SELF-CONSISTENT APPROACH TO THE

GAMOW-TELLER BETA DECAY OF PROTON-RICH KR ISOTOPES

A. PETROVICI

Institute for Physics and Nuclear Engineering, Bucharest, Romania Institut für Theoretische Physik, Universität Tübingen, Germany • $^{74}\text{Kr} \rightarrow ^{74}\text{Br}$ $0^+_{ground-state} \rightarrow 1^+$

- $^{72}\mathrm{Kr} \rightarrow ^{72}\mathrm{Br}$
 - $\begin{array}{ll} 0^+_{ground-state} & \to 1^+ \\ 0^+_{first-excited} & \to 1^+ \\ 2^+_{yrast} & \to 1^+ \end{array}$

within

the *complex* **EXCITED VAMPIR** variational approach

VAMPIR - Variational approaches to the nuclear many-body problem

Framework

- the model space is defined by a finite dimensional set of spherical single particle states
- the effective many-body Hamiltonian is represented as a sum of one- and two-body terms
- the basic building blocks are Hartree-Fock-Bogoliubov (HFB) vacua
- the HFB transformations are essentially *complex* and allow for proton-neutron, parity and angular momentum mixing being only restricted by time-reversal and axial symmetry
- the broken symmetries (s=N, Z, I, π) are restored before variation by projection techniques

Variational approaches to the nuclear many-body problem with symmetry projection before variation

Model space

$$\begin{split} \{ |i\rangle &\equiv |\tau n l j m \rangle \} \\ \{ c_i^{\dagger}, c_k^{\dagger}, \ldots \}_M \\ \{ c_i, c_k, \ldots \}_M \end{split}$$

Effective many-body Hamiltonian

$$\hat{H} = \sum_{i=1}^{M} \varepsilon(i) \mathbf{c}_{i}^{\dagger} \mathbf{c}_{i} + \frac{1}{4} \sum_{i,k,r,s=1}^{M} v(ikrs) \mathbf{c}_{i}^{\dagger} \mathbf{c}_{k}^{\dagger} \mathbf{c}_{s} \mathbf{c}_{r}$$

Hartree-Fock-Bogoliubov transformation

$$\begin{pmatrix} a^{\dagger} \\ a \end{pmatrix} = F\begin{pmatrix} c^{\dagger} \\ c \end{pmatrix} = \begin{pmatrix} A^{T} & B^{T} \\ B^{\dagger} & A^{\dagger} \end{pmatrix} \begin{pmatrix} c^{\dagger} \\ c \end{pmatrix}$$

Quasi-particle vacuum

$$|F\rangle = \prod_{\alpha=1}^{M'} a_{\alpha}|0\rangle \quad \text{with} \quad \left\{ \begin{array}{cc} a_{\alpha}|0\rangle \neq 0 & \text{for } \alpha = 1, ..., M' \leq M \\ a_{\alpha}|0\rangle = 0 & \text{else} \end{array} \right\}$$

 $\hat{\Theta}_{MK}^{s} \equiv \hat{P}(I; MK)\hat{Q}(N)\hat{Q}(Z)\hat{p}(\pi)$ $\hat{p}(\pi) \equiv \frac{1}{2}\left(1 + \pi\hat{\Pi}\right)$

 $\hat{Q}(N_{\tau}) \equiv \frac{1}{2\pi} \int_{0}^{2\pi} d\phi_{\tau} \exp\{i\phi_{\tau}(N_{\tau} - \hat{N}_{\tau})\})$

 $\hat{P}(I;MK) \equiv \frac{2I+1}{8\pi^2} \int d\Omega D_{MK}^{I} (\Omega) \hat{R}(\Omega)$

$$|\psi(F^s); sM\rangle = \sum_{K=-I}^{+I} \hat{\Theta}^s_{MK} |F^s\rangle f^s_K$$

$$|\psi(F^s); sM\rangle = \frac{\hat{\Theta}^s_{M0}|F^s\rangle}{\sqrt{\langle F^s|\hat{\Theta}^s_{00}|F^s\rangle}}$$

$$|F\rangle = \{\prod_{m=1/2}^{m_{max}} (\prod_{\alpha}^{(m)} [u_{\alpha} + v_{\alpha} b_{\alpha}^{\dagger} b_{\bar{\alpha}}^{\dagger}])\}|0\rangle$$

