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Halos in Light Nuclei

o Low density tail extending out to large distance
@ Direct consequence of small nucleon separation energy / drip-line physics

o First observed experimentally in 'Li and 'Be
[I. Tanihata et al, Phys. Rev. Lett. 55 (1985) 2676 ; Phys. Lett. 206B (1988) 592]

@ Various experimental signatures 4
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o Momentum distribution
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[I. Tanihata, Nucl. Phys. A520 (1990) 411c-425c]

[B. Blank et al., Z. Phys. A343 (1992) 343-375]

[E. Arnold et al., Phys. Lett. B281 (1992) 16]
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Light Nuclei : Few-Body Models

@ Halo degrees of freedom decoupled from the core
@ Problem reduces to 2 or 3-body interacting clusters

@ Exact dynamics through Schrodinger or Faddeev equations
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Light Nuclei : Few-Body Models

@ Halo degrees of freedom decoupled from the core
@ Problem reduces to 2 or 3-body interacting clusters

@ Exact dynamics through Schrodinger or Faddeev equations

Rule of thumb characterization for halo states :

[A.S. Jensen, M.V. Zhukov, Nucl. Phys. A693 (2001), 411]
@ Halo extension:

> 50% probability in classically forbidden region

@ Dominating cluster structure:

> 50% of the actual configuration
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Known Light Halo Nuclei

@ Experimental evidence for several proton and neutron light halo nuclei

@ Ground and excited states
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Cluster vision for light systems : valid for heavier masses ? )
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Challenges for Nuclear Energy Density Functional (EDF)

o EDF theory : appropriate for mid- to heavy mass nuclei (A > 40)

Stable nuclei

Known nuclei

incognita

Protons

Neutron stars

Neutrons
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o

Challenges for Nuclear Energy Density Functional (EDF)

o EDF theory : appropriate for mid- to heavy mass nuclei (A > 40)

o EDF behavior at small/surface density / large asymmetry not under control

two-neutron separation energies
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o

Challenges for Nuclear Energy Density Functional (EDF)

o EDF theory : appropriate for mid- to heavy mass nuclei (A > 40)

o EDF behavior at small/surface density / large asymmetry not under control
@ Potential use of halo structures to constrain current EDF ?
o Surface physics: low density configurations
Surface physics : gradient versus density dependence
Drip-line phenomenon : large isospin asymmetry
Drip-line phenomenon : shell evolution at low separation energy
Pairing functional : constraints at low density/large asymmetry
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o

Challenges for Nuclear Energy Density Functional (EDF)

EDF theory : appropriate for mid- to heavy mass nuclei (A > 40)

EDF behavior at small/surface density / large asymmetry not under control

Potential use of halo structures to constrain current EDF ?

o Surface physics: low density configurations

o Surface physics : gradient versus density dependence

o Drip-line phenomenon : large isospin asymmetry

o Drip-line phenomenon : shell evolution at low separation energy
e Pairing functional : constraints at low density/large asymmetry

o Collective behaviors: Cluster vision not really expected

DENSITY (fm®)

Halo definition expected to change... )
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HFB calculations in spherical symmetry

LyHF spherical HFB code [K. Bennaceur, INPL/ESNT, France]

Discrete continuum in 40 fm spherical box

@ Even-even nuclei : no time-reversal invariance breaking

o Particle-hole channel : SLy4 functional
[E. Chabanat et al., Nucl. Phys. A635 (1998) 231-256]

Particle-particle channel : DDDI functional
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Importance of low-£ states

@ Divergence of r.m.s. radii for £ = 0,1 weakly bound systems
[K. Riisager et al., Nucl. Phys. A548 (1992) 393] - [T. Misu et al., Nucl. Phys. A614 (1997) 44]

@ Focus on the evolution of the r.m.s. radius to predict halos

@ Prerequisites : presence + occupation of s/p orbitals
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Importance of low-£ states

o Divergence of r.m.s. radii for £ = 0,1 weakly bound systems
[K. Riisager et al., Nucl. Phys. A548 (1992) 393] - [T. Misu et al., Nucl. Phys. A614 (1997) 44]

@ Focus on the evolution of the r.m.s. radius to predict halos
@ Prerequisites : presence + occupation of s/p orbitals

o Higher order moments < r” > diverge for higher £ in weak binding limit ¢ — 0
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Possible contributions from £ > 1 states to nuclear halos. .. )
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Results for Sn Isotopes (Z = 50)

@ Root-mean-square radii

New Analysis Method
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@ Weak kink of neutron r.m.s.

