Halo Systems in Medium-Mass Nuclei : A New Analysis Method

V. Rotival K. Bennaceur T. Duguet

Commissariat à l'Énergie Atomique - Direction des Applications Militaires

National Superconducting Cyclotron Laboratory - Michigan State University

Institut de Physique Nucléaire de Lyon / UCB Lyon I

Espace de Structure Nucléaire Théorique - CEA Saclay

INT, Seattle, 11/16/2007

◆□ > < □ > < □ > < □ > < □ >

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
Outline				

Current Situation in Medium-Mass Nuclei

- Importance of Halo Configurations for the Nuclear EDF
- Limitations of Current Approaches

3 A New Analysis Method

- Properties of the Intrinsic One-Body Density
- Model-Independent Definition of Nuclear Halos
- Robust Criteria for Halo Formation

4 First Results

- Cr Isotopes
- Sn Isotopes
- Systematics over Spherical Nuclei
- Extensions and Limits

Conclusion

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
000	000000	0000000	00000000	0000
Outline				

Introduction

Current Situation in Medium-Mass Nuclei

- Importance of Halo Configurations for the Nuclear EDF
- Limitations of Current Approaches

A New Analysis Method

- Properties of the Intrinsic One-Body Density
- Model-Independent Definition of Nuclear Halos
- Robust Criteria for Halo Formation

4 First Results

- Cr Isotopes
- Sn Isotopes
- Systematics over Spherical Nuclei
- Extensions and Limits

5 Conclusion

V. ROTIVAL Halos in Medium-Mass Nuclei

[I. Tanihata, Nucl. Phys. A520 (1990) 411c-425c]
 [B. Blank *et al.*, Z. Phys. A343 (1992) 343-375]
 [E. Arnold *et al.*, Phys. Lett. B281 (1992) 16]

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
000	0000000	0000000	00000000	0000
Light Nuclei :	Few-Body Models			

- Halo degrees of freedom decoupled from the core
- Problem reduces to 2 or 3-body interacting clusters
- Exact dynamics through Schrödinger or Faddeev equations

Rule of thumb characterization for halo states : A.S. Jensen, M.V. Zhukov, Nucl. Phys. **A693** (2001), 411]

• Halo extension:

> 50% probability in classically forbidden region

• Dominating cluster structure:

> 50% of the actual configuration

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
000	0000000	00000000	000000000	0000
Light Nuclei :	Few-Body Models			

- Halo degrees of freedom decoupled from the core
- Problem reduces to 2 or 3-body interacting clusters
- Exact dynamics through Schrödinger or Faddeev equations

Rule of thumb characterization for halo states : [A.S. Jensen, M.V. Zhukov, Nucl. Phys. **A693** (2001), 411]

• Halo extension:

>50% probability in classically forbidden region

• Dominating cluster structure:

>50% of the actual configuration

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
000	0000000	00000000	000000000	0000
Light Nuclei :	Few-Body Models			

- Halo degrees of freedom decoupled from the core
- Problem reduces to 2 or 3-body interacting clusters
- Exact dynamics through Schrödinger or Faddeev equations

Rule of thumb characterization for halo states : [A.S. Jensen, M.V. Zhukov, Nucl. Phys. **A693** (2001), 411]

• Halo extension:

>50% probability in classically forbidden region

• Dominating cluster structure:

>50% of the actual configuration

V. ROTIVAL Halos in Medium-Mass Nuclei

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
Outline				

Introduction

Current Situation in Medium-Mass Nuclei

- Importance of Halo Configurations for the Nuclear EDF
- Limitations of Current Approaches

3 A New Analysis Method

- Properties of the Intrinsic One-Body Density
- Model-Independent Definition of Nuclear Halos
- Robust Criteria for Halo Formation

4 First Results

- Cr Isotopes
- Sn Isotopes
- Systematics over Spherical Nuclei
- Extensions and Limits

5 Conclusion

- EDF theory : appropriate for mid- to heavy mass nuclei (A > 40)
- EDF behavior at small/surface density / large asymmetry not under control

V. ROTIVAL Halos in Medium-Mass Nuclei

- EDF theory : appropriate for mid- to heavy mass nuclei (A > 40)
- EDF behavior at small/surface density / large asymmetry not under control

-

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
Challenges for	Nuclear Energy De	nsity Functional (ED	F)	

- EDF theory : appropriate for mid- to heavy mass nuclei (A > 40)
- EDF behavior at small/surface density / large asymmetry not under control
- Potential use of halo structures to constrain current EDF ?
 - Surface physics: low density configurations
 - Surface physics : gradient versus density dependence
 - Drip-line phenomenon : large isospin asymmetry
 - Drip-line phenomenon : shell evolution at low separation energy
 - Pairing functional : constraints at low density/large asymmetry

• Collective behaviors: Cluster vision not really expected

Halo definition expected to change...