$$b^{\dagger}_{lpha}\,=\,\sum\limits_{ au_{i},n_{i},l_{i},j_{i}}^{(m_{lpha}>0)}D^{*}_{ilpha}\,c^{\dagger}_{i}$$

$$\boldsymbol{b}_{\alpha}^{\dagger}\boldsymbol{b}_{\bar{\alpha}}^{\dagger} = \sum_{\tau=p,n} \sum_{i<\mathbf{k}}^{(m_{\alpha}\tau)} \left[1 + \delta(\mathbf{i},\underline{\mathbf{k}})\right]^{-1} \sum_{I} (-)^{j_{k}+l_{k}-m_{\alpha}} (j_{i}j_{k}I|m_{\alpha}-m_{\alpha}0)$$

 $\times \{ [Re(D_{i_{\tau}\alpha}^* D_{k_{\tau}\alpha})[1+(-)^{l_i+l_k+I}] + iIm(D_{i_{\tau}\alpha}^* D_{k_{\tau}\alpha})[1-(-)^{l_i+l_k+I}]][c_{\underline{i}}^{\dagger}c_{\underline{k}}^{\dagger}]_{12\tau}^{I_0} \}$

$$+\sum_{\underline{i}}^{(m_{\alpha}p)}\sum_{\underline{k}}^{(m_{\alpha}n)}\sum_{IT}(1/21/2T|-1/21/20)(-)^{j_{k}+l_{k}-m_{\alpha}}(j_{i}j_{k}I|m_{\alpha}-m_{\alpha}0)$$

 $\times \{ [Re(D_{i_{p}\alpha}^{*}D_{k_{n}\alpha})[1+(-)^{l_{i}+l_{k}+I}] + iIm(D_{i_{p}\alpha}^{*}D_{k_{n}\alpha})[1-(-)^{l_{i}+l_{k}+I}]][c_{\underline{i}}^{\dagger}c_{\underline{k}}^{\dagger}]_{T0}^{I_{0}} \}$

$$\begin{bmatrix} c_{\underline{i}}^{\dagger} c_{\underline{k}}^{\dagger} \end{bmatrix}_{TT_{z}}^{IM} \equiv \sum_{m_{i}m_{k}\tau_{i}\tau_{k}} (j_{i}j_{k}I|m_{i}m_{k}M) (\frac{1}{2}\frac{1}{2}T|\tau_{i}\tau_{k}T_{z}) c_{i}^{\dagger} c_{k}^{\dagger}$$

Variational procedures

complex Vampir approach

$$E^{s}[F_{1}^{s}] = \frac{\langle F_{1}^{s} | \hat{H} \hat{\Theta}_{00}^{s} | F_{1}^{s} \rangle}{\langle F_{1}^{s} | \hat{\Theta}_{00}^{s} | F_{1}^{s} \rangle}$$

$$|\psi(F_1^s); sM\rangle = \frac{\hat{\Theta}_{M0}^s |F_1^s\rangle}{\sqrt{\langle F_1^s | \hat{\Theta}_{00}^s |F_1^s \rangle}}$$

complex Excited Vampir approach

$$\begin{split} |\psi(F_2^s); sM\rangle &= \hat{\Theta}_{M0}^s \left\{ |F_1^s\rangle \alpha_1^2 + |F_2^s\rangle \alpha_2^2 \right\} \\ |\psi(F_i^s); sM\rangle &= \hat{\Theta}_{M0}^s \sum_{j=1}^i |F_j^s\rangle \alpha_j^i \quad \text{for} \quad i = 1, ..., n \\ |\Psi_{\alpha}^{(n)}; sM\rangle &= \sum_{i=1}^n |\psi_i; sM\rangle f_{i\alpha}^{(n)}, \quad \alpha = 1, ..., n \end{split}$$

$$(H - E^{(n)}N)f^n = 0$$

$$(f^{(n)})^+ N f^{(n)} = 1$$

A = 70 - 90 mass region

 40 Ca - core

model space (π, ν): $1p_{1/2} \ 1p_{3/2} \ 0f_{5/2} \ 0f_{7/2} \ 1d_{5/2} \ 0g_{9/2}$ renormalized G-matrix (OBEP, Bonn A)