First Results
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Results for Sn Isotopes (Z = 50)

o Kink of neutron r.m.s. : halo signature / neutron skin ?
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@ Anomalous neutron skin growth / halo ?
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Results for Sn Isotopes (Z = 50)

Conclusion

@ Kink of neutron r.m.s. : halo signature / shell effect ?

@ Two-neutrons separation energy Spy (drives asymptotic behavior)
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@ Drops at N =82
@ No close from 0 for N > 82 9

Sy [MeV]
=
N

0

4 Sn Isotopes
¥ SLy4 Lyhf, DFT
\\,\: sz,x = 31/0 fm
.\‘\‘ +—+Simu
'\,\ } Exp
\)\x\ f Exp. (Extr.)
|
|
|
9
I8

s

100 110 120 130 140 150
A

o Kink at N = 82 may be due to shell effects only
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Detailed Analysis Methods

@ Qualitative analysis misleading : "giant halo” ?
[M. Grasso et al., Phys. Rev. C74 (2006) 064317] - [J. Terasaki et al., Phys. Rev. C74 (2006) 054318]
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Conclusion

Detailed Analysis Methods

@ Qualitative analysis misleading : "giant halo” ?
[M. Grasso et al., Phys. Rev. C74 (2006) 064317] - [J. Terasaki et al., Phys. Rev. C74 (2006) 054318]

o T . i .
gt —2 ca @ Naive counting of nucleons
_ir P A
Cn - o Proton/neutron r.m.s. radii difference
= [ b . .
e e @ Missing part : halo neutrons decorrelated from
06 vR 1
e e protons
04 b @ core neutrons
40 50 60

@ Quantitative analysis inadequate : Helm model
[S. Mizutori et al., Phys. Rev. C61 (2000) 044326]

N

) @ Anzatz for core density

“~Rgeom(P)
—Rysaim()

@ Extracts halo contribution to r.m.s. radius

@ Model- and fit-dependent

@ Halo in proton-rich / stable / doubly magic nuclei

54 58 62 66 70 74 78
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Roadmap

Limits of existing methods

Shell effects may explain part/all of neutron r.m.s. radii kinks

@ Need of a robust + quantitative framework

Lessons from previous attempts :

o Halo region : decorrelated from protons AND core neutrons

e One-body density : contains enough relevant information for characterization

@ Non ambiguous / model-independent definition of halos

@ Extraction of meaningful criteria

@ Separation of skin / shell / halo effects
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© A New Analysis Method
@ Properties of the Intrinsic One-Body Density
@ Model-Independent Definition of Nuclear Halos
@ Robust Criteria for Halo Formation
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Intrinsic One-Body Density

o Self-bound system : separation of center-of-mass and intrinsic d.o.fs.

N (> - K.Ry 4N (= - K.Ry HN (& =
Vig(fA. i) =e" ™o (A...7Tk) =" ™ O (& .. En—1)
@ Uniform laboratory density : need to consider intrinsic one-body density
@ Relevant degrees of freedom : intrinsic spectroscopic amplitudes

[D. Van Neck et al., Phys. Rev. C57 (1998) 2308] - [J. Escher et al., Phys. Rev. C64 (2001) 065801]

(p,'(F) = \/N/ d?l oo ?N71¢:V71*(F1 oo FN,1)6(§N,1)¢6V(?1 ce FN,I, F) J

o Definition w/ respect to center-of-mass of (N — 1)-body frame
o Natural definition for knock-out

@ Normalization : spectroscopic factors

5;:/d?|<p,-(?)|2 o Is,-:/v

@ Decomposition of one-body intrinsic density

(7 7) :Iﬁ(?')@i(?)

!
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Asymptotic Behavior for y;

@ Asymptotic solution (vanishing interaction) : free Schrodinger equation

d? 2 d Z,‘([,‘-‘rl) 2 of=y
(ﬁ*?E‘T—“f i (F) =0

@ Asymptotic intrinsic overlap functions

QD;)O(F) = B,‘ hg,.(m,-r) YZU(Q, QD)

e B;: Asymptotic Normalization Coefficient (ANC)
o hy;: Hankel functions
o r; related to one-nucleon separation energy

2me,-
h2

K =
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Asymptotic Behavior for p

@ Asymptotics of one-body intrinsic density in spherical case

B?
X(r) =Y L (26 + 1) [he, (akir)
7= =3 gy @2 3) s oir)
@ Leading order : nucleon separation energy prevails for large r, regardless of ¢

—2kKjr —2kKor

(Kor)?