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
Challenges	for Nuclear Energ	y Density Functional	(EDF)	

- EDF theory : appropriate for mid- to heavy mass nuclei (A > 40)
- EDF behavior at small/surface density / large asymmetry not under control
- Potential use of halo structures to constrain current EDF ?
 - Surface physics: low density configurations
 - Surface physics : gradient versus density dependence
 - Drip-line phenomenon : large isospin asymmetry
 - Drip-line phenomenon : shell evolution at low separation energy
 - Pairing functional : constraints at low density/large asymmetry
- Collective behaviors: Cluster vision not really expected

Halo definition expected to change...

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
HFB calculation	ons in spherical syr	nmetry		

- LyHF spherical HFB code [K. Bennaceur, INPL/ESNT, France]
- Discrete continuum in 40 fm spherical box
- Even-even nuclei : no time-reversal invariance breaking

- Particle-hole channel : SLy4 functional [E. Chabanat et al., Nucl. Phys. A635 (1998) 231-256]
- Particle-particle channel : DDDI functional

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
	000000			
Importance	of low- ℓ states			

• Divergence of r.m.s. radii for $\ell = 0, 1$ weakly bound systems

[K. Riisager et al., Nucl. Phys. A548 (1992) 393] - [T. Misu et al., Nucl. Phys. A614 (1997) 44]

- Focus on the evolution of the r.m.s. radius to predict halos
- Prerequisites : presence + occupation of s/p orbitals
- Higher order moments $\langle r^n \rangle$ diverge for higher ℓ in weak binding limit $\epsilon \rightarrow 0$

- $< r^n >$ diverges as $e^{\frac{2\ell-1-n}{2}}$ for $n > 2\ell - 1$ - $< r^n >$ diverges as $\ln(\epsilon)$ for $n = 2\ell - 1$ - $< r^n >$ remains finite for $n < 2\ell - 1$

Possible contributions from $\ell > 1$ states to nuclear halos. .

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
Importance	of low- ℓ states			

- Divergence of r.m.s. radii for ℓ = 0, 1 weakly bound systems
 [K. Riisager et al., Nucl. Phys. A548 (1992) 393] [T. Misu et al., Nucl. Phys. A614 (1997) 44]
- Focus on the evolution of the r.m.s. radius to predict halos
- Prerequisites : presence + occupation of s/p orbitals
- Higher order moments $< r^n >$ diverge for higher ℓ in weak binding limit $\epsilon \rightarrow 0$

$$\begin{aligned} - &< r^n > \text{diverges as } \epsilon^{\frac{2\ell-1-n}{2}} \text{ for } n > 2\ell-1 \\ - &< r^n > \text{diverges as } \ln(\epsilon) \text{ for } n = 2\ell-1 \end{aligned}$$

-
$$< r^n >$$
 remains finite for $n \le 2\ell - 1$

Possible contributions from $\ell > 1$ states to nuclear halos...

• Root-mean-square radii

• Weak kink of neutron r.m.s.

4 E b

Anomalous neutron skin growth / halo ?

- Kink of neutron r.m.s. : halo signature / shell effect ?
- Two-neutrons separation energy S_{2N} (drives asymptotic behavior)

• No close from 0 for N > 82

• Kink at N = 82 may be due to shell effects only

• Quantitative analysis inadequate : Helm model

[S. Mizutori et al., Phys. Rev. C61 (2000) 044326]

Ν

- Anzatz for core density
- Extracts halo contribution to r.m.s. radius
- Model- and fit-dependent
- Halo in proton-rich / stable / doubly magic nuclei

글 🕨 🖌 글 🕨

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
	000000			
Roadmap				

- Limits of existing methods
- Shell effects may explain part/all of neutron r.m.s. radii kinks
- Need of a robust + quantitative framework
- Lessons from previous attempts :
 - Halo region : decorrelated from protons AND core neutrons
 - One-body density : contains enough relevant information for characterization

Goals

- Non ambiguous / model-independent definition of halos
- Extraction of meaningful criteria
- Separation of skin / shell / halo effects

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
Outline				

1 Introduction

2 Current Situation in Medium-Mass Nuclei

- Importance of Halo Configurations for the Nuclear EDF
- Limitations of Current Approaches

3 A New Analysis Method

- Properties of the Intrinsic One-Body Density
- Model-Independent Definition of Nuclear Halos
- Robust Criteria for Halo Formation

4 First Results

- Cr Isotopes
- Sn Isotopes
- Systematics over Spherical Nuclei
- Extensions and Limits

5 Conclusion

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
		0000000		
Intrinsic One-Body Density				

• Self-bound system : separation of center-of-mass and intrinsic d.o.fs.

$$\Psi^N_{i,\vec{K}}(\vec{r}_1\ldots\vec{r}_N)=e^{\imath\vec{K}.\vec{R}_N}\,\Phi^N_i(\vec{r}_1\ldots\vec{r}_N)\equiv e^{\imath\vec{K}.\vec{R}_N}\,\ddot{\Theta}^N_i(\vec{\xi_1}\ldots\vec{\xi_{N-1}})$$