- short range Gaussians in the nn, pp, np channels
- monopole shifts:

$$\begin{split} &\langle 0g_{9/2}0f;T=0|\hat{G}|0g_{9/2}0f;T=0\rangle \\ &\langle 1p1d_{5/2};T=0|\hat{G}|1p1d_{5/2};T=0\rangle \end{split}$$

 $\begin{array}{ccc} f_{5/2} & f_{7/2} \\ (ms1): -0.590 \ MeV / -0.060 \ MeV \\ (ms2): -0.500 \ MeV / -0.150 \ MeV \\ (ms3): -0.400 \ MeV / -0.250 \ MeV \end{array}$

Gamow-Teller β Decay of ⁷⁴Kr

CERN/ISOLDE E. Poirier et al., Phys.Rev. C69(2004)034307

 $Q_{EC} = 3.140 \pm 0.060 \, MeV$

 $\begin{array}{rcc} ^{74}\mathrm{Kr} & \rightarrow & ^{74}\mathrm{Br} \\ & 0^{+}_{ground-state} & \rightarrow 1^{+} \end{array}$

The amount of mixing for the ground-state of 74 Kr.

	o-mixing	p-mixing
ms1	56(2)(1)(1)%	35(3)(1)(1)%
ms2	39(2)(1)(1)%	51(3)(1)(1)%
ms3	28(1)(1)%	65(3)(2)%

The amount of mixing for the lowest calculated 1^+ states of ^{74}Br (msl).

o-mixing /p-mixing

94(3)(3)% 61(35)(2)(1)%89(3)(2)(2)(1)(1)(1)%44(28)(19)(4)(1)(1)(1)%97% 69(19)(5)(2)(2)%70(7)(3)(2)(1)(1)(1)%4(3)(2)(2)%7(1)(1)% 71(8)(5)(1)(1)(1)(1)(1)%57(3)(2)(1)(1)(1)(1)%13(5)(4)(2)(2)(1)(1)(1)(1)%26(1)(1)% 36(20)(4)(3)(2)(1)(1)(1)%50(16)(9)(5)(3)(3)(2)(2)(2)(1)(1)(1)% 2(2)%33(21)(12)(8)(5)(5)(3)(3)(2)(2)(1)(1)% 1(1)(1)%