B
[ (orir) P ¥ p(r) = o(h+1)

rgjroo (K,,'r)2 r—+

V. ROTIVAL Halos in Medium-Mass Nuclei



Introduction Current Situation New Analysis Method First Results
[e]e] o]

Conclusion

Asymptotic Behavior for p

@ Asymptotics of one-body intrinsic density in spherical case

N B
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i

o Leading order : nucleon separation energy prevails for large r, regardless of ¢
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Asymptotic Behavior for p

@ Asymptotics of one-body intrinsic density in spherical case

=Y &
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o Leading order : nucleon separation energy prevails for large r, regardless of ¢
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o Overall : low ¢ favored * _
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Asymptotic Behavior for p

@ Asymptotics of one-body intrinsic density in spherical case

N B
o)=Y o (26 + 1) (oir)

i

o Leading order : nucleon separation energy prevails for large r, regardless of ¢
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Consequences of Asymptotic Ordering

o Density with normalized radial overlaps 9i(r) = p(7) :I %(2@; + 1)[i(r)?

o Assume (for now) S; =1
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Consequences of Asymptotic Ordering

o Density with normalized radial overlaps 9i(r) = p(7) I —(2( + 1)[i(r)?

o Assume (for now) S; =1
o Asymptotic ordering induces crossings between normalized components
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Consequences of Asymptotic Ordering

o Density with normalized radial overlaps 9i(r) = p(7) :I %(2@; + 1)[i(r)?

o Assume (for now) S; =1
o Asymptotic ordering induces crossings between normalized components
o Crossing sharpness depending on energy difference, angular momenta. ..
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o Crossing between i = 0 and sum of higher components
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Consequences of Asymptotic Ordering
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Consequences of Asymptotic Ordering

o Density with normalized radial overlaps 9i(r) = p(7) :I %(2@; + 1)[i(r)?

@ Spectroscopic factors increase with excitation energy in (N — 1) system
e Does not prevent the crossings (favors them actually)
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Consequences of Asymptotic Ordering

o Density with normalized radial overlaps 9i(r) = p(7) I —(2( + 1)[i(r)?

@ Spectroscopic factors increase with excitation energy in (N — 1) system

e Does not prevent the crossings (favors them actually)
o No significant effect from (2¢ + 1) degeneracy
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Consequences of Asymptotic Ordering

o Density with normalized radial overlaps 9i(r) = p(7) I —(2( + 1)[i(r)?

@ Spectroscopic factors increase with excitation energy in (N — 1) system

e Does not prevent the crossings (favors them actually)
o No significant effect from (2¢ + 1) degeneracy
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Consequences of Asymptotic Ordering

o Density with normalized radial overlaps 9i(r) = p(7) I —(2( + 1)[i(r)?

@ Spectroscopic factors increase with excitation energy in (N — 1) system
e Does not prevent the crossings (favors them actually)
o No significant effect from (2¢ + 1) degeneracy
e Other corrections : number of nodes. ..
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Model-Independent Definition of Halos

Halo = region where nucleons are spatially decorrelated from the others )

@ Need to extend out : long tail (of course)
o Existence of sharp crossing between weakly bound states and remaining ones

A posteriori notion of core and tail orbitals J
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Model-Independent Definition of Halos

First Results

Conclusion

Halo = region where nucleons are spatially decorrelated from the others

@ Need to extend out : long tail (of course)

o Existence of sharp crossing between weakly bound states and remaining ones

A posteriori notion of core and tail orbitals J
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Model-Independent Definition of Halos

Halo = region where nucleons are spatially decorrelated from the others )

@ Need to extend out : long tail (of course)
o Existence of sharp crossing between weakly bound states and remaining ones

A posteriori notion of core and tail orbitals J
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Energy Spectrum of Halo Systems

@ Translation in terms of excitation spectrum of the (N — 1) system
o Long tail
= Ko < 1 : small separation energy / low-lying states