- Uniform laboratory density : need to consider intrinsic one-body density
- Relevant degrees of freedom : intrinsic spectroscopic amplitudes
 [D. Van Neck et al., Phys. Rev. C57 (1998) 2308] [J. Escher et al., Phys. Rev. C64 (2001) 065801]

$$\varphi_i(\vec{r}) = \sqrt{N} \int d\vec{r}_1 \dots \vec{r}_{N-1} \Phi_i^{N-1*}(\vec{r}_1 \dots \vec{r}_{N-1}) \delta(\vec{R}_{N-1}) \Phi_0^N(\vec{r}_1 \dots \vec{r}_{N-1}, \vec{r})$$

- Definition w/ respect to center-of-mass of (N-1)-body frame
- Natural definition for knock-out
- Normalization : spectroscopic factors

$$S_i = \int d\vec{r} |\varphi_i(\vec{r})|^2 \qquad \Leftrightarrow \qquad \sum_i S_i = N$$

• Decomposition of one-body intrinsic density

$$\rho^{[i]}(\vec{r},\vec{r}\,') = \sum_{i} \varphi_{i}^{*}(\vec{r}\,')\varphi_{i}(\vec{r}\,)$$

Introduction	Current Situation	New Analysis Method ○●○○○○○○	First Results	Conclusion
Asymptotic Behavior for $arphi_i$				

• Asymptotic solution (vanishing interaction) : free Schrödinger equation

$$\left(\frac{d^2}{dr^2} + \frac{2}{r}\frac{d}{dr} - \frac{\ell_i(\ell_i+1)}{r^2} - \kappa_i^2\right)\varphi_i^{\infty}(\vec{r}) = 0$$

• Asymptotic intrinsic overlap functions

$$\varphi_i^{\infty}(\vec{r}) = B_i h_{\ell_i}(\imath \kappa_i r) Y_{\ell_i}^{m_i}(\theta, \varphi)$$

- B_i: Asymptotic Normalization Coefficient (ANC)
- h_{ℓ_i} : Hankel functions
- κ_i related to one-nucleon separation energy

$$\kappa_i = \sqrt{\frac{2m\epsilon_i}{\hbar^2}} \qquad \epsilon_i = E_i^{N-1} - E_0^N$$

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
		0000000		
Asymptotic Behavior for $ ho$				

$$\rho^{\infty}(r) = \sum_{i} \frac{B_{i}^{2}}{4\pi} \left(2\ell_{i} + 1 \right) |h_{\ell_{i}}(\imath \kappa_{i} r)|^{2}$$

• Leading order : nucleon separation energy prevails for large r, regardless of ℓ

$$|h_{\ell_i}(\imath\kappa_i r)|^2 \xrightarrow[r \to +\infty]{} \frac{e^{-2\kappa_i r}}{(\kappa_i r)^2} \qquad \qquad \rho(r) \xrightarrow[r \to +\infty]{} \frac{B_0}{4\pi} (2\ell_0 + 1) \frac{e^{-2\kappa_0 r}}{(\kappa_0 r)^2}$$

- Energy ordering of *i* components
- Corrections
 - ℓ-dep. of h_ℓ : centrifugal barrier
 ⇒ favors low ℓ states
 - $(2\ell + 1)$ degeneracy factor
 - Overall : low ℓ favored

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
Asymptotic Behavior for $ ho$				

$$\rho^{\infty}(r) = \sum_{i} \frac{B_{i}^{2}}{4\pi} \left(2\ell_{i} + 1 \right) \left| h_{\ell_{i}}(\imath \kappa_{i} r) \right|^{2}$$

• Leading order : nucleon separation energy prevails for large r, regardless of ℓ

$$|h_{\ell_i}(\iota\kappa_i r)|^2 \xrightarrow[r \to +\infty]{} \frac{e^{-2\kappa_i r}}{(\kappa_i r)^2} \qquad \qquad \rho(r) \xrightarrow[r \to +\infty]{} \frac{B_0}{4\pi} (2\ell_0 + 1) \frac{e^{-2\kappa_0 r}}{(\kappa_0 r)^2}$$

- Energy ordering of *i* components
- Corrections
 - ℓ-dep. of h_ℓ : centrifugal barrier
 ⇒ favors low ℓ states
 - $(2\ell + 1)$ degeneracy factor
 - Overall : low ℓ favored

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
Asymptotic Behavior for $ ho$				

$$\rho^{\infty}(r) = \sum_{i} \frac{B_{i}^{2}}{4\pi} \left(2\ell_{i} + 1 \right) \left| h_{\ell_{i}}(\imath \kappa_{i} r) \right|^{2}$$