o-mixing /p-mixing	o-mixing /p-mixing					
$\begin{array}{c} 94(3)(3)\%\\ 61(35)(2)(1)\%\\ 89(3)(2)(2)(1)(1)(1)\%\\ 44(28)(19)(4)(1)(1)(1)\%\\ 97\%\\ 69(19)(5)(2)(2)\%\\ 70(7)(3)(2)(1)(1)(1)\%(4(3)(2)(2)\%\\ 9(3)\%\ 25(24)(11)(10)(3)(2)(2)(1)(1)(1)(1)(1)(1)\%\\ 7(1)(1)\%\ 71(8)(5)(1)(1)(1)(1)(1)\%\\ 43(12)(9)(7)(7)(3)(3)(2)(2)(2)(1)(1)(1)(1)(1)(1)\%\\ 57(3)(2)(1)(1)(1)(1)\%\ 55(4)(2)(2)(1)(1)(1)(1)(1)\%\\ 26(1)(1)\%\ 36(20)(4)(3)(2)(1)(1)(1)(1)(1)(1)(1)(1)\%\\ 21(21)(14)(14)(6)(5)(4)(2)(2)(1)(1)(1)(1)(1)(1)(1)(1)\%\\ 1\%26(20)(8)(7)(6)(5)(4)(3)(2)(2)(2)(1)(1)(1)(1)(1)(1)(1)(1)\%\\ 1(1)\%\ 36(14)(12)(6)(6)(5)(4)(2)(2)(1)(1)(1)(1)(1)(1)(1)(1)\%\\ 10(2)(2)(1)(1)\%\ 27(13)(11)(9)(3)(3)(2)(2)(2)(2)(1)(1)(1)(1)(1)(1)(1)(1)\%\\ 50(16)(9)(5)(3)(3)(2)(2)(2)(1)(1)(1)(1)(1)(1)\%\\ 10(2)(2)(1)(1)\%\ 21(2)(8)(5)(5)(3)(3)(2)(2)(2)(1)(1)(1)(1)(1)\%\\ 1(1)\%\ 34(18)(13)(9)(4)(3)(2)(2)(2)(2)(1)(1)(1)(1)(1)(1)(1)\%\\ \end{array}$	$\begin{array}{c} 94(3)(1)\%\\ 61(35)(2)\%\\ 46(29)(17)(3)(1)(1)\%\\ 91(2)(2)(1)(1)(1)(1)\%\\ 97(1)\%\\ 40(37)(14)(4)(1)\%\\ 69(28)(1)(1)\%\\ 54(20)(11)(6)(1)(1)\%2\%\\ 46(27)(9)(6)(2)(2)(1)(1)(1)(1)\%\\ 55\% 65(16)(4)(1)(1)(1)\%\\ 55\% 65(16)(4)(1)(1)(1)(1)\%\\ 49(8)(8)(5)(5)(4)(4)(3)(2)(2)(2)(1)(1)(1)(1)(1)\%\\ 1\% 61(19)(7)(2)(1)(1)(1)(1)(1)(1)(1)\%\\ 57(11)(8)(5)(3)(3)(1)(1)(1)(1)(1)(1)(1)\%\\ 57(11)(8)(5)(3)(3)(1)(1)(1)(1)(1)(1)(1)\%\\ 78(6)(2)(1)(1)(1)(1)(1)(1)(1)(1)\%\\ 33(33(23)(10)(7)(6)(5)(3)(2)(2)(1)(1)\%\\ 31(10)(10)(6)(6)(5)(3)(3)(2)(2)(2)(2)(1)(1)(1)(1)(1)(1)(1)(1)(1)\%\\ (1)1\% 25(19)(14)(7)(6)(5)(4)(4)(2)(2)(2)(2)(1)(1)\%\\ 28(19)(13)(10)(7)(4)(3)(1)(1)(1)(1)(1)(1)(1)(1)\%\\ 23(16)(14)(6)(5)(4)(2)(1)(1)(1)(1)(1)(1)(1)\%\\ (1)1\% 28(13)(12)(10)(6)(5)(3)(3)(2)(2)(1)(1)(1)(1)(1)(1)\%\\ (1)1\% 28(13)(12)(10)(6)(5)(3)(3)(2)(2)(2)(1)(1)(1)(1)(1)(1)\%\\ (1)1\% 28(13)(12)(10)(6)(5)(3)(3)(2)(2)(2)(1)(1)(1)(1)(1)\%\\ (1)1\% 28(13)(12)(10)(6)(5)(3)(3)(3)(2)(1)(1)(1)(1)(1)(1)\%\\ (1)1\% 28(13)(12)(10)(6)(5)(3)(3)(3)(2)(2)(1)(1)(1)(1)(1)\%\\ 51(16)(11)(3)(3)(2)(2)(2)(1)(1)(1)(1)\%\\ 25(19)(11)(10)(8)(8)(3)(3)(2)(2)(1)(1)(1)(1)(5)\%\\ \end{array}$					

The amount of mixing for the lowest calculated 1^+ states of ^{74}Br (ms1).

The amount of mixing for the lowest calculated 1^+ states of ^{74}Br (ms2).

