SELF-CONSISTENT APPROACH TO THE

GAMOW-TELLER BETA DECAY OF PROTON-RICH KR ISOTOPES

A. PETROVICI

Institute for Physics and Nuclear Engineering, Bucharest, Romania Institut für Theoretische Physik, Universität Tübingen, Germany

 \cdot ⁷⁴Kr \rightarrow ⁷⁴Br $0^{+}_{ground-state}$ $\rightarrow 1^{+}$

- \cdot ⁷²Kr \rightarrow ⁷²Br
	- $0^+_{ground-state} \rightarrow 1^+$
 $0^+_{first-excited} \rightarrow 1^+$
 $2^+_{yrast} \rightarrow 1^+$

within

the complex EXCITED VAMPIR variational approach

VAMPIR - **Variational approaches to the nuclear many-body problem**

Framework

- \bullet the model space is defined by a finite dimensional set of spherical single particle states
- \bullet the effective many-body Hamiltonian is represented as a sum of one- and two-body terms
- the basic buiding blocks are Hartree-Fock-Bogoliubov (HFB) vacua
- the HFB transformations are essentially *complex* and allow for proton-neutron, parity and angular momentum mixing being only restricted by time-reversal and axial symmetry
- the broken symmetries (s=N, Z, I, π) are restored before variation by projection techniques

Variational approaches to the nuclear many-body problem with symmetry projection before variation

Model space

 $\{|i\rangle \equiv |\tau n l j m\rangle\}$ $\{c_i^\dagger, c_k^\dagger, ...\}_M$ ${c_i, c_k, ...\}_M$

Effective many-body Hamiltonian

$$
\hat{H} = \sum_{i=1}^{M} \varepsilon(i) c_i^{\dagger} c_i + \frac{1}{4} \sum_{i,k,r,s=1}^{M} v(ikrs) c_i^{\dagger} c_k^{\dagger} c_s c_r
$$

Hartree-Fock-Bogoliubov transformation

$$
\begin{pmatrix} a^{\dagger} \\ a \end{pmatrix} = F \begin{pmatrix} c^{\dagger} \\ c \end{pmatrix} = \begin{pmatrix} A^T & B^T \\ B^{\dagger} & A^{\dagger} \end{pmatrix} \begin{pmatrix} c^{\dagger} \\ c \end{pmatrix}
$$

 $\it Quasi\mbox{-}particle$ vacuum

$$
|F\rangle = \prod_{\alpha=1}^{M'} a_{\alpha}|0\rangle \quad \text{with} \quad \left\{ \begin{array}{ll} a_{\alpha}|0\rangle \neq 0 & \text{for } \alpha = 1, ..., M' \leq M \\ a_{\alpha}|0\rangle = 0 & \text{else} \end{array} \right\}
$$

 $\hat{\Theta}_{MK}^s \equiv \hat{P}(I; MK)\hat{Q}(N)\hat{Q}(Z)\hat{p}(\pi)$ $\hat{p}(\pi) \equiv \frac{1}{2} \left(1 + \pi \hat{\Pi} \right)$

 $\hat{Q}(N_{\tau}) \, \equiv \, \frac{1}{2\pi} \int_0^{2\pi} d\phi_{\tau} \exp\{i\phi_{\tau}(N_{\tau} \, - \, \hat{N}_{\tau})\})$

 $\hat{P}(I;MK) \equiv \frac{2I+1}{8\pi^2} \int d\Omega D_{MK}^{I*}(\Omega) \hat{R}(\Omega)$

$$
|\psi(F^s); sM\rangle = \sum_{K=-I}^{+I} \hat{\Theta}^s_{MK} |F^s\rangle f^s_K
$$

$$
|\psi(F^s);sM\rangle\,=\,\frac{\hat{\Theta}^s_{M0}|F^s\rangle}{\sqrt{\langle F^s|\hat{\Theta}^s_{00}|F^s\rangle}}
$$

$$
|F\rangle = \left\{\prod_{m=1/2}^{m_{max}} \left(\prod_{\alpha}^{(m)} [u_{\alpha} + v_{\alpha}b_{\alpha}^{\dagger}b_{\bar{\alpha}}^{\dagger}]]\right)\right\}|0\rangle
$$

$$
b^{\dagger}_{\alpha}\,=\,\sum\limits_{\tau_i,n_i,l_i,j_i}^{(m_{\alpha}>0)}D_{i\alpha}^*\,c^{\dagger}_i
$$

$$
b^\dagger_\alpha b^\dagger_{\bar{\alpha}} = \mathop{\sum}\limits_{\tau = p,n}\limits^{\left(m_\alpha\tau\right)}\mathop{\sum}\limits_{\substack{\mathbf{i}<\mathbf{k}}} \left[1+\delta(\mathbf{i},\mathbf{k})\right]^{-1}\mathop{\sum}\limits_{I} (-)^{j_{k}+l_{k}-m_\alpha}(j_{i}j_{k}I|m_\alpha-m_\alpha 0)
$$