• Leading order : nucleon separation energy prevails for large r, regardless of ℓ

$$|h_{\ell_i}(\iota\kappa_i r)|^2 \xrightarrow[r \to +\infty]{} \frac{e^{-2\kappa_i r}}{(\kappa_i r)^2} \qquad \qquad \rho(r) \xrightarrow[r \to +\infty]{} \frac{B_0}{4\pi} (2\ell_0 + 1) \frac{e^{-2\kappa_0 r}}{(\kappa_0 r)^2}$$

- Energy ordering of *i* components
- Corrections
 - ℓ-dep. of h_ℓ : centrifugal barrier
 ⇒ favors low ℓ states
 - $(2\ell + 1)$ degeneracy factor
 - Overall : low ℓ favored

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
Asymptotic Behavior for $ ho$				

$$\rho^{\infty}(r) = \sum_{i} \frac{B_{i}^{2}}{4\pi} \left(2\ell_{i} + 1 \right) \left| h_{\ell_{i}}(\imath \kappa_{i} r) \right|^{2}$$

• Leading order : nucleon separation energy prevails for large r, regardless of ℓ

$$|h_{\ell_i}(\iota\kappa_i r)|^2 \xrightarrow[r \to +\infty]{} \frac{e^{-2\kappa_i r}}{(\kappa_i r)^2} \qquad \qquad \rho(r) \xrightarrow[r \to +\infty]{} \frac{B_0}{4\pi} (2\ell_0 + 1) \frac{e^{-2\kappa_0 r}}{(\kappa_0 r)^2}$$

- Energy ordering of *i* components
- Corrections
 - ℓ-dep. of h_ℓ : centrifugal barrier
 ⇒ favors low ℓ states
 - $(2\ell + 1)$ degeneracy factor
 - Overall : low ℓ favored

- Density with normalized radial overlaps $\psi_i(r) \Rightarrow \rho(\vec{r}) = \sum_i \frac{S_i}{4\pi} (2\ell_i + 1) |\psi_i(r)|^2$
- Assume (for now) $S_i = 1$
 - Asymptotic ordering induces crossings between normalized components
 - Crossing sharpness depending on energy difference, angular momenta...
 - Crossing between i = 0 and sum of higher components

V. ROTIVAL Halos in Medium-Mass Nuclei

Introduction Current Situation New Analysis Method October Situation October Situati

- Density with normalized radial overlaps $\psi_i(r) \Rightarrow \rho(\vec{r}) = \sum_{i=1}^{r} \frac{S_i}{4\pi} (2\ell_i + 1) |\psi_i(r)|^2$
- Assume (for now) $S_i = 1$
 - Asymptotic ordering induces crossings between normalized components
 - Crossing sharpness depending on energy difference, angular momenta...
 - Crossing between i = 0 and sum of higher components

Introduction Current Situation New Analysis Method October Situation October Situati

- Density with normalized radial overlaps $\psi_i(r) \Rightarrow \rho(\vec{r}) = \sum_{i=1}^{r} \frac{S_i}{4\pi} (2\ell_i + 1) |\psi_i(r)|^2$
- Assume (for now) $S_i = 1$
 - Asymptotic ordering induces crossings between normalized components
 - Crossing sharpness depending on energy difference, angular momenta...
 - Crossing between i = 0 and sum of higher components

- Density with normalized radial overlaps $\psi_i(r) \Rightarrow \rho(\vec{r}) = \sum_i \frac{S_i}{4\pi} (2\ell_i + 1) |\psi_i(r)|^2$
- Assume (for now) $S_i = 1$
 - Asymptotic ordering induces crossings between normalized components
 - Crossing sharpness depending on energy difference, angular momenta...
 - Crossing between i = 0 and sum of higher components

V. ROTIVAL Halos in Medium-Mass Nuclei

- Density with normalized radial overlaps $\psi_i(r) \Rightarrow \rho(\vec{r}) = \sum_i \frac{S_i}{4\pi} (2\ell_i + 1) |\psi_i(r)|^2$
- Assume (for now) $S_i = 1$
 - Asymptotic ordering induces crossings between normalized components
 - Crossing sharpness depending on energy difference, angular momenta...
 - Crossing between i = 0 and sum of higher components

V. ROTIVAL Halos in Medium-Mass Nuclei

Current Situation New Analysis Method First Results Introduction Conclusion 00000000

Consequences of Asymptotic Ordering

- Density with normalized radial overlaps $\psi_i(r) \Rightarrow \rho(\vec{r}) = \sum_{i=1}^{r} \frac{S_i}{4\pi} (2\ell_i + 1) |\psi_i(r)|^2$
- Assume (for now) $S_i = 1$
 - Asymptotic ordering induces crossings between normalized components
 - Crossing sharpness depending on energy difference, angular momenta...
 - Crossing between i = 0 and sum of higher components

Current Situation New Analysis Method First Results Introduction Conclusion 00000000