@ Halo states decorrelated from remaining ones
= sharp crossing in the density profile between core and halo components
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Energy Spectrum of Halo Systems

@ Translation in terms of excitation spectrum of the (N — 1) system
o Long tail
= Ko < 1 : small separation energy / low-lying states
@ Halo states decorrelated from remaining ones
= sharp crossing in the density profile between core and halo components

@ Separation energy E

@ Bunch spread AE of low-lying states

o Core Excitation energy E’ E —

El
| AE
E=S,
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Energy Spectrum of Halo Systems

@ Translation in terms of excitation spectrum of the (N — 1) system

o Long tail
= Ko < 1 : small separation energy / low-lying states

@ Halo states decorrelated from remaining ones
= sharp crossing in the density profile between core and halo components

N
50 54
10
@ Separation energy E _ 8'; o @ %
@ Bunch spread AE of low-lying states % 1
6
o Core Excitation energy E’ E | —_—
<4y v
l 1
B, E
o O === AR
’X 7 E:SN
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Energy Spectrum of Halo Systems

@ Translation in terms of excitation spectrum of the (N — 1) system
o Long tail
= Ko < 1 : small separation energy / low-lying states

@ Halo states decorrelated from remaining ones
= sharp crossing in the density profile between core and halo components

N
50 54
e Separation energy £ O Ip—
@ Bunch spread AE of low-lying states S E'
*o
o Core Excitation energy E’ § v
6
. . ” thl .
o Similar scales for "Halo EFT |
[C. Bertulani et al., Nucl. Phys. A712 (2002) 37] -9*Cr‘
o No sharp delimitation for halo systems 74 718
A
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Definition of Halo Region

@ Pronounced crossings between core and tail components in the density
@ Significant curvature of the log-density

2 2 10t
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Definition of Halo Region

@ Pronounced crossings between core and tail components in the density
@ Significant curvature of the log-density
@ Second log-derivative separates regions where core/halo components dominate

Halo Definition

Halo = region where tail components dominate by at least one order of magnitude

tog-p [1m)

togp lim)

)
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Definition of Halo Region

@ Pronounced crossings between core and tail components in the density
@ Significant curvature of the log-density

@ Second log-derivative separates regions where core/halo components dominate

Halo Definition

Halo = region where tail components dominate by at least one order of magnitude

" o Trial/error using simulations
o e Toy models

o ldeal (Fermi...) / realistic densities
o Single-tail models

plim?

10
r [fm]
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Introduction Current Situation

Definition of Halo Region

@ Pronounced crossings between core and tail components in the density

@ Significant curvature of the log-density
@ Second log-derivative separates regions where core/halo components dominate

Halo Definition
Halo = region where tail components dominate by at least one order of magnitude

o Trial/error using simulations
0 e Toy models
. o ldeal (Fermi...) / realistic densities
R o Single-tail models
3 o Multi-tail models

plim?

/

r [fm]
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Definition of Halo Region

@ Pronounced crossings between core and tail components in the density
@ Significant curvature of the log-density

@ Second log-derivative separates regions where core/halo components dominate

Halo Definition

Halo = region where tail components dominate by at least one order of magnitude

rmax @

Flog(p(r))|  _ 20108 (o()
0.5 or? - 5 or2 _
0.4
AQO 37 / @ Model independent definition
g‘: I @ Error bars
0.2
! log”(p)(r0) _ 1
' i 035 < —2 MUAVE < T
0.17 \\ —= |og//(p)(rmaX) =5 J
0.0 SO N | I
5 6 ) 10

7 §
r [fm]
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Conclusion

Definition of Halo Region

@ Pronounced crossings between core and tail components in the density
@ Significant curvature of the log-density

@ Second log-derivative separates regions where core/halo components dominate

Halo Definition

Halo = region where tail components dominate by at least one order of magnitude

&log(p(r))| _ 28log(p(r))

or? 5 or?

