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Halos in Light Nuclei

Low density tail extending out to large distance

Direct consequence of small nucleon separation energy / drip-line physics

First observed experimentally in 11Li and 11Be
[I. Tanihata et al, Phys. Rev. Lett. 55 (1985) 2676 ; Phys. Lett. 206B (1988) 592]

Various experimental signatures

Interaction radii/cross sections

Momentum distribution

. . .

800 MeV/n
[I. Tanihata, Nucl. Phys. A520 (1990) 411c-425c]
[B. Blank et al., Z. Phys. A343 (1992) 343-375]
[E. Arnold et al., Phys. Lett. B281 (1992) 16]
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Light Nuclei : Few-Body Models

Halo degrees of freedom decoupled from the core

Problem reduces to 2 or 3-body interacting clusters

Exact dynamics through Schrödinger or Faddeev equations

Rule of thumb characterization for halo states :
[A.S. Jensen, M.V. Zhukov, Nucl. Phys. A693 (2001), 411]

Halo extension:

> 50% probability in classically forbidden region

Dominating cluster structure:

> 50% of the actual configuration
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Known Light Halo Nuclei

Experimental evidence for several proton and neutron light halo nuclei

Ground and excited states

[RIA White Paper, 2005]

Cluster vision for light systems : valid for heavier masses ?
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Challenges for Nuclear Energy Density Functional (EDF)

EDF theory : appropriate for mid- to heavy mass nuclei (A > 40)

EDF behavior at small/surface density / large asymmetry not under control
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Potential use of halo structures to constrain current EDF ?
Surface physics: low density configurations
Surface physics : gradient versus density dependence
Drip-line phenomenon : large isospin asymmetry
Drip-line phenomenon : shell evolution at low separation energy
Pairing functional : constraints at low density/large asymmetry

Collective behaviors: Cluster vision not really expected

Halo definition expected to change...
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HFB calculations in spherical symmetry

LyHF spherical HFB code [K. Bennaceur, INPL/ESNT, France]

Discrete continuum in 40 fm spherical box

Even-even nuclei : no time-reversal invariance breaking

Particle-hole channel : SLy4 functional
[E. Chabanat et al., Nucl. Phys. A635 (1998) 231-256]

Particle-particle channel : DDDI functional
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Importance of low-` states

Divergence of r.m.s. radii for ` = 0, 1 weakly bound systems
[K. Riisager et al., Nucl. Phys. A548 (1992) 393] - [T. Misu et al., Nucl. Phys. A614 (1997) 44]

Focus on the evolution of the r.m.s. radius to predict halos

Prerequisites : presence + occupation of s/p orbitals

Higher order moments < rn > diverge for higher ` in weak binding limit ε→ 0

- < rn > diverges as ε
2`−1−n

2 for n > 2`− 1

- < rn > diverges as ln (ε) for n = 2`− 1

- < rn > remains finite for n ≤ 2`− 1

Possible contributions from ` > 1 states to nuclear halos. . .
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Results for Sn Isotopes (Z = 50)

Root-mean-square radii
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Results for Sn Isotopes (Z = 50)

Kink of neutron r.m.s. : halo signature / neutron skin ?

N ≤ 82
Neutron skin growth

N > 82
Anomalous extension ?
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Results for Sn Isotopes (Z = 50)

Kink of neutron r.m.s. : halo signature / shell effect ?

Two-neutrons separation energy S2N (drives asymptotic behavior)

Drops at N = 82

No close from 0 for N > 82
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Kink at N = 82 may be due to shell effects only
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Detailed Analysis Methods

Qualitative analysis misleading : ”giant halo” ?
[M. Grasso et al., Phys. Rev. C74 (2006) 064317] - [J. Terasaki et al., Phys. Rev. C74 (2006) 054318]

Naive counting of nucleons

Proton/neutron r.m.s. radii difference

Missing part : halo neutrons decorrelated from
protons
core neutrons
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Detailed Analysis Methods

Qualitative analysis misleading : ”giant halo” ?
[M. Grasso et al., Phys. Rev. C74 (2006) 064317] - [J. Terasaki et al., Phys. Rev. C74 (2006) 054318]

Naive counting of nucleons

Proton/neutron r.m.s. radii difference

Missing part : halo neutrons decorrelated from
protons
core neutrons

Quantitative analysis inadequate : Helm model
[S. Mizutori et al., Phys. Rev. C61 (2000) 044326]

30 34 38 42 46 50 54
N

54 58 62 66 70 74 78
A

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

R
 [

fm
]

Rgeom(n)
RHelm(n)
Rgeom(p)
RHelm(p)