Consequences of Asymptotic Ordering

- Density with normalized radial overlaps $\psi_i(r) \Rightarrow \rho(\vec{r}) = \sum_{i=1}^{r} \frac{S_i}{4\pi} (2\ell_i + 1) |\psi_i(r)|^2$
- Assume (for now) $S_i = 1$
 - Asymptotic ordering induces crossings between normalized components
 - Crossing sharpness depending on energy difference, angular momenta...
 - Crossing between i = 0 and sum of higher components

Current Situation New Analysis Method First Results Introduction Conclusion 00000000

Consequences of Asymptotic Ordering

- Density with normalized radial overlaps $\psi_i(r) \Rightarrow \rho(\vec{r}) = \sum_{i=1}^{r} \frac{S_i}{4\pi} (2\ell_i + 1) |\psi_i(r)|^2$
- Assume (for now) $S_i = 1$
 - Asymptotic ordering induces crossings between normalized components
 - Crossing sharpness depending on energy difference, angular momenta...
 - Crossing between i = 0 and sum of higher components

- Density with normalized radial overlaps $\psi_i(r) \Rightarrow \rho(\vec{r}) = \sum_i \frac{S_i}{4\pi} (2\ell_i + 1) |\psi_i(r)|^2$
- Spectroscopic factors increase with excitation energy in (N-1) system
 - Does not prevent the crossings (favors them actually)
 - No significant effect from $(2\ell + 1)$ degeneracy
 - Other corrections : number of nodes...

V. ROTIVAL Halos in Medium-Mass Nuclei

- Density with normalized radial overlaps $\psi_i(r) \Rightarrow \rho(\vec{r}) = \sum_j \frac{S_i}{4\pi} (2\ell_i + 1) |\psi_i(r)|^2$
- Spectroscopic factors increase with excitation energy in (N-1) system
 - Does not prevent the crossings (favors them actually)
 - No significant effect from $(2\ell+1)$ degeneracy
 - Other corrections : number of nodes...

V. ROTIVAL Halos in Medium-Mass Nuclei

- Density with normalized radial overlaps $\psi_i(r) \Rightarrow \rho(\vec{r}) = \sum_j \frac{S_i}{4\pi} (2\ell_i + 1) |\psi_i(r)|^2$
- Spectroscopic factors increase with excitation energy in (N-1) system
 - Does not prevent the crossings (favors them actually)
 - No significant effect from $(2\ell+1)$ degeneracy
 - Other corrections : number of nodes...

Current Situation New Analysis Method First Results Introduction Conclusion 00000000

Consequences of Asymptotic Ordering

- Density with normalized radial overlaps $\psi_i(r) \Rightarrow \rho(\vec{r}) = \sum_{i=1}^{r} \frac{S_i}{4\pi} (2\ell_i + 1) |\psi_i(r)|^2$
- Spectroscopic factors increase with excitation energy in (N-1) system
 - Does not prevent the crossings (favors them actually)
 - No significant effect from $(2\ell + 1)$ degeneracy
 - Other corrections : number of nodes...

V. ROTIVAL Halos in Medium-Mass Nuclei

V. ROTIVAL

1.0

0.5

 S_i

0.0

Halos in Medium-Mass Nuclei

12

[fm]

16

20

V. ROTIVAL Ha

 S_i

Halos in Medium-Mass Nuclei

[fm]

V. ROTIVAL H

1.0

0.5

 S_i

0.0

Halos in Medium-Mass Nuclei

12

[fm]

16

20

Introduction	Current Situation	New Analysis Method ○○○○○●○○	First Results	Conclusion
Energy Spectru	ım of Halo System	IS		

- Translation in terms of excitation spectrum of the (N-1) system
- Long tail
 - $\Rightarrow \kappa_0 \ll 1$: small separation energy / low-lying states
- Halo states decorrelated from remaining ones
 - \Rightarrow sharp crossing in the density profile between core and halo components

Halo energy scales

- Separation energy E
- Bunch spread ΔE of low-lying states
- Core Excitation energy E
- Similar scales for "Halo EFT"
 - [C. Bertulani et al., Nucl. Phys. A712 (2002) 37]
- No sharp delimitation for halo systems

Introduction	Current Situation	New Analysis Method ○○○○○●○○	First Results	Conclusion
Energy Spectru	ım of Halo System	IS		

- Translation in terms of excitation spectrum of the (N-1) system
- Long tail
 - $\Rightarrow \kappa_0 \ll 1$: small separation energy / low-lying states
- Halo states decorrelated from remaining ones
 - \Rightarrow sharp crossing in the density profile between core and halo components

Halo energy scales

- Separation energy E
- Bunch spread ΔE of low-lying states
- Core Excitation energy E'
- Similar scales for "Halo EFT"
 - [C. Bertulani et al., Nucl. Phys. A712 (2002) 37]
- No sharp delimitation for halo systems

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
		00000000		
Energy Spectru	um of Halo System	IS		