 $\times\{[Re(D_{i_{\tau}\alpha}^{*}D_{k_{\tau}\alpha})[1+(-)^{l_{i}+l_{k}+I}]+iIm(D_{i_{\tau}\alpha}^{*}D_{k_{\tau}\alpha})[1-(-)^{l_{i}+l_{k}+I}]] [c_{1}^{\dagger}c_{k}^{\dagger}]_{12\tau}^{I0}\}$

$$
+\sum_{\underline{i}}^{(m_{\alpha}p)(m_{\alpha}n)} \sum_{\underline{k}} [1/21/2T] - 1/21/20) (-)^{j_{k}+l_{k}-m_{\alpha}} (j_{i}j_{k}I|m_{\alpha}-m_{\alpha}0)
$$

 $\times\{[Re(D_{i_{p}\alpha}^{*}D_{k_{n}\alpha})[1+(-)^{l_{i}+l_{k}+I}]+iIm(D_{i_{p}\alpha}^{*}D_{k_{n}\alpha})[1-(-)^{l_{i}+l_{k}+I}]][c_{1}^{\dagger}c_{k}^{\dagger}]_{T_{0}}^{I_{0}}\}$

$$
\left[c_{\underline{i}}^{\dagger}c_{\underline{k}}^{\dagger}\right]_{TT_{z}}^{IM} \equiv \sum_{m_{i}m_{k}\tau_{i}\tau_{k}}(j_{i}j_{k}I|m_{i}m_{k}M)(\frac{1}{2}\frac{1}{2}T|\tau_{i}\tau_{k}T_{z})c_{i}^{\dagger}c_{k}^{\dagger}
$$

Variational procedures

complex Vampir approach

$$
E^s[F_1^s] = \frac{\langle F_1^s | \hat{H} \hat{\Theta}_{00}^s | F_1^s \rangle}{\langle F_1^s | \hat{\Theta}_{00}^s | F_1^s \rangle}
$$

$$
|\psi(F_1^s); sM\rangle = \frac{\hat{\Theta}_M^s e |F_1^s \rangle}{\sqrt{\langle F_1^s | \hat{\Theta}_0^s | F_1^s \rangle}}
$$

complex **Excited Vampir approach**

$$
\begin{aligned}\n|\psi(F_2^s); sM\rangle &= \hat{\Theta}_{M0}^s \left\{ |F_1^s \rangle \alpha_1^2 + |F_2^s \rangle \alpha_2^2 \right\} \\
|\psi(F_i^s); sM\rangle &= \hat{\Theta}_{M0}^s \sum_{j=1}^i |F_j^s \rangle \alpha_j^i \quad \text{for} \quad i = 1, ..., n \\
|\Psi_{\alpha}^{(n)}; sM \rangle &= \sum_{i=1}^n |\psi_i; sM \rangle f_{i\alpha}^{(n)}, \quad \alpha = 1, ..., n\n\end{aligned}
$$

$$
(H - E^{(n)}N) f^n \, = \, 0
$$

$$
(f^{(n)})^+ N f^{(n)} = 1
$$

 $A = 70 - 90$ mass region

 $40Ca - core$

model space (π,ν) : $1p_{1/2}$ $1p_{3/2}$ $0f_{5/2}$ $0f_{7/2}$ $1d_{5/2}$ $0g_{9/2}$ renormalized G-matrix (OBEP, Bonn A)

- \bullet short range Gaussians in the nn , pp, np channels
- monopole shifts:

 $\langle 0g_{9/2}0f; T=0|\hat{G}|0g_{9/2}0f; T=0 \rangle$ $\langle 1p1d_{5/2}; T=0|\hat{G}|1p1d_{5/2}; T=0 \rangle$

 $f_{5/2}$ $f_{7/2}$ $(ms1): -0.590 \, MeV / -0.060 \, MeV$ $(ms2): -0.500 \, MeV / -0.150 \, MeV$ $(ms3): -0.400 \; MeV / -0.250 \; MeV$

Gamow-Teller β Decay of 74Kr

CERN/ISOLDE E. Poirier et al., Phys.Rev. C69(2004)034307

 ${}^{74}\text{Kr} \rightarrow {}^{74}\text{Br}$ $0^{+}_{ground-state}$ $\rightarrow 1^{+}$

 $Q_{EC} = 3.140 \pm 0.060 \text{ MeV}$

The amount of mixing for the ground-state of 74 Kr.