Cr

Anzatz for core density

Extracts halo contribution to r.m.s. radius

Model- and fit-dependent
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Roadmap

Limits of existing methods

Shell effects may explain part/all of neutron r.m.s. radii kinks

Need of a robust + quantitative framework

Lessons from previous attempts :

Halo region : decorrelated from protons AND core neutrons

One-body density : contains enough relevant information for characterization

Goals

Non ambiguous / model-independent definition of halos

Extraction of meaningful criteria

Separation of skin / shell / halo effects

V. ROTIVAL Halos in Medium-Mass Nuclei



Introduction Current Situation New Analysis Method First Results Conclusion

Outline

1 Introduction

2 Current Situation in Medium-Mass Nuclei
Importance of Halo Configurations for the Nuclear EDF
Limitations of Current Approaches

3 A New Analysis Method
Properties of the Intrinsic One-Body Density
Model-Independent Definition of Nuclear Halos
Robust Criteria for Halo Formation

4 First Results
Cr Isotopes
Sn Isotopes
Systematics over Spherical Nuclei
Extensions and Limits

5 Conclusion

V. ROTIVAL Halos in Medium-Mass Nuclei



Introduction Current Situation New Analysis Method First Results Conclusion

Intrinsic One-Body Density

Self-bound system : separation of center-of-mass and intrinsic d.o.fs.

ΨN
i,~K

(~r1 . . .~rN) = eı
~K .~RN ΦN

i (~r1 . . .~rN) ≡ eı
~K .~RN Φ̈N

i (~ξ1 . . . ~ξN−1)

Uniform laboratory density : need to consider intrinsic one-body density

Relevant degrees of freedom : intrinsic spectroscopic amplitudes
[D. Van Neck et al., Phys. Rev. C57 (1998) 2308] - [J. Escher et al., Phys. Rev. C64 (2001) 065801]

ϕi (~r ) =
√

N

Z
d~r1 . . .~rN−1ΦN−1

i

∗
(~r1 . . .~rN−1)δ(~RN−1)ΦN

0 (~r1 . . .~rN−1,~r )

Definition w/ respect to center-of-mass of (N − 1)-body frame
Natural definition for knock-out

Normalization : spectroscopic factors

Si =

Z
d~r |ϕi (~r )|2 ⇔

ZX
i

Si = N

Decomposition of one-body intrinsic density

ρ[i ](~r ,~r ′) =

ZX
i

ϕ∗i (~r ′)ϕi (~r )
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Asymptotic Behavior for ϕi

Asymptotic solution (vanishing interaction) : free Schrödinger equation„
d2

d r 2
+

2

r

d

d r
− `i (`i + 1)

r 2
− κ2

i

«
ϕ∞i (~r ) = 0

Asymptotic intrinsic overlap functions

ϕ∞i (~r ) = Bi h`i (ıκi r) Y mi
`i

(θ, ϕ)

Bi : Asymptotic Normalization Coefficient (ANC)

h`i : Hankel functions

κi related to one-nucleon separation energy

κi =

r
2mεi

~2
εi = EN−1

i − EN
0

V. ROTIVAL Halos in Medium-Mass Nuclei



Introduction Current Situation New Analysis Method First Results Conclusion

Asymptotic Behavior for ρ

Asymptotics of one-body intrinsic density in spherical case

ρ∞(r) =

ZX
i

B2
i

4π
(2`i + 1) |h`i (ıκi r)|2

Leading order : nucleon separation energy prevails for large r , regardless of `

|h`i (ıκi r)|2 →
r→+∞

e−2κi r

(κi r)2
ρ(r) →

r→+∞

B0

4π
(2`0 + 1)

e−2κ0r

(κ0r)2

Energy ordering of i components

Corrections
`-dep. of h` : centrifugal barrier
⇒ favors low ` states
(2`+ 1) degeneracy factor
Overall : low ` favored

Asymptotic ordering of i components
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Consequences of Asymptotic Ordering

Density with normalized radial overlaps ψi (r)⇒ ρ(~r ) =

ZX
i

Si

4π
(2`i + 1)|ψi (r)|2

Assume (for now) Si = 1
Asymptotic ordering induces crossings between normalized components
Crossing sharpness depending on energy difference, angular momenta. . .
Crossing between i = 0 and sum of higher components
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Consequences of Asymptotic Ordering

Density with normalized radial overlaps ψi (r)⇒ ρ(~r ) =

ZX
i

Si

4π
(2`i + 1)|ψi (r)|2

Spectroscopic factors increase with excitation energy in (N − 1) system
Does not prevent the crossings (favors them actually)
No significant effect from (2`+ 1) degeneracy
Other corrections : number of nodes. . .
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ZX
i