- Translation in terms of excitation spectrum of the (N-1) system
- Long tail
 - $\Rightarrow \kappa_0 \ll 1$: small separation energy / low-lying states
- Halo states decorrelated from remaining ones
 - \Rightarrow sharp crossing in the density profile between core and halo components

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
		00000000		
Energy Spectru	um of Halo System	S		

- Translation in terms of excitation spectrum of the (N-1) system
- Long tail
 - $\Rightarrow \kappa_0 \ll 1$: small separation energy / low-lying states
- Halo states decorrelated from remaining ones
 - \Rightarrow sharp crossing in the density profile between core and halo components

V. ROTIVAL Halos in Medium-Mass Nuclei

Introduction	Current Situation	New Analysis Method ○○○○○○●○	First Results	Conclusion
Definition c	of Halo Region			
PronouSignificSecond	nced crossings betwe ant curvature of the log-derivative separa	en core and tail compone log-density ates regions where core/h	ents in the density alo components dor	ninate
Halo Definit	ion			

Halo = region where tail components dominate by at least one order of magnitude

∃ ⊳

Introduction	Current Situation	New Analysis Method ○○○○○○●○	First Results	Conclusion
Definition of	Halo Region			
 Pronound Significant Second loss	ced crossings betwe it <mark>curvature</mark> of the og-derivative separa	een core and tail compone log-density ates regions where core/h	ents in the density alo components don	ninate
Halo Definitio	n			

Halo = region where tail components dominate by at least one order of magnitude

- Trial/error using simulations
 - Toy models
 - Ideal (Fermi...) / realistic densities
 - Single-tail models
 - Multi-tail models

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
Definition of H	lalo Region			
 Pronounce Significant Second log	d crossings between curvature of the l -derivative separa	en core and tail compone log-density tes regions where core/ha	nts in the density alo components dor	ninate

Halo Definition

Halo = region where tail components dominate by at least one order of magnitude

- Trial/error using simulations
 - Toy models
 - Ideal (Fermi...) / realistic densities

э

- Single-tail models
- Multi-tail models

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\frac{\partial^2 \log \left(\rho(r)\right)}{\partial r^2} \bigg|_{r=r_0} = \frac{2}{5} \frac{\partial^2 \log \left(\rho(r)\right)}{\partial r^2} \bigg|_{r=r_{max}}$$

• Model independent definition

Error bars

$$0.35 \le rac{\log''(
ho)(r_0)}{\log''(
ho)(r_{max})} \le rac{1}{2}$$

Introduction	Current Situation	New Analysis Method ○○○○○○●	First Results	Conclusion
Quantitative C	riteria for Halos			

- Negligible core contribution in the outer $r > r_0$ region
- Need of quantitative description of halo region

Average number of nucleons in the haloEffect of halo region on nuclear extension
$$N_{halo} = 4\pi \int_{r>r_0} r^2 \rho(r) dr$$
 $\delta R_{halo} = R_{rms,tot} - R_{rms,inner}$ $= \sqrt{\frac{< r^2 >}{< r^0 >}} - \sqrt{\frac{\int_{r$

- Extensions to all radial moments possible as an extension
- Correlated within a single isotopic series / decoupled for systematics
- Model-independent : regardless of where the one-body density comes from
- Contributions from individual intrinsic overlaps when available

Introduction	Current Situation	New Analysis Method ○○○○○○●	First Results	Conclusion
Quantitative C	riteria for Halos			

- Negligible core contribution in the outer $r > r_0$ region
- Need of quantitative description of halo region

Average number of nucleons in the haloEffect of halo region on nuclear extension
$$N_{halo} = 4\pi \int_{r>r_0} r^2 \rho(r) dr$$
 $\delta R_{halo} = R_{rms,tot} - R_{rms,inner}$ $= \sqrt{\frac{< r^2 >}{< r^0 >}} - \sqrt{\frac{\int_{r$

- Extensions to all radial moments possible as an extension
- Correlated within a single isotopic series / decoupled for systematics
- Model-independent : regardless of where the one-body density comes from
- Contributions from individual intrinsic overlaps when available

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
Outline				

1 Introduction

2 Current Situation in Medium-Mass Nuclei

- Importance of Halo Configurations for the Nuclear EDF
- Limitations of Current Approaches

3 A New Analysis Method

- Properties of the Intrinsic One-Body Density
- Model-Independent Definition of Nuclear Halos
- Robust Criteria for Halo Formation

4 First Results

- Cr Isotopes
- Sn Isotopes
- Systematics over Spherical Nuclei
- Extensions and Limits

5 Conclusion

V. ROTIVAL

Halos in Medium-Mass Nuclei

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
000	000000	0000000	0000000	0000
Cr Isotopes				

- Average number of nucleons in the halo region
- No effect before N = 50 shell closure / sharp increase beyond
- Small value Vs N BUT same order as in light halo nuclei

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
Cr Isotopes				0000

- Influence of the halo region on the nuclear extension
- No effect before N = 50 shell closure / sharp increase beyond
- Important contribution to total r.m.s. radius + separation of shell effects