o-mixing /p-mixing	o-mixing /p-mixing
94(3)(3)%	61(35)(2)%
61(35)(2)(1)%	94(4)(1)%
89(3)(2)(2)(1)(1)(1)%	48(31)(15)(2)(2)(1)%
44(28)(19)(4)(1)(1)(1)%	92(3)(1)(1)(1)(1)(1)%
97%	94(2)(2)%
69(19)(5)(2)(2)%	76(16)(3)(2)(1)%
70(7)(3)(2)(1)(1)(1)%4(3)(2)(2)%	2(2)%63(10)(10)(3)(3)(1)(1)(1)(1)(1)(1)%
9(3)% 25(24)(11)(10)(3)(2)(2)(1)(1)(1)(1)(1)(1)(1)(1)%	$45(42)(5)(1)\% \ 2(1)(1)\%$
7(1)(1)% $71(8)(5)(1)(1)(1)(1)(1)%$	2(1)(1)% 64(15)(3)(2)(2)(2)(1)(1)(1)(1)(1)(1)(1)
43(12)(9)(7)(7)(3)(3)(2)(2)(2)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)	45(19)(15)(13)(1)(1)(1)%1%
57(3)(2)(1)(1)(1)(1)%13(5)(4)(2)(2)(1)(1)(1)(1)%	67(21)(3)(2)(2)(1)(1)(1)%
26(1)(1)% 36(20)(4)(3)(2)(1)(1)(1)%	2% 54(16)(12)(2)(2)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)
21(21)(14)(14)(6)(5)(4)(2)(2)(1)(1)(1)(1)(1)(1)(1)%	53(12)(5)(4)(4)(3)(2)(2)(2)(2)(2)(2)(2)(1)(1)(1)(1)(1)%
1%26(20)(8)(7)(6)(5)(4)(3)(2)(2)(2)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)	41(26)(7)(7)(3)(2)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)
2(1)(1)(1)% $36(14)(12)(6)(6)(5)(4)(2)(2)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)$	32(26)(16)(5)(5)(3)(2)(2)(2)(1)(1)(1)%
10(2)(2)(1)(1)% 27(13)(11)(9)(3)(3)(2)(2)(2)(2)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)	20(19)(10)(8)(7)(6)(4)(4)(3)(2)(2)(2)(2)(2)(2)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)
50(16)(9)(5)(3)(3)(2)(2)(2)(1)(1)(1)% 2(2)%	52(24)(11)(4)(1)(1)(1)(1)%1%
33(21)(12)(8)(5)(5)(3)(3)(2)(2)(1)(1)% 1(1)(1)%	36(10)(8)% $16(13)(3)(2)(2)(2)(1)(1)(1)%$
1(1)%34(18)(13)(9)(4)(3)(2)(2)(2)(2)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)	31(18)(9)(8)(6)(6)(3)(2)(2)(2)(2)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)
	41(11)(8)(7)(6)(5)(4)(3)(2)(2)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)
	1%33(13)(7)(7)(6)(5)(4)(4)(4)(3)(2)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)
	61(7)(7)(6)(3)(2)(1)(1)(1)(1)(1)% 2(1)(1)(1)(1)%
	42(9)(7)(4)(2)(2)(1)(1)(1)% 4(4)(3)(2)(2)(2)(1)(1)(1)(1)(1)(1)(1)(1)(1)%
	25(20)(13)(12)(8)(5)(3)(3)(2)(1)(1)(1)(1)(1)(3)(1)(1)%
	57(12)(10)(2)(2)(1)% 11%
	3(1)% 25(19)(14)(6)(6)(5)(4)(3)(2)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)
	1(1)(1)(1)% 38(9)(8)(7)(5)(5)(5)(4)(2)(2)(2)(1)(1)(1)(1)(1)(1)(1)%
	1%23(16)(9)(7)(5)(4)(4)(4)(3)(3)(2)(2)(2)(2)(2)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)

The amount of mixing for the lowest calculated 1^+ states of ^{74}Br (ms1).

The amount of mixing for the lowest calculated 1^+ states of ^{74}Br (ms3).

Spectroscopic quadrupole moments Q_2^{sp} (in efm^2) for the lowest calculated 1⁺ states of the ⁷⁴Br nucleus (ms1).

 1_I^+ 1_{II}^+ 1_{III}^+

48.6	-49.4	46.6	-46.7	-47.7	45.1	45.3	47.7	-56.6	33.2	-38.2
-40.1	42.0	-50.7	-58.1	-52.4	-51.0	16.7	-22.0	-50.9	-50.5	-48.5
-43.4	37.2	45.0	-40.3	-34.3	26.2	39.2	41.0	-44.5	-49.0	40.9
-51.3	-39.8	-42.3	14.4	18.4	37.9	41.0	-37.4	15.0	-40.4	29.3
-39.3	41.5	-54.2	-52.3	38.4	-47.6	-45.3	-8.4	-1.4	-41.4	-48.2
40.3	48.7	-40.6	43.1	-24.0	46.0	-45.3	-61.4	-54.8	-55.0	-16.1