The amount of mixing for the lowest calculated 1^+ states of 7^4Br (msl).

 o -mixing /p-mixing

 $94(3)(3)\%$ $61(35)(2)(1)\%$ $89(3)(2)(2)(1)(1)(1)\%$ $44(28)(19)(4)(1)(1)(1)\%$ 97% $69(19)(5)(2)(2)\%$ $70(7)(3)(2)(1)(1)(1)\%4(3)(2)(2)\%$ $9(3)\% 25(24)(11)(10)(3)(2)(2)(1)(1)(1)(1)(1)(1)(1)\%$ $7(1)(1)\% 71(8)(5)(1)(1)(1)(1)(1)\%$ $57(3)(2)(1)(1)(1)(1)\%13(5)(4)(2)(2)(1)(1)(1)(1)\%$ $26(1)(1)\%36(20)(4)(3)(2)(1)(1)(1)\%$ $21(21)(14)(14)(6)(5)(4)(2)(2)(1)(1)(1)(1)(1)(1)\%$ $2(1)(1)(1)\%$ 36(14)(12)(6)(6)(5)(4)(2)(2)(1)(1)(1)(1)(1)(1)(3)% $10(2)(2)(1)(1)\% 27(13)(11)(9)(3)(3)(2)(2)(2)(2)(1)(1)(1)(1)(1)(1)(1)(1)\%$ $50(16)(9)(5)(3)(3)(2)(2)(2)(1)(1)(1)\% 2(2)\%$ $33(21)(12)(8)(5)(5)(3)(2)(2)(1)(1)\% 1(1)(1)\%$ $1(1)\%34(18)(13)(9)(4)(3)(2)(2)(2)(2)(1)(1)(1)(1)(1)(1)\%$

The amount of mixing for the lowest calculated 1^+ states of $74Br$ (msl).

 $\overline{1}$

The amount of mixing for the lowest calculated 1^+ states of 74 Br (ms2).

 $25(19)(11)(10)(8)(8)(3)(3)(2)(2)(1)(1)(1)(1)\% 2(1)\%$

The amount of mixing for the lowest calculated 1^+ states of 74Br (ms1) .

The amount of mixing for the lowest calculated 1^+ states of 7^4Br (ms3).

Spectroscopic quadrupole moments Q_2^{sp} (in efm^2) for the lowest calculated 1^+ states of the ^{74}Br nucleus (ms1).

 1_{II}^{+} 1_{III}^{+} 1^+_I

Spectroscopic quadrupole moments Q_2^{sp} (in efm^2) for the lowest calculated 1^+ states of the $^{74}\rm{Br}$ nucleus (ms1).

Spectroscopic quadrupole moments Q_2^{sp} (in efm^2) for the lowest calculated 1⁺ states of the ⁷⁴Br nucleus (ms²).

 1^+ 1^+_{III} 1^+_I

Spectroscopic quadrupole moments Q_2^{sp} (in efm^2) for the lowest calculated 1⁺ states of the ^{74}Br nucleus (ms3).

 $1⁺$

 1^+

 1^+_{III} – ………

 -49.5 47.8 -48.0 40.9 -51.3 45.5 -49.8 -49.3 48.4 -48.7 47.1 -51.3 45.0 -50.1 -51.4 -44.9 38.1 -53.7 -49.6 -50.9 44.7 6.6 -3.4 -47.3 -52.1 -46.2 -52.0 4.9 -11.9 -43.4 -45.4 38.9 -27.5 39.2 -44.9 30.9 -42.0 -42.5 -45.3 -52.9 -44.2 -27.3 28.1 16.7 39.4 -0.1 $-4.7 -45.8$ -37.3 -45.4 32.0 39.6 -40.3 -41.4 30.4 $13.0 \quad -16.0 \quad 38.4 \quad -34.4 \quad 25.8 \quad -55.7 \quad -15.5$ $-43.5 -24.2$ 20.6 41.9 14.5 -52.2 40.9 35.2 29.1 $2.7\,$ -15.9 4.7

Excitation energy (MeV)

Gamow-Teller β Decay of 72Kr

CERN/ISOLDE I. Piqueras, Eur. Phys. J. A16(2003)313

 ${}^{72}\text{Kr} \rightarrow {}^{72}\text{Br}$

 Q_{EC} = 5.040 \pm 0.375 MeV

 $0^{+}_{ground-state}$ $\rightarrow 1^{+}$

 $0^{+}_{first-excited}$ $\rightarrow 1^{+}$ *E* θ_2^+ = 0.671 MeV

 $2^+_{yrast} \rightarrow 1^+$ *E* $_{2_{I}^{+}}$ = 0.710 MeV The amount of mixing for the calculated states of the ${}^{72}\text{Kr}$ nucleus (ms3).