107 r=ro Ir=rmax
L = @ Model independent definition

1: @ Error bars

10% 1"

0.35 < 18 (Pr) _ 1

108" (p) (rmsx) ~ 2 )

10
r [fm]
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Quantitative Criteria for Halos

o Negligible core contribution in the outer r > ry region

@ Need of quantitative description of halo region

of halo region on nuclear extension

Nhato = 41 / r? o(r)dr
r>ry

ers,tot - ers,inner

B <> B fr<r0 r* p(r)dr
T V<>

2
fr<r0 r2 p(r)dr
@ Extensions to all radial moments possible as an extension

o Correlated within a single isotopic series / decoupled for systematics
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o

Quantitative Criteria for Halos

o Negligible core contribution in the outer r > ry region

@ Need of quantitative description of halo region

of halo region on nuclear extension

Nhato = 41 / r? o(r)dr
r>ry

ers,tot - ers,inner

B <> B fr<r0 r* p(r)dr
T V<>

2
fr<r0 r2 p(r)dr
@ Extensions to all radial moments possible as an extension

Correlated within a single isotopic series / decoupled for systematics

Model-independent : regardless of where the one-body density comes from

Contributions from individual intrinsic overlaps when available
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Outline

© First Results
o Cr Isotopes
@ Sn Isotopes
@ Systematics over Spherical Nuclei
@ Extensions and Limits
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Cr Isoto

@ QP energies: excitation spectrum of (N — 1)-body system
o Low-lying 3s;/, and 2ds,, states / ideal conditions regarding energy scales

10 )
] e o 3
Y ° ® ()
9 ¢ ® .
| e o Cr I sotopes
8 g SLy4 HFRAD, DFTM
] g ¢ Rpox = 40 fm
7 S x—x  s1/2
p o—o pl/2 e--e¢ p3/2
> 6 &= d3/2 a--a d5/2
<D 4
25
< | Y v—v g7/2 v--v g9/2
' v e hr1y
w4 . . == h92 ~--= hll/2
i v G—8 i11/2 m--m j13/2
3
2 —— e
1 x
0 T T T T T -

54 58 62 66 70 74 78
A
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Cr Isotopes

@ Average number of nucleons in the halo region
@ No effect before N = 50 shell closure / sharp increase beyond

o Small value Vs N BUT same order as in light halo nuclei

N
30 34 38 4 46 50 54
05l Cr
0.4
: /
Sos
2 /
0.2
0.1
0.0

54 58 62 66 70 74 78
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Cr Isotopes

@ Influence of the halo region on the nuclear extension

@ No effect before N = 50 shell closure / sharp increase beyond

N
30 34 38 42 46 50 54
0.14+4- Cr
:0.10 /
©0.08
E /
D:1:0.06
o 0.04
0.02
0.00
54 58 62 66 70 74 78
A
Evidence of halo formation )
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Cr Isotopes

@ Influence of the halo region on the nuclear extension
@ No effect before N = 50 shell closure / sharp increase beyond
@ Important contribution to total r.m.s. radius + separation of shell effects

N
30 34 38 42 46 50 54

4.6
a5} Cr

—4.4 it
€43 -
= /

4.2 =

;_-4.0
@ 3.9 =
3.8 ---- Core

3.7 Total -

54 58 62 66 70 74 78
A

Only relevant physics extracted )
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Cr Isoto

@ Individual contributions to the halo (canonical basis)
@ Only least-bound states contribute

@ Major contribution from 2ds/, state (degeneracy + v?)

s1/2 Cr Isotopes

SLy4, DFM65
0.500+ [l 272 Jllll 0 572 Roox = 40 fm 0.500

Canonical states

g7/2 g9/2

0.400 1 i11/2 i13/2 0.400
3 0.300 0.300 &
I o

0.200 0.200

0.100 0.100

0.000 0.000

A
Formation of a Collective halo )
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Cr Isotopes : Conclusion

Small relative effect : Npao ~ 0.5 for 8°Cr

Significant contribution from halo to the nuclear extension
o Contributions from multiple states, including £ = 2

@ Absolute values of N, comparable with situation in light halo nuclei

= s-wave halo nucleus (*'Be) : Npao = .35

@ No “Giant” halo...