1_{I}^{+}	1_{II}^+	1^+_{III}									1_I^+	1_{II}^+	1^+_{III}								
48.6	-49.4	46.6	-46.7	-47.7	45.1	45.3	47.7	-56.6	33.2	-38.2	48.5	-49.0	-47.6	47.0	-48.5	48.2	44.1	45.4	-51.7	-53.1	42.5
-40.1	42.0	-50.7	-58.1	-52.4	-51.0	16.7	-22.0	-50.9	-50.5	-48.5	-43.3	-50.8	40.0	-50.2	-52.5	-55.0	-50.8	-50.5	42.4	-49.1	-46.1
-43.4	37.2	45.0	-40.3	-34.3	26.2	39.2	41.0	-44.5	-49.0	40.9	47.6	-44.1	-44.2	-43.7	40.9	35.6	34.3	-31.5	-47.3	-45.3	39.5
-51.3	-39.8	-42.3	14.4	18.4	37.9	41.0	-37.4	15.0	-40.4	29.3	-51.4	42.4	-53.4	-47.3	-44.0	35.9	-46.5	39.9	-44.1	-59.6	-48.5
-39.3	41.5	-54.2	-52.3	38.4	-47.6	-45.3	-8.4	-1.4	-41.4	-48.2	33.8	38.4	-44.4	40.8	-43.4	7.6	-3.8	33.0	-51.7	-46.1	-45.2
40.3	48.7	-40.6	43.1	-24.0	46.0	-45.3	-61.4	-54.8	-55.0	-16.1	33.3	-34.7	-14.7	5.6	44.4	14.6	-12.2	-62.2	44.9	-44.2	-52.2
											40.3	-55.1	-52.2	46.6	33.3	-15.5					

Spectroscopic quadrupole moments Q_2^{sp} (in efm^2) for the lowest calculated 1⁺ states of the ⁷⁴Br nucleus (ms1).

Spectroscopic quadrupole moments Q_2^{sp} (in efm^2) for the lowest calculated 1⁺ states of the ⁷⁴Br nucleus (ms2).

Spectroscopic quadrupole moments Q_2^{sp} (in efm^2) for the lowest calculated 1 ⁺	4
states of the 74 Br nucleus (ms1).	

 1_I^+ 1_{II}^+ 1_{III}^+

48.6	-49.4	46.6	-46.7	-47.7	45.1	45.3	47.7	-56.6	33.2	-38.2
-40.1	42.0	-50.7	-58.1	-52.4	-51.0	16.7	-22.0	-50.9	-50.5	-48.5
-43.4	37.2	45.0	-40.3	-34.3	26.2	39.2	41.0	-44.5	-49.0	40.9
-51.3	-39.8	-42.3	14.4	18.4	37.9	41.0	-37.4	15.0	-40.4	29.3
-39.3	41.5	-54.2	-52.3	38.4	-47.6	-45.3	-8.4	-1.4	-41.4	-48.2
40.3	48.7	-40.6	43.1	-24.0	46.0	-45.3	-61.4	-54.8	-55.0	-16.1

Spectroscopic quadrupole moments Q_2^{sp} (in efm^2) for the lowest calculated 1⁺ states of the ⁷⁴Br nucleus (ms3).

 1_{I}^{+}

 1_{II}^+

 1_{III}^+

-49.5 47.8 -48.0 40.9 -51.3 45.5 -49.8 -49.3 48.4 -48.7 47.1 -51.3 45.0 -50.1 -51.4 -44.9 38.1 -53.7 -49.6 -50.9 44.76.6 -3.4 -47.3 -52.1 -46.2 -52.0 4.9 -11.9 -43.4 -45.4 38.9 -27.516.7 39.2 -44.9 30.9 -42.0 -42.5 -45.3 -52.9 -44.2 -27.3 28.1 -4.7 -45.8 -37.3 -45.4 32.0 39.6 -40.3 -41.4 30.4 -0.139.4 -43.5 -24.2 20.6 41.9 $13.0 - 16.0 \quad 38.4 \quad -34.4 \quad 25.8 \quad -55.7 \quad -15.5$ 14.5 -52.2 40.9 35.2 29.1 2.7 -15.9 4.7

Excitation energy (MeV)

Gamow-Teller β Decay of ⁷²Kr

CERN/ISOLDE I. Piqueras, Eur. Phys. J. A16(2003)313

 $^{72}\mathrm{Kr} \rightarrow ^{72}\mathrm{Br}$

 $Q_{EC} = 5.040 \pm 0.375 \, MeV$

 $0^+_{ground-state} \rightarrow 1^+$

 $0^+_{first-excited} \rightarrow 1^+ \qquad E_{\theta_2^+} = 0.671 \, MeV$

 $2_{yrast}^+ \longrightarrow 1^+ E_{2_1^+} = 0.710 \, MeV$

The amount of mixing for the calculated states of the 72 Kr nucleus (ms3).