The amount of mixing for the lowest calculated 1^+ states of ⁷²Br (ms3) with significant B(GT).

 o -mixing / p -mixing

 $85(12)\%$ $81(11)(4)\%$ $87(2)(2)(2)(2)(1)(1)\%$ $81(4)(4)(2)(2)(1)(1)(1)\%$ $78(16)(2)(1)\%$ $78(4)(3)(3)(2)(2)(1)(1)(1)(1)(2)$ $49(24)(8)(6)(5)(2)(1)(1)(1)\%$ $32(31)(15)(9)(3)(2)(1)(1)(1)(1)$ % $79(15)(1)\%$ $31(2)(2)(1)\%20(16)(13)(2)(1)(1)(1)(1)(1)(1)(1)(1)\%$ $50(5)(1)(1)\% 12(10)(8)(2)(1)(1)(1)(1)(1)\%$ 2% 68(10)(5)(3)(3)(2)(1)(1)(1)\% $36(24)(7)(6)(5)(4)(3)(3)(2)(1)(1)(1)\%$ $72(12)(4)(2)(1)(1)(1)(1)(1)\%1\%$ $62(17)(8)(4)(2)\% 1\%$ $56(15)(11)(2)(2)(1)(1)(1)(1)(1)\% 1(1)\%$

	1^+_I 1^+_{II} 1^+_{III}				
	48.5 48.7 -49.9 -49.4 46.5 45.5 -51.6 -50.1 -49.5 46.8 -11.5				
	8.7 -46.5 -48.7 45.4 44.0 -53.5 -39.1 27.0 41.0 -48.9 -46.5				
	-49.2 42.5 -39.8 35.8 -46.3 41.8 -45.0 -43.5 42.4 -46.9 -46.6				
	-26.3 10.7 -37.3 37.4 -36.5 35.5 -46.6 47.6 -48.8 -40.0 -1.2				
	-24.0 -35.8 37.1 -47.7 -53.2 -42.8 27.0 -7.2 10.2 -45.8 -32.8				
	30.8 40.7 -24.2 21.8 -23.9 -41.8 15.0 -13.5 -38.3 39.6 11.8				
	36.4 -47.6 -24.7 21.8 41.7 37.4 29.5 12.1 -20.2 -23.6 -39.3				
	-33.2 37.6 27.7 -50.9 43.6 24.1 -10.7 15.6 -32.7 44.3 -46.4				
	-33.9 32.5 -42.2 -23.1 43.3 20.9 38.6 -44.1 -52.3 -45.8 21.0				
	-45.0 1.5 -1.8 -37.6 39.6 45.1 -48.9 -43.6 -23.9 31.5 36.1				
	16.1 34.9 -53.6 43.2 -41.8 -45.9 -43.5				

Spectroscopic quadrupole moments Q_2^{sp} (in efm^2) for the calculated 1^+ states of the $^{72}\rm{Br}$ nucleus (ms3).

$$
\frac{1}{T_{1/2}} = \frac{g_A^2}{D} \sum_i f(Z, E_i) |\langle 1_i^+ || \beta^+ || 0^+ \rangle|^2
$$

 $D = 6146 s$ $g_A = 1.26$

 $T_{1/2}^{exp} = 17.1(2)$ s

 $T_{1/2}$ ^(gs) = 20.8 s

 $T_{1/2}$ (first-excited 0⁺) = 17.3 s

Summary and outlook

• **the Gamow-Teller** β **decay of 74Kr was investigated for the first time within shape-coexistence and –mixing in both parent and daughter nucleus the complex Excited Vampir variational approach, describing consistently the**

• **the first results concerning the Gamow-Teller strength distribution as well as the accumulated strength for the ground state, the first-excited 0+ and the yrast 2+ of 72Kr are obtained in a self-consistent approach. A good agreement with available data is revealed**

• **the uncertainties in the effective interaction require systematic investigations**

In collaboration with:

K. W. Schmid, Amand Faessler

Tuebingen University, Germany

O. Radu

National Institute for Physics and Nuclear Engineering, Bucharest, Romania