Converging leads for formation of collective halo in drip-line Cr isotopes J
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Sn Isotopes

@ Lot of collectivity / large bunch of high-£ states at drip-line
o Not favorable energy scales

10

Py < =
] KA><><><>< xxA -t
9 Rsanbe st
| - aafal Sn I sotopes
8 T ey - Sly4 HFRAD, DFTM
1 - box = 40 fm
7 *—x  s1/2
1 o—o pl/l2 e--e p3/2
> 6 & d3/2 a--a d5/2
d.) 4 -
2 5
P ] g7/2 v--v go/2
wog h9/2 «--= h11/2
1 i11/2 m--m  i13/2
3
2 rs
1
0 : : : : ! ! !
100 110 120 130 140 150 160 170

A
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Sn Isotopes

@ Number of nucleons in the halo region
o No effect before N = 82 shell closure

o Small absolute contribution: one third of Cr isotopes

N
50 70 90 110
Sn ‘ ‘
0.2
O w
T
c
z | |
0.1
0.0 /‘)
100 120 140 160
A

@ Hindrance from filling high-¢ state at the drip-line
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Sn Isotopes

o Influence of the halo region on the nuclear extension

o Very small effect on nuclear extension

N
50 70 90 110
561 gn =
— 5.4 g —
e -
« 5.2 /
U§5.0
€48
X 4.6
4.4 -—-—-- Core -
Total
100 120 140 160
A
No halo seen )
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o

Systematics

@ Systematics over ~ 500 spherical nuclei given by CEA-D1S online database
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o

Systematics

@ Systematics over ~ 500 spherical nuclei given by CEA-D1S online database
@ Number of nucleons in the halo region

@ Decorrelated nucleons at the very drip line for several isotopes

100
0.70
80
0.56
60 0.42
N
0.28
40
0.14
20+
0.00
0
0
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o

Systematics

@ Systematics over ~ 500 spherical nuclei given by CEA-D1S online database
@ Influence on total extension
o Different information from Npaj: reduced impact for heavy nuclei (collectivity)
@ Best candidates: Fe, Cr, Ni, Pd, Ru
100 !
|
| 0.16
0.12
N 0.08
0.04
0.00
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Systematics

@ Systematics over ~ 500 spherical nuclei given by CEA-D1S online database
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Influence of EDF characteristics on halo formation

Role of pairing correlations

o Effect of surface Vs volume-type pairing on weakly bound states

e Pairing anti-halo effect
[K. Bennaceur et al., Phys. Lett. B496 (2000) 154]
o Extra localization of QP states from pairing field
o Prevents divergences of r.m.s. radius from weakly bound states

@ Particular role of s-waves
[I. Hamamoto, B. Mottelson, Phys. Rev. C68 (2003) 034312]
e Extreme situations: A — 0, es — 0
@ Decoupling of s-wave from pairing field : classical halo
o Not encountered in realistic situations

Influence of the particle-hole energy functional

@ Role of new terms: tensor interaction. ..

@ Influence of INM properties: effective mass, compressibility, saturation point. ..

@ Influence of the parametrization
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Limits of current energy functionals

@ Constrain low-density behavior of EDF using halo data ?

sca IR0 0.80

m'1 ----.[:}D Nhaio :
T6 .---.D[j 0.64 Average number of
e’ ‘---'D- nucleons
pul 048

oot | -

T '

e (-0 010

T26 ----D '

st --- ‘Nhalo 0.00

70 72 74 76A78 80 82 84

@ Strong dependence of halo features on EDF parametrization
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Limits of current energy functionals

@ Constrain low-density behavior of EDF using halo data ?

T R p—y
oy
L
ol [T
N
ot [ vos SR
T21 ----'D ' Influence on spatial
SLy4 -----D 0.04 extension
T26 ----D '
s - 5Rpaio 0.00

70 72 74 76A78 80 82 84

@ Strong dependence of halo features on EDF parametrization
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Limits of current energy functionals

@ Constrain low-density behavior of EDF using halo data ?

oo [

my -0 - - -

re  EI-L1-E1-BE-R-E-1 24

pe? [E-C1-C1-H---l

rot [H-E-C-H- - 18
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T B "2

Sy BHD-'- 0.6

T26 '-""l:l"”[j”"-"'. ; .

s - BE [Mev] 00  Su:
70 72 74 76 78 80 82 84 N ESPETEEe CIeEy J

A

@ Strong dependence of halo features on EDF parametrization
o Already known for other basic observables / drip-lines

o Predictivity of current EDF models for exotic systems ?
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Application to Other Halo Systems

o Model-independent analysis: can be used for other systems

@ Light nuclei from Coupled-Channels calculations (2-body clusters only)
[F. Nunes et al., Nucl. Phys. 596 (1996) 171 - Nucl. Phys. A609 (1996) 43]

10°

.y
102
&
£ 10%
—

— .46
Qlo

108

.\.