$I[\hbar]$	o-mixing	p-mixing
0_{1}^{+}	64(2)%	29(2)(1)(1)%
0_{2}^{+}	35(2)%	57(3)(1)(1)%
2_{1}^{+}	92(1)%	6%

The amount of mixing for the lowest calculated 1^+ states of 72 Br (ms3) with significant B(GT).

o-mixing /p-mixing

85(12)% 81(11)(4)% 87(2)(2)(2)(2)(1)(1)%81(4)(4)(2)(2)(1)(1)(1)%78(16)(2)(1)%78(4)(3)(3)(2)(2)(1)(1)(1)(1)%49(24)(8)(6)(5)(2)(1)(1)(1)%32(31)(15)(9)(3)(2)(1)(1)(1)(1)%79(15)(1)%31(2)(2)(1)%20(16)(13)(2)(1)(1)(1)(1)(1)(1)(1)(1)%50(5)(1)(1)% 12(10)(8)(2)(1)(1)(1)(1)(1)%2% 68(10)(5)(3)(3)(2)(1)(1)(1)%36(24)(7)(6)(5)(4)(3)(3)(2)(1)(1)(1)%72(12)(4)(2)(1)(1)(1)(1)(1)%1%62(17)(8)(4)(2)% 1%56(15)(11)(2)(2)(1)(1)(1)(1)(1)% 1(1)%

100 - C										
1_I^+	1^+_{II}	1^+_{III}								
5 H										
48.5	48.7	-49.9	-49.4	46.5	45.5	-51.6	-50.1	-49.5	46.8	-11.5
8.7	-46.5	-48.7	45.4	44.0	-53.5	-39.1	27.0	41.0	-48.9	-46.5
-49.2	42.5	-39.8	35.8	-46.3	41.8	-45.0	-43.5	42.4	-46.9	-46.6
-26.3	10.7	-37.3	37.4	-36.5	35.5	-46.6	47.6	-48.8	-40.0	-1.2
-24.0	-35.8	37.1	-47.7	-53.2	-42.8	27.0	-7.2	10.2	-45.8	-32.8
30.8	40.7	-24.2	21.8	-23.9	-41.8	15.0	-13.5	-38.3	39.6	11.8
36.4	-47.6	-24.7	21.8	41.7	37.4	29.5	12.1	-20.2	-23.6	-39.3
-33.2	37.6	27.7	-50.9	43.6	24.1	-10.7	15.6	-32.7	44.3	-46.4
-33.9	32.5	-42.2	-23.1	43.3	20.9	38.6	-44.1	-52.3	-45.8	21.0
-45.0	1.5	-1.8	-37.6	39.6	45.1	-48.9	-43.6	-23.9	31.5	36.1
16.1	34.9	-53.6	43.2	-41.8	-45.9	-43.5				

Spectroscopic quadrupole moments Q_2^{sp} (in efm^2) for the calculated 1⁺ states of the ⁷²Br nucleus (ms3).

$$\frac{1}{T_{1/2}} = \frac{g_A^2}{D} \sum_i f(Z, E_i) |\langle 1_i^+ || \beta^+ || 0^+ \rangle |^2$$

D = 6146 s $g_A = 1.26$

 $T_{1/2}^{exp} = 17.1(2) s$

 $T_{1/2}^{(gs)} = 20.8 s$

 $T_{1/2}^{(\text{first-excited 0}^+)} = 17.3 \text{ s}$

Summary and outlook

• the Gamow-Teller β decay of ⁷⁴Kr was investigated for the first time within the complex Excited Vampir variational approach, describing consistently the shape-coexistence and –mixing in both parent and daughter nucleus

• the first results concerning the Gamow-Teller strength distribution as well as the accumulated strength for the ground state, the first-excited 0⁺ and the yrast 2⁺ of ⁷²Kr are obtained in a self-consistent approach. A good agreement with available data is revealed

• the uncertainties in the effective interaction require systematic investigations

In collaboration with:

K. W. Schmid, Amand Faessler

Tuebingen University, Germany

O. Radu

National Institute for Physics and Nuclear Engineering, Bucharest, Romania