Introduction	Current Situation	New Analysis Method	First Results O●OOOOOO	Conclusion
Cr Isotopes				

- Influence of the halo region on the nuclear extension
- No effect before N = 50 shell closure / sharp increase beyond
- Important contribution to total r.m.s. radius + separation of shell effects

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
000	000000	0000000	0000000	0000
Cr Isotopes				

- Individual contributions to the halo (canonical basis)
- Only least-bound states contribute
- Major contribution from $2d_{5/2}$ state (degeneracy + v^2)

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
Cr Isotopes : (Conclusion			

- Small relative effect : $N_{halo} \sim 0.5$ for $^{80}{
 m Cr}$
- Significant contribution from halo to the nuclear extension
- Contributions from multiple states, including $\ell = 2$
- Absolute values of N_{halo} comparable with situation in light halo nuclei \Rightarrow s-wave halo nucleus (¹¹Be) : $N_{halo} \approx .35$
- No "Giant" halo...

Converging leads for formation of collective halo in drip-line Cr isotopes

Halos in Medium-Mass Nuclei

h11/2

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
Sn Isotopes				

- Number of nucleons in the halo region
- No effect before N = 82 shell closure
- Small absolute contribution: one third of Cr isotopes

• Hindrance from filling high- ℓ state at the drip-line

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
			00000000	
Sn Isotopes				

- Influence of the halo region on the nuclear extension
- Very small effect on nuclear extension

Introduction	Current Situation	New Analysis Method	First Results ○○○○●○○○	Conclusion
Systematics				

ullet Systematics over \sim 500 spherical nuclei given by CEA-D1S online database

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
Systematics				

- $\bullet\,$ Systematics over \sim 500 spherical nuclei given by CEA-D1S online database
- Number of nucleons in the halo region
- Decorrelated nucleons at the very drip line for several isotopes

Introduction	Current Situation	New Analysis Method	First Results ○○○○○●○○○	Conclusion
Systematics				

- $\bullet\,$ Systematics over \sim 500 spherical nuclei given by CEA-D1S online database
- Influence on total extension
- Different information from N_{halo} : reduced impact for heavy nuclei (collectivity)
- Best candidates: Fe, Cr, Ni, Pd, Ru

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
Systematics				

 $\bullet\,$ Systematics over \sim 500 spherical nuclei given by CEA-D1S online database

Common denominator : low-lying $\ell = 0, 1$ states

Introduction	Current Situation	New Analysis Method	First Results ○○○○○●○○	Conclusion
Influence c	of EDF characterist	ics on halo formatior	า	
Role of pai	ring correlations			
 Effect 	of surface Vs volume-	type pairing on weakly b	ound states	
 Pairing [K. Benn E P 	g anti-halo effect aceur <i>et al.</i> , Phys. Lett. B496 (xtra localization of QP s revents divergences of r.	2000) 154] <mark>states from pairing field</mark> .m.s. radius from weakly be	ound states	
 Partici [I. Hama E D N 	ular role of <i>s</i> -waves moto, B. Mottelson, Phys. Rev. xtreme situations : $\lambda \rightarrow$ eccoupling of <i>s</i> -wave from ot encountered in realise	C68 (2003) 034312] 0, $e_s \rightarrow 0$ m pairing field : classical h tic situations	alo	
Influence o	f the particle-hole ene	rgy functional		
Role o	f new terms: tensor ir	iteraction		
 Influer 	nce of INM properties:	effective mass, compres	sibility, saturation p	oint

• Influence of the parametrization

< 🗗 >

< 臣 →

2

æ

• Strong dependence of halo features on EDF parametrization

N_{halo}

- Already known for other basic observables / drip-lines
- Predictivity of current EDF models for exotic systems ?

А

SLv4

70 72 74 76 78 80 82 84

T26 SIII 0.16

0.00

• Strong dependence of halo features on EDF parametrization

 $\delta \mathbf{R}_{\mathbf{halo}}$

- Already known for other basic observables / drip-lines
- Predictivity of current EDF models for exotic systems ?

А

SIII

70 72 74 76 78 80 82 84

0.00

BE [MeV]

• Strong dependence of halo features on EDF parametrization

- Already known for other basic observables / drip-lines
- Predictivity of current EDF models for exotic systems ?