Si

4π
(2`i + 1)|ψi (r)|2

Spectroscopic factors increase with excitation energy in (N − 1) system
Does not prevent the crossings (favors them actually)
No significant effect from (2`+ 1) degeneracy
Other corrections : number of nodes. . .
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Model-Independent Definition of Halos

Halo = region where nucleons are spatially decorrelated from the others

Need to extend out : long tail (of course)
Existence of sharp crossing between weakly bound states and remaining ones

A posteriori notion of core and tail orbitals
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Energy Spectrum of Halo Systems

Translation in terms of excitation spectrum of the (N − 1) system

Long tail
⇒ κ0 � 1 : small separation energy / low-lying states

Halo states decorrelated from remaining ones
⇒ sharp crossing in the density profile between core and halo components

Halo energy scales

Separation energy E

Bunch spread ∆E of low-lying states

Core Excitation energy E ′

Similar scales for ”Halo EFT”
[C. Bertulani et al., Nucl. Phys. A712 (2002) 37]

No sharp delimitation for halo systems
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Definition of Halo Region

Pronounced crossings between core and tail components in the density
Significant curvature of the log-density
Second log-derivative separates regions where core/halo components dominate

Halo Definition

Halo = region where tail components dominate by at least one order of magnitude
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Trial/error using simulations
Toy models
Ideal (Fermi...) / realistic densities
Single-tail models
Multi-tail models
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Quantitative Criteria for Halos

Negligible core contribution in the outer r > r0 region

Need of quantitative description of halo region

Average number of nucleons in the halo

Nhalo = 4π

Z
r>r0

r 2 ρ(r) dr

Effect of halo region on nuclear extension

δRhalo = Rrms,tot − Rrms,inner

=

r
< r 2 >

< r 0 >
−

vuutRr<r0
r 4 ρ(r) drR

r<r0
r 2 ρ(r) dr

Extensions to all radial moments possible as an extension

Correlated within a single isotopic series / decoupled for systematics

Model-independent : regardless of where the one-body density comes from

Contributions from individual intrinsic overlaps when available
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Cr Isotopes

QP energies: excitation spectrum of (N − 1)-body system
Low-lying 3s1/2 and 2d5/2 states / ideal conditions regarding energy scales
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Cr Isotopes

Average number of nucleons in the halo region

No effect before N = 50 shell closure / sharp increase beyond

Small value Vs N BUT same order as in light halo nuclei
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Cr Isotopes

Influence of the halo region on the nuclear extension

No effect before N = 50 shell closure / sharp increase beyond

Important contribution to total r.m.s. radius + separation of shell effects
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Cr Isotopes

Influence of the halo region on the nuclear extension

No effect before N = 50 shell closure / sharp increase beyond

Important contribution to total r.m.s. radius + separation of shell effects
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Cr Isotopes

Individual contributions to the halo (canonical basis)

Only least-bound states contribute

Major contribution from 2d5/2 state (degeneracy + v 2)
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Cr Isotopes : Conclusion

Small relative effect : Nhalo ∼ 0.5 for 80Cr

Significant contribution from halo to the nuclear extension

Contributions from multiple states, including ` = 2

Absolute values of Nhalo comparable with situation in light halo nuclei

⇒ s-wave halo nucleus (11Be) : Nhalo ≈ .35

No “Giant” halo. . .

Converging leads for formation of collective halo in drip-line Cr isotopes
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Sn Isotopes

Lot of collectivity / large bunch of high-` states at drip-line
Not favorable energy scales
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Sn Isotopes

Number of nucleons in the halo region

No effect before N = 82 shell closure

Small absolute contribution: one third of Cr isotopes
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Sn Isotopes

Influence of the halo region on the nuclear extension

Very small effect on nuclear extension
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Systematics

Systematics over ∼ 500 spherical nuclei given by CEA-D1S online database
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Systematics

Systematics over ∼ 500 spherical nuclei given by CEA-D1S online database

Number of nucleons in the halo region

Decorrelated nucleons at the very drip line for several isotopes
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Systematics

Systematics over ∼ 500 spherical nuclei given by CEA-D1S online database

Influence on total extension

Different information from Nhalo : reduced impact for heavy nuclei (collectivity)

Best candidates: Fe, Cr, Ni, Pd, Ru
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Systematics

Systematics over ∼ 500 spherical nuclei given by CEA-D1S online database

Common denominator :
low-lying ` = 0, 1 states
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Influence of EDF characteristics on halo formation

Role of pairing correlations

Effect of surface Vs volume-type pairing on weakly bound states

Pairing anti-halo effect
[K. Bennaceur et al., Phys. Lett. B496 (2000) 154]

Extra localization of QP states from pairing field
Prevents divergences of r.m.s. radius from weakly bound states

Particular role of s-waves
[I. Hamamoto, B. Mottelson, Phys. Rev. C68 (2003) 034312]

Extreme situations : λ→ 0, es → 0
Decoupling of s-wave from pairing field : classical halo
Not encountered in realistic situations

Influence of the particle-hole energy functional

Role of new terms: tensor interaction. . .

