What is the mean field theory of a weak or strong dynamical symmetry group?

> George Rosensteel Tulane University george.rosensteel@tulane.edu

Irreducible representations (Irreps)

- \mathbb{R}^3 \blacksquare U(n), n=dim s.p. space, Irrep=shell model space.
- \mathbb{R}^3 \bullet O(2n), Irrep = shell model + pair creation and annihilation < Fock space.
- \mathbb{R}^3 \blacksquare G = Lie group, Irrep = Hilbert space of a strong dynamical symmetry.

Algebraic mean field theory (AMFT)

 $G =$ Lie group,

 $\pi(g)$ = group representation on some Hilbert space, not necessarily irreducible.

Mean field states $=$ Orbit space \subset Hilbert space:

$$
\mathcal{O}_{\Psi} = \{\pi(g)\Psi, g \in G\}.
$$

The orbit space \mathcal{O}_{Ψ} consists of *coherent* states (Perelomov).

 $U(n)$ Hartree-Fock (HF) (1980 Rowe, Gilmore, and GR)

 $O(2n)$ HFB (1981 GR)

Why use AMFT?

- \mathbb{R}^3 ■ Easy. AMFT manifold is an enormous simplification compared to irreps.
- \mathbb{R}^3 **Flexible.** $L = Lie$ algebra of group G includes most significant degrees of freedom.

Density matrix

- L^* dual space to Lie algebra L $=$
	- space of real-valued linear functions on L $=$
	- space of "densities." $=$

When L is a semisimple matrix Lie algebra, $L^* \cong L$ and

$$
\langle \rho, X \rangle = \text{Tr}(\rho X) \text{ for } X \in L \text{ and } \rho \in L^*.
$$

Example: Hartree-Fock

$$
X \in u(n)
$$

\n
$$
\hat{X} = \sum X_{ij} a_i^{\dagger} a_j
$$

\n
$$
\rho_{ij} = M(\Psi) = \langle \Psi | a_j^{\dagger} a_i \Psi \rangle
$$

\n
$$
\langle \Psi | \hat{X} \Psi \rangle = \text{Tr}(\rho X) = \langle \rho, X \rangle.
$$

Moment map M

M: representation space $\longrightarrow L^*$ $\Psi \mapsto \rho = M(\Psi)$

where

$$
\langle \rho, X \rangle = \frac{\langle \Psi | \dot{\pi}(X) \Psi \rangle}{\langle \Psi | \Psi \rangle}
$$

 $X \in L$, $\hat{X} = \dot{\pi}(X)$ is the operator representation of the matrix X.

Advantages to density

- 1. For HF, $\langle \Psi | \Psi^{\text{exact}} \rangle \approx 0$, yet $\rho \approx \rho^{\text{exact}}$. AMFT aims to derive accurate densities ρ , and doesn't try to find Ψ
- 2. Group transformation simplifies. $\Psi \mapsto \pi(g)\Psi$ is hard to compute. But the density corresponding to the coherent state $\pi(g)\Psi$ is $\text{Ad}^*_q \rho = g \rho g^{-1}$, the product of three matrices. Ad^*_q is called the coadjoint transformation.

Coadjoint orbit

$$
\mathcal{O}_{\rho} = {\rm Ad}^*_{g}\rho = g \,\rho \,g^{-1}, g \in G.
$$

The moment map, restricted to the set of coherent states,

$$
M:\mathcal{O}_{\Psi}\longrightarrow\mathcal{O}_{\rho},
$$

is, in general, many-to-one.

1-1 exceptions: (a) Ψ is a highest weight vector and (b) Slater deter $minants \leftrightarrow Idempotent densities.$

Strong versus weak dynamical symmetry

- \mathbb{R}^3 ■ Strong: States are vectors in one irreducible representation space.
- \mathbb{R}^3 **Neak: Densities are points in one** coadjoint orbit.

Casimirs

$$
\mathcal{C}_p(\rho) = \text{Tr}(\rho^p), p = 1, 2, \dots
$$

The Casimirs are constant functions on each coadjoint orbit:

$$
\mathcal{C}_p(\mathrm{Ad}^*_g \rho) = \mathrm{Tr}\left((g\rho g^{-1})^p \right) = \mathrm{Tr}\left(g\rho^p g^{-1} \right) = \mathcal{C}_p(\rho).
$$

Conversely, for a compact Lie group, every coadjoint orbit is a level surface of the Casimir functions.