А

T26 SIII

70 72 74 76 78 80 82 84

0.0

 S_{2N} :

2n separation energy

Introduction	Current Situation	New Analysis Method	First Results ○○○○○○○●	Conclusion
Application to	Other Halo Systen	ns		

- Model-independent analysis: can be used for other systems
- Light nuclei from Coupled-Channels calculations (2-body clusters only) [F. Nunes et al., Nucl. Phys. 596 (1996) 171 - Nucl. Phys. A609 (1996) 43]

	N _{halo}	δR_{halo} [fm]	R _{rms} [fm]
¹³ C	$0.66.10^{-3}$	$0.74.10^{-3}$	2.487
¹¹ Be	0.270	0.394	2.908

- Good separation between halo/non-halo systems
- Absolute value for δR_{halo} : much bigger Vs medium-mass nuclei (collectivity)

Introduction	Current Situation	New Analysis Method	First Results ○○○○○○○○●	Conclusion
Application to	Other Halo Systen	ns		

- Model-independent analysis: can be used for other systems
- \bullet Atom-positron complexes: e^+ binding to neutral atom by polarization potential

[J. Mitroy, Phys. Rev. Lett. 94 (2005) 033402]

• Asymptotics: $e^+ + A$ or $Ps + A^+$

Be

	N _e -	N _{halo}	R _{r.m.s.}	δR_{halo}	P_{e^+}	$P_{e^{-}}$
Be	4	0.624	5.661	3.194	98.1	01.9
Mg	12	0.669	2.298	0.826	80.3	19.7
Cu	29	0.754	1.777	0.975	88.6	11.4
He	2	1.982	15.472	14.568	50.3	49.7
Li	3	1.972	7.781	7.088	50.8	49.2

- P_X (%): proportion of X in halo outer region
- Positron ($P_{e^+} \gg P_{e^-}$) and positronium ($P_{e^+} \approx P_{e^-}$) halos identified

Introduction	Current Situation	New Analysis Method	First Results ○○○○○○○●	Conclusion
Application to	Other Halo Systen	าร		

- Model-independent analysis: can be used for other systems
- \bullet Atom-positron complexes: e^+ binding to neutral atom by polarization potential

[J. Mitroy, Phys. Rev. Lett. 94 (2005) 033402]

Ps Na⁺

• Asymptotics: $e^+ + A$ or $Ps + A^+$

	N _e -	N _{halo}	R _{r.m.s.}	δR_{halo}	P_{e^+}	$P_{e^{-}}$
Be	4	0.624	5.661	3.194	98.1	01.9
Mg	12	0.669	2.298	0.826	80.3	19.7
Cu	29	0.754	1.777	0.975	88.6	11.4
He	2	1.982	15.472	14.568	50.3	49.7
Li	3	1.972	7.781	7.088	50.8	49.2

- P_X (%): proportion of X in halo outer region
- Positron $(P_{e^+} \gg P_{e^-})$ and positronium $(P_{e^+} \approx P_{e^-})$ halos identified

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
Outline				

Introduction

2 Current Situation in Medium-Mass Nuclei

- Importance of Halo Configurations for the Nuclear EDF
- Limitations of Current Approaches

A New Analysis Method

- Properties of the Intrinsic One-Body Density
- Model-Independent Definition of Nuclear Halos
- Robust Criteria for Halo Formation

4 First Results

- Cr Isotopes
- Sn Isotopes
- Systematics over Spherical Nuclei
- Extensions and Limits

5 Conclusion

Introduction	Current Situation	New Analysis Method	First Results	Conclusion •••••
Conclusion				

- New analysis method based on analysis of intrinsic one-body density
- Model-independent criteria for halo formation
- Cr Isotopes
 - Small relative number of nucleons in halo region / Comparable with light systems
 - Large influence of halo region on nuclear extension
 - Contribution from several weakly bound states, including I = 2
 - Notion of "giant halo" : meaningless...

Formation of a collective halo in Cr isotopes

- Systematics over spherical nuclei
 - Good candidates : drip-line Fe, Cr, Ni, Pd, Ru
 - Experimental validation in drip-line medium-mass region ?
- Successful application to light nuclei and atom-positron complexes
 - Correct extraction of halo factors
 - Proves model-independence

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
000	000000	0000000	00000000	0000
Conclusion				

- Extension of the method
 - Deformed nuclei : multipolar moments of the density
 - Multi-reference EDF effects : PNP, GCM on breathing modes...
 - Inclusion of cluster correlations: hindrance to halo formation?
 - Study of correlations: two-body density
- Link with experimental studies: open question
 - Neutron drip-lines beyond reach for medium-mass nuclei
 - Robust method BUT no robust predictions
 - High sensitivity to EDF parametrization

Fine tuning of EDF based on experimental data: not yet

- Halo: (very) rare exotic phenomenon
- Missing terms in current functionals
- Lot of work needed first on EDF used in single/multi-vacua calculations

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
000	0000000	0000000	00000000	0000
Long-range	plan			

• Microscopic vertex from χ -EFT / low-momentum interactions + nuclei properties

Introduction	Current Situation	New Analysis Method	First Results	Conclusion
				0000
Commercia	break			

🚺 V. R. and T. Duguet

Halo phenomenon in medium-mass nuclei. I. New analysis method and first applications nucl-th/0702050

 V. R., K. Bennaceur and T. Duguet Halo phenomenon in medium-mass nuclei.
II. Impact of correlations and large scale analysis arXiv:0711.1275

• ???