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Irreducible representations (lrreps)

+

= U(n), n=dim s.p. space, Irrep=shell
model space.

= O(2n), lrrep = shell model + pair
creation and annihilation < Fock space.

= G = Lie group, Irrep = Hilbert space of
a strong dynamical symmetry.




Algebraic mean field theory (AMFT)

G = Lie group,
m(g) = group representation on some Hilbert space, not neces-
sarily irreducible.

Mean field states = Orbit space C Hilbert space:

Oy = {7(g)V, g € G}.

The orbit space Qg consists of coherent states (Perelomov).

Uin) Hartree-Fock (HF) (1980 Rowe, Gilmore, and GR)

O(2n) HFB (1981 GR)



i Why use AMFT?

= Easy. AMFT manifold Is an enormous
simplification compared to irreps.

= Flexible. L = Lie algebra of group G
Includes most significant degrees of
freedom.



i Density matrix

L* = dual space to Lie algebra L
= space of real-valued linear functions on L

= space of “densities.”
When L is a semisimple matrix Lie algebra, L* = L and

(p, X)) =Tr(pX) for X € L and p  L*.

Example: Hartree-Fock

X = u(n)
X = ZXz'_-;i Iflj::ﬂ_—,i
pi; = M) = {¥|ala,T)

(I | XT) = Tr(pX)={p,X).



i Moment map M

M : representation space — L*

U — p=M(T)
where WOV
/ Vo I:'. .;Tm /
Xy = (U |}

Xel X= 7(X) is the operator representation of the matrix X.



i Advantages to density

1. For HF, (0| U===) = (), yet p = p™**. AMFT aims to derive accurate densities
p, and doesn't try to find U

2. Group transformation simplifies. U~ 7(g)¥ is hard to compute. But the
density corresponding to the coherent state n(g) ¥ isAd;p = g pg", the product
of three matrices. Ad; is called the coadjoint transformation.



‘L Coadjoint orbit

. —1 -
Oy ={Adyp=gpg—,9 € G}.
The moment map, restricted to the set of coherent states,
M. 0Oy — O,
is, in general, many-to-one.

1-1 exceptions: (a) WU is a highest weight vector and (b) Slater deter-
minants < Idempotent densities.



Strong versus weak dynamical
i symmetry

= Strong: States are vectors in one
/rreaducible representation space.

= Weak: Densities are points in one
coadjoint orbit.




casimirs

Colp) =Tr(pP),p=1,2,....
The Casimirs are constant functions on each coadjoint orbit:
Co(Adp) = Tr ((gpg™ V) = Tr (9079 ") = Cylp).

Conversely, for a compact Lie group, every coadjoint orbit is a
level aurfaxe of the Casimir functions.



Weak dynamical symmetry
example

U(6) interacting boson model. Fix irrep [N].
Ha)=1l—a)Hi+aH, 0 <a <1,

where H; = ng, the u(5) d-boson number operator, and Hy =
—@Q - @, the su(3) quadrupole-quadrupole interaction.

For large N, this Hamiltonian has a quantum phase transition.
¢ o < a, = u(5) vibrational phase

® a > a, = su(3) rotational phase
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I, ] =0,2,4, ...

Strong su(3) dynamical symmetry when all states of band be-
long to one irrep of su(3).

Weak su(3) dynamical symmetry when the band’s densities lie
on a level surface of the su(3) Casimirs. For o« > a, in the IBM
quantum phase transition example,

)= X A [(A, ) 1),
(Apt)

where the coefficients Ay ) in the expansion are independent

of I. The expectation of any su(3) Casimir is

(IC|I)= {;) [An 2O\, 1),
Y

where C'((A, pt)) is the value of the Casimir operator C' in the
irrep (A, u).



i Representations of Lie groups

= Highest weight

= Duality, Permutation group and U(n)
= Induced

= Geometric quantization

Starting point: coadjoint orbit

(Kirillov, Kostant, Souriau,Vogan)



i Kirillov metatheorem

= Every property of a Lie group irrep may
be determined from an analysis of the
corresponding coadjoint orbit.