Weak dynamical symmetry example

 $U(6)$ interacting boson model. Fix irrep [N].

$$
H(\alpha) = (1 - \alpha)H_1 + \alpha H_2, \ 0 \le \alpha \le 1,
$$

where $H_1 = \hat{n}_d$, the u(5) d-boson number operator, and $H_2 =$ $-\hat{Q} \cdot \hat{Q}$, the su(3) quadrupole-quadrupole interaction.

For large N , this Hamiltonian has a quantum phase transition.

 $\bullet \ \alpha < \alpha_c \Rightarrow$ u(5) vibrational phase

•
$$
\alpha > \alpha_c \Rightarrow \text{su}(3)
$$
 rotational phase

SU(3) BASIS STATES

SU(3) BASIS STATES

$|I\rangle, I = 0, 2, 4, \ldots$

 $Strong su(3)$ dynamical symmetry when all states of band belong to one irrep of $su(3)$.

 $Weak \text{ su}(3)$ dynamical symmetry when the band's densities lie on a level surface of the su(3) Casimirs. For $\alpha > \alpha_c$ in the IBM quantum phase transition example,

$$
|I\rangle = \sum_{(\lambda,\mu)} A_{(\lambda,\mu)} |(\lambda,\mu)I\rangle,
$$

where the coefficients $A_{(\lambda,\mu)}$ in the expansion are independent of I . The expectation of any su(3) Casimir is

$$
\langle I | \hat{C} | I \rangle = \sum_{(\lambda,\mu)} |A_{(\lambda,\mu)}|^2 C((\lambda,\mu)),
$$

where $C((\lambda,\mu))$ is the value of the Casimir operator C in the irrep (λ, μ) .

Representations of Lie groups

- \mathbb{R}^3 **- Highest weight**
- \mathbb{R}^3 Duality, Permutation group and U(n)
- **Induced**
- \mathbb{R}^3 **• Geometric quantization**

Starting point: coadjoint orbit

(Kirillov, Kostant, Souriau,Vogan)

Kirillov metatheorem

- \mathbb{R}^3 **Every property of a Lie group irrep may** be determined from an analysis of the corresponding coadjoint orbit.
- \mathbb{R}^3 **Branching rules, group characters, etc.**
- **EXA** Kirillov "The orbit method in representation theory" (AMS)

Symplectic structure

- \mathbb{R}^3 **Every coadjoint orbit is a symplectic** manifold or phase space
- \mathbb{R}^3 ■ Ω (X, Y) = < ρ, [X, Y] > is nondegenerate
- $E(\rho)$ = energy functional on coadjoint orbit
- \blacksquare h[ρ] = mean field Hamiltonian, where $dE(X) = \Omega(X,h[\rho])$.

Dynamics on a coadjoint orbit

Dynamics is determined for semisimple Lie groups by a Lax equation:

$$
\frac{d}{dt}\rho = [\rho, h[\rho]].
$$

Casimir functions are constants of the motion because

$$
\frac{d}{dt}\text{Tr}(\rho^p) = 0.
$$

Nonabelian density functional theory

Suppose $E: L^* \to \mathbf{R}$ is an energy functional. $E_X(\rho) = E(\rho) - \langle \rho, X \rangle$ for $X \in L$. Hohenberg-Kohn (GR and Dankova JPA 31 (1998) 8933).

$$
E(\rho) = \inf_{M(\Psi) = \rho} \frac{\langle \Psi | \hat{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle}
$$

Conventional DFT:

 $L =$ set of one-body multiplication operators, $V = \sum_i v(r_i)$, $L^* = \mathcal{L}^{(1)}(\mathbf{R}^3),$

$$
\langle \rho, V \rangle = \int \rho(\vec{r}) v(\vec{r}) d^3r.
$$

SU(3) densities $\rho = q - \frac{1}{2}il \in \text{su}(3)^* \cong \text{su}(3)$, where $q_{ij} = \langle \Psi | \hat{Q}_{ij} \Psi \rangle$ $l_{ij} = \langle \Psi | \hat{L}_{ij} \Psi \rangle.$ $Z = Y + iX \in su(3), \dot{\pi}(Z) = \sum_{ij} Y_{ij} \hat{Q}_{ij} - \frac{1}{2} \sum_{ij} X_{ij} \hat{L}_{ij},$ $\langle \rho, Z \rangle = \text{Tr}(\rho Z) = \langle \Psi | \pi(Z) \Psi \rangle$

