sets. The stable isotopes

are indicated in the plot.
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* We described a strong li field theory for
nuclei that is Lorentz and that the
symmaetries of QCD.

e The primary focus of this QHD/EFT lagrangian is on the nuclear
many-body problem.

One can systematically expand and truncate the EFT lagrangian in
powers of the fields and their derivatives.

The mean-field approximation is really DFT, implemented through
Kohn—Sham quasi-particle orbitals. The tested validity and accuracy
of our truncation procedure (for fitted and predicted results) shows
that we really know something about the energy functional for cold
nuclear matter near equilibrium density!

The energy functional can be extended beyond the mean-field
parametrization using well-defined rules of EFT compute loops. And
it has been [Hu, Mcintire, BDS (2000, 2007)].

e The QHD/EFT/DFT/KS formalism provides a true representation of
QCD in the low-energy nuclear domain.