= Branching rules, group characters, etc.

= Kirillov “The orbit method In
representation theory” (AMS)



i Symplectic structure

= Every coadjoint orbit is a symplectic
manifold or phase space

= Q(X,Y)=<p, [X, Y] > Is nondegenerate

= E(p) = energy functional on coadjoint
orbit

= h[p] = mean field Hamiltonian, where
dE (X) = Q(X,h[p]) .




‘L Dynamics on a coadjoint orbit

Dynamics is determined for semisimple Lie groups by a Lax
equation:
0= o gl
dt

(asimir tunctions are constants of the motion because

d. . . .,



Nonabelian density functional

‘L theory

Suppose E : L* — R is an energy functional.
Ex(p) = E(p) —(p, X) for X € L.
Hohenberg-Kohn (GR and Dankova JPA 31 (1998) 8933).

., (V| H|W)
E(p) = ﬂ-f%%f;p (U | W)

Conventional DF'T:
L = set of one-body multiplication operators, V' = ©; v(r;),

L* = LO(R3),

2] &

(0, V) = [ p(F)o(F)d’r



‘L SU(3) densities

p=(q— %ii e su(3)* = su(3), where

Jij = @@ﬂqj)
L, = (U] L, )

Z =Y +iX € su(d), 7(Z) = v;; Y;;Qi; — z.g;j-}{i‘.,&j?
(0, Z) =Tr(pZ) = (V| 7(2)¥)



i SU(3) Coadjoint orbit

Density matrix of highest weight is diagonal:
|

ngtmg( AN+ g, =X =20, 20+ ).

(Casimir functions:

Colp) = Ti(p?) = (N + M + %)

JJI I-'~D-.3| I:-.:'

Cs(p) = Tr(p?) (2A3+3)\2p, — 3\t = 20°).



Intrinsic frame densities

An intrinsic frame density is a density with a diagonal quadrupole
matrix,
T _
= RqR" = diag(q1, g2. q3)-

AMFT system of equations for intrinsic p = ¢ — zid:

Gg+qt+qg =0
B+L+15 =TI7

1 L
Xait 5" = G

Yq¢ — - ql? = G\ p)
k@k 4%:%& 3L



i Principal axis rotation

ILh=1;=0
A 24 A+ 24
g1 = — ij}z,ﬂ— ’li \/)\2
3 §
for 0 < [ <\
2N+ 11 2 + [ S
N=—"F5 PR3 "¢ iﬂ,u, S

for 0 < 1T < p.



‘L Routhian

Lax equation in intrinsic frame:

d
Ay T
i halpl, p.

where the Routhian is hqlp] = h[j] +iQ, Q = RRT is the
angular velocity of the rotating frame relative to the lab frame.

-

A rotating equilibrium density p satisfies [ho[p], p] = 0.



‘L Normal modes

Suppose E(p) = A2 + Agl? + AsI2. Normal mode analysis
via linearization of Lax equations near an equilibrium density
determines wobbling frequency about short principal axis:

N sz"(Al — As) (A3 — Ay)
W = IE
L+ (4;¢(A+m)

for 0 < I < \. The denominator contains the su(3) correction

In parentheses.



i The End Part

= GCM(3) Riemann ellipsoidal or Bohr-
Mottelson model

= SP(3,R) symplectic collective model
= O(6) = SU(4) Interacting boson model
= SO(5) = USp(4) ibm



i Internally consistent

= Correct group representation properties are
built into each coadjoint orbit. Branching
rules for H<G derived from geometric
analysis of H-orbits in coadjoint G-orbit
space.

= DFT Hohenberg-Kohn assures the existence
of an energy functional for which the exact
ground state density Is a minimum.



i Simple to use

= AMFT calculations use n x n matrices,
e.g., SU(3) works with 3 x 3 matrices.
The (possibly infinite) dimension of the
representation under investigation is
Irrelevant.

= Method applies to nonintegral orbits
which is necessary for weak dynamical
symmetry.



i Questions

= IS weak dynamical symmetry
ubiquitous?
= What's the best way to find the

universal energy functional for a given
algebra L?
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