SU(3) Coadjoint orbit

Density matrix of highest weight is diagonal:

$$
\rho = \frac{1}{3} \operatorname{diag}(-\lambda + \mu, -\lambda - 2\mu, 2\lambda + \mu).
$$

Casimir functions:

$$
C_2(\rho) = \text{Tr}(\rho^2) = \frac{2}{3}(\lambda^2 + \lambda\mu + \mu^2)
$$

\n
$$
C_3(\rho) = \text{Tr}(\rho^3) = \frac{1}{9}(2\lambda^3 + 3\lambda^2\mu - 3\lambda\mu^2 - 2\mu^3).
$$

Intrinsic frame densities

An intrinsic frame density is a density with a diagonal quadrupole matrix,

$$
\tilde{q} = RqR^T = \text{diag}(q_1, q_2, q_3).
$$

AMFT system of equations for intrinsic $\tilde{\rho} = \tilde{q} - \frac{1}{2}iI$:

$$
q_1 + q_2 + q_3 = 0
$$

\n
$$
I_1^2 + I_2^2 + I_3^2 = I^2
$$

\n
$$
\sum_k q_k^2 + \frac{1}{2}I^2 = C_2(\lambda, \mu)
$$

\n
$$
\sum_k q_k^3 - \frac{3}{4} \sum_k q_k I_k^2 = C_3(\lambda, \mu)
$$

Principal axis rotation

$$
I_2 = I_3 = 0:
$$

\n
$$
q_1 = -\frac{\lambda + 2\mu}{3}, q_{2,3} = \frac{\lambda + 2\mu}{6} \pm \frac{1}{2}\sqrt{\lambda^2 - I^2},
$$

\nfor $0 \le I \le \lambda$.
\n
$$
q_1 = \frac{2\lambda + \mu}{3}, q_{2,3} = -\frac{2\lambda + \mu}{6} \pm \frac{1}{2}\sqrt{\mu^2 - I^2},
$$

\nfor $0 \le I \le \mu$.

Routhian

Lax equation in intrinsic frame:

$$
i\frac{d}{dt}\tilde{\rho}=[h_{\Omega}[\tilde{\rho}],\tilde{\rho}],
$$

where the Routhian is $h_{\Omega}[\tilde{\rho}] = h[\tilde{\rho}] + i\Omega$, $\Omega = RR^T$ is the angular velocity of the rotating frame relative to the lab frame.

A rotating equilibrium density $\tilde{\rho}$ satisfies $[h_{\Omega}[\tilde{\rho}], \tilde{\rho}] = 0$.

Normal modes

Suppose $E(\rho) = A_1 I_1^2 + A_2 I_2^2 + A_3 I_3^2$. Normal mode analysis via linearization of Lax equations near an equilibrium density determines wobbling frequency about short principal axis:

$$
\omega = \frac{2I\sqrt{(A_1 - A_2)(A_3 - A_2)}}{1 + \left(\frac{I^2}{4\mu(\lambda + \mu)}\right)}
$$

for $0 \le I \le \lambda$. The denominator contains the su(3) correction in parentheses.

The End Part

- \mathbb{R}^3 GCM(3) Riemann ellipsoidal or Bohr-Mottelson model
- \mathbb{R}^3 ■ Sp(3,R) symplectic collective model
- \mathbb{R}^3 $O(6) = SU(4)$ interacting boson model
- \mathbb{R}^n \blacksquare SO(5) = USp(4) ibm

Internally consistent

- **Correct group representation properties are** built into each coadjoint orbit. Branching rules for H<G derived from geometric analysis of H-orbits in coadjoint G-orbit space.
- DFT Hohenberg-Kohn assures the existence of an energy functional for which the exact ground state density is a minimum.

Simple to use

- AMFT calculations use n x n matrices, e.g., SU(3) works with 3 x 3 matrices. The (possibly infinite) dimension of the representation under investigation is irrelevant.
- \mathbb{R}^3 **• Method applies to nonintegral orbits** which is necessary for weak dynamical symmetry.

Questions

- \mathbb{R}^3 **Iomical symmetry** Is weak dynamical symmetry ubiquitous?
- \mathbb{R}^3 **Nhat's the best way to find the** universal energy functional for a given algebra L?