Influence of INM properties: effective mass, compressibility, saturation point. . .

Influence of the parametrization
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Limits of current energy functionals

Constrain low-density behavior of EDF using halo data ?
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Strong dependence of halo features on EDF parametrization
Already known for other basic observables / drip-lines

Predictivity of current EDF models for exotic systems ?
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Application to Other Halo Systems

Model-independent analysis: can be used for other systems

Light nuclei from Coupled-Channels calculations (2-body clusters only)
[F. Nunes et al., Nucl. Phys. 596 (1996) 171 - Nucl. Phys. A609 (1996) 43]
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Nhalo δRhalo [fm] Rrms [fm]
13C 0.66.10−3 0.74.10−3 2.487

11Be 0.270 0.394 2.908

Good separation between halo/non-halo systems

Absolute value for δRhalo : much bigger Vs medium-mass nuclei (collectivity)
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Application to Other Halo Systems

Model-independent analysis: can be used for other systems

Atom-positron complexes: e+ binding to neutral atom by polarization potential
[J. Mitroy, Phys. Rev. Lett. 94 (2005) 033402]

Asymptotics:
e+ + A or Ps + A+
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N
e− Nhalo Rr.m.s. δRhalo Pe+ P

e−

Be 4 0.624 5.661 3.194 98.1 01.9

Mg 12 0.669 2.298 0.826 80.3 19.7

Cu 29 0.754 1.777 0.975 88.6 11.4

He 2 1.982 15.472 14.568 50.3 49.7

Li 3 1.972 7.781 7.088 50.8 49.2

PX (%): proportion of X in halo outer region

Positron (Pe+ � Pe−) and positronium (Pe+ ≈ Pe−) halos identified
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Model-independent analysis: can be used for other systems

Atom-positron complexes: e+ binding to neutral atom by polarization potential
[J. Mitroy, Phys. Rev. Lett. 94 (2005) 033402]

Asymptotics:
e+ + A or Ps + A+

0 5 10 15 20 25
r [a0]

10-8

10-6

10-4

10-2

100

102

 [
fm

-3
]

N
e− Nhalo Rr.m.s. δRhalo Pe+ P

e−

Be 4 0.624 5.661 3.194 98.1 01.9

Mg 12 0.669 2.298 0.826 80.3 19.7

Cu 29 0.754 1.777 0.975 88.6 11.4

He 2 1.982 15.472 14.568 50.3 49.7

Li 3 1.972 7.781 7.088 50.8 49.2

PX (%): proportion of X in halo outer region

Positron (Pe+ � Pe−) and positronium (Pe+ ≈ Pe−) halos identified
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Conclusion

New analysis method based on analysis of intrinsic one-body density

Model-independent criteria for halo formation

Cr Isotopes
Small relative number of nucleons in halo region / Comparable with light systems
Large influence of halo region on nuclear extension
Contribution from several weakly bound states, including l = 2
Notion of ”giant halo” : meaningless. . .

Formation of a collective halo in Cr isotopes

Systematics over spherical nuclei
Good candidates : drip-line Fe, Cr, Ni, Pd, Ru
Experimental validation in drip-line medium-mass region ?

Successful application to light nuclei and atom-positron complexes
Correct extraction of halo factors
Proves model-independence
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Conclusion

Extension of the method
Deformed nuclei : multipolar moments of the density
Multi-reference EDF effects : PNP, GCM on breathing modes...
Inclusion of cluster correlations: hindrance to halo formation?
Study of correlations: two-body density

Link with experimental studies: open question
Neutron drip-lines beyond reach for medium-mass nuclei
Robust method BUT no robust predictions
High sensitivity to EDF parametrization

Fine tuning of EDF based on experimental data: not yet

Halo: (very) rare exotic phenomenon
Missing terms in current functionals

Lot of work needed first on EDF used in single/multi-vacua calculations
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Long-range plan

Microscopic vertex from χ-EFT / low-momentum interactions + nuclei properties

Ground state

Mass, deformation

Spectroscopy

Excited states

Collective modes

RPA, QRPA, GCM

Symmetry restoration

J Projection, PNP

Heavy elements

Fission, superheavy

Exoticity

Drip-lines, halos

Astrophysics

r-process, SN
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