10-10
0 10 15

r [fm]

Nhaio O Rhalto [fm] Rims [fm]
13c ] 0.66.107% 0.74.1073 2.487

e 0.270 0.394 2.908
@ Good separation between halo/non-halo systems

@ Absolute value for §Rpa0: much bigger Vs medium-mass nuclei (collectivity)
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Application to Other Halo Systems

New Analysis Method

First Results
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Conclusion

o Model-independent analysis: can be used for other systems

@ Atom-positron complexes: e' binding to neutral atom by polarization potential

[J. Mitroy, Phys. Rev. Lett. 94 (2005) 033402] )
10
100 \\\
& % o2l
-2 11
E W0
h D
-4
Qlo »" \\ T
o —
- WEYI RARANNRN
o \ N
= 108 \ N
0 5 10 15 20 25
r [ag]
Ne— Nhalo Rr.m.s. S Rhalo Pe+ Pe,
Be 4 0.624 5.661 3.194 | 98.1  01.9
o Asymptotics: Mg 12 0.669 2.298 0.826 80.3 197
et +Aor Ps+ At Cu 29 0754 | 1.777 0975 | 886 11.4
He 2 1.982 | 15.472  14.568 | 50.3  49.7
Li 3 1.972 7.781 7.088 | 50.8  49.2

@ Px (%): proportion of X in halo outer region

@ Positron (P.+ > P.-) and positronium (P.+ ~ P,-) halos identified
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Application to Other Halo Systems

New Analysis Method

First Results
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Conclusion

o Model-independent analysis: can be used for other systems

@ Atom-positron complexes: e' binding to neutral atom by polarization potential

[J. Mitroy, Phys. Rev. Lett. 94 (2005) 033402] )
10
100 \\\
M
-2 11
o £ 107
h LD
Q 107454
\ -
A \\
- wiN1 RN
v N
108 ! N
0 5 10 15 20 25
r [ao]
N,—  Npato | Rems.  ORpapo | Pe+  P.—
Be 4 0.624 5.661 3.194 | 98.1  01.9
o Asymptotics: Mg 12 0.669 2.298 0.826 80.3  19.7
et + Aor Ps+ AT Cu | 29 0754 | 1777 0975 | 886 114
He 2 1.982 | 15.472  14.568 | 50.3  49.7
Li 3 1.972 7.781 7.088 | 50.8  49.2

@ Px (%): proportion of X in halo outer region

@ Positron (P.+ > P,-) and positronium (P.+ ~ P,-) halos identified
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Outline

© Conclusion
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Conclusion

@ New analysis method based on analysis of intrinsic one-body density

@ Model-independent criteria for halo formation

o Cr Isotopes
e Small relative number of nucleons in halo region / Comparable with light systems
o Large influence of halo region on nuclear extension
o Contribution from several weakly bound states, including / = 2
o Notion of "giant halo” : meaningless. ..

Formation of a collective halo in Cr isotopes J

@ Systematics over spherical nuclei

o Good candidates : drip-line Fe, Cr, Ni, Pd, Ru
o Experimental validation in drip-line medium-mass region ?

@ Successful application to light nuclei and atom-positron complexes

o Correct extraction of halo factors
o Proves model-independence
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Conclusion

o Extension of the method

o Deformed nuclei : multipolar moments of the density

o Multi-reference EDF effects : PNP, GCM on breathing modes...
o Inclusion of cluster correlations: hindrance to halo formation?

o Study of correlations: two-body density

o Link with experimental studies: open question

o Neutron drip-lines beyond reach for medium-mass nuclei
o Robust method BUT no robust predictions
e High sensitivity to EDF parametrization

Fine tuning of EDF based on experimental data: not yet )

e Halo: (very) rare exotic phenomenon
o Missing terms in current functionals

@ Lot of work needed first on EDF used in single/multi-vacua calculations
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Long-range plan

@ Microscopic vertex from x-EFT / low-momentum interactions + nuclei properties

» QCD

X-EFT

Spectroscopy

Ground state

Mass, deformation & J Excited states

Symmetry restoration

Collective modes

RPA, QRPA, GCM J Projection, PNP u

Heavy elements

Fission, superheavy Drip-lines, halos

Astrophysics

r-process, SN
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I. New analysis method and first applications
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