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Overview

Coupled-cluster theory

Benchmark calculations
[Hagen, Dean, Hjorth-densen, TP, Schwenk, arxiv:0707.1516 - Phys. Rev. C]

Correct scaling with system size — size (extensivity) matters

[Dean, Hagen, Hjorth-densen, TP, Schwenk, arxiv:0709.0449]

Three-nucleon forces

[Hagen, TP, Dean, Schwenk, Nogga, Wloch, Piecuch, Phys. Rev. C 76 (2007) 034302]

Weakly bound and unstable nuclei — ab initio calculation of life times
[Hagen, Dean, Hjorth-densen, TP, nucl-th/0610072 - Phys. Lett. B]



Coupled-cluster theory (CCSD)
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Correlations are exponentiated 1p-1h and 2p-2h excitations. Part of np-nh
excitations included!

a,b,...

Coupled cluster equations E = (®|H|®) Alternative view: CCSD generates
0 = (®YH|®) | similarity transformed Hamiltonian with
0 = <¢%@|m¢> no 1p-1h and no 2p-2h excitations.
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Coupled-cluster theory meets benchmarks for 3H and 4He
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Interaction: V., with A=1.9 fm-! from Argonne V18

Exact results: Faddeev and Faddeev-Yakubowsky calculations

Main result; benchmarks are met.




Convergence and hw-dependence for *He
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Interaction: V,,,, With A=1.9 fm-1 from
Argonne V18 (no three-body forces)

Model space: about 1000 single-
particle orbitals

Main result: accuracy estimate about 1%
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Coupled-cluster results for 49°Ca with V,,,, .,
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Accuracy estimate: 1% level.
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40Ca in particle-hole truncated no-core shell model

2L i
= i ]
o 24+t 4
= _
R o6t .

| “He

28l 70 =20Mev

-60 (®) 1
% -80 -
=
83

-100 + 160y .
Q= 20MeV
_120 C1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 17
0 2 4 6 8 10 12 14 16 18 20
NmﬂX

FIG. 3 (color online). Convergence of the ground-state energy
for “He (a) and '°O (b) versus N,,, obtained using Vycom-
Shown are three data sets corresponding to model spaces with up
to 2p2h (@), 3p3h (®), and 4 p4h states (B), respectively. Black
crosses (+) indicate the results of full NCSM calculations. Lines
to guide the eye.

[Roth and Navratil, Phys. Rev. Lett. 99 (2007) 092501]
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FIG. 4: (color online) Convergence of the ground-state energy of
10Ca as function of model-space size Nuax for i) = 17MeV
(lower curves, left-hand axis) and 20 MeV (upper curves, right-hand
axis) using the Vycowm interaction. Symbols as described in Fig. 3.
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FIG. 5 (color online). Ground-state energy of '°0 (a) and *°Ca
(b) as function of the harmonic-oscillator frequency 7€} for
different model-space sizes up to N, = 16 obtained with the
Viewr interaction. For 'O up to 4p4h configurations are in-

cluded, for 4°Ca up to 3p3h. Crosses indicate the results of full
NCSM calculations.

Convergence with respect to particle-hole truncation?



Which result is more accurate?

1. The case has no merit. (Neither approach agrees with the experimental
value.)

160 4OCa
CCSD(T) -148.2 | -502.9
NCSM 137.8 | -461.8
(4p4h/3p3h)

2. Both approaches rest on approximations. Let's understand their quality!

Truncated NCSM Coupled-cluster approach
Model space restricted to np-nh Similarity transform with 2p-2h
excitations clusters
3p3h truncation level; 4p4h CCSD + triples correction at large

excitations only in small model space | model space

Truncation not size consistent Size extensive




Particle-hole truncation

a,b,...

Truncated No-Core Shell Model: Diagonalization of Hamiltonian matrix in
Hilbert space of Op-0h, 1p-1h, ... 3p-3h excited states



Relationship between shell model and CC amplitudes

CR-CCSD(T)

“Disconnected quadruples”

“Connected quadruples”




Quality of particle-hole truncation
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Figure 4. Gain in correlation energy for J = 0,2 and excitation energy for J=2 in %Ni as a function 70 <
of truncation level ¢ (see text). Diamonds, crosses and squares are exact results. Continuous lines are
exponential approximants.
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S, 0.022 0332 0825 0917 0.949 FIG. 3. (Color online) Performance of theories for the corre-
lation energy in small molecules. Graphed is the percentage of
CCSD —3.218 —2.048 |—1.509 | —1.202 —1.002 the full correlation energy achieved by the CI, CC, and MBPT
CR-CC(2,3) —4.355 —2.437 |—1.686 | —1.298 —1.060 theories, as a function of the level of approximation. To facili-
CR-CC(2,4) —4.253 —2.415 |—1.679 ] —1.295 —1.059 tate comparisons, the ordinate gives the size-scaling parameter
CISD —2.148 —1.652 — 7 —1.104 —0.943 of the approximation a=«,+ ay+ «a; in the computational cost
CISDT —92706 —1.946 (=1.488) —1.199 —1.004 function n*“N*¥N3i*. Shown are MBPT (solid circles), approxi-
L s - L L mations (2)—(6); CI (solid squares), approximations SD-SDTQ;
ISIISID(;I;Q 13?;; g;gg 1'902 ig;g }gg? and CC (stars), approximations SD-SDTQ. The correlation en-
u —10. —3. —1. —1. —1.

ergy is defined with respect to the Hartree-Fock energy for the

[Horoi et al, Phys. Rev. Lett. 98, 112501 (2007)] given basis set, and the full correlation energies are obtained
’ ’ from the FCI calculations quoted in Table 1.

3p-3h truncation usually not very accurate [Bartlett and Musial, Rev. Mod. Phys. 79 (2007) 291]







Size extensivity — consistent scaling with size

The binding energy of a nucleus is an extensive quantity: BE XX A

Goldstone’s linked cluster theorem (1955): Formal diagrammatic proof of
Brueckner’s conjecture that perturbation theory is size consistent. Only
linked diagrams contribute to the energy of a (closed shell) nucleus.

- Unlinked diagrams do not scale with mass number A, and the sum of all
unlinked diagrams is zero.

Theories that maintain a consistent scaling with size (“size-extensive”):
© Many-body perturbation theory

© “Exact” methods like matrix diagonalization within a full model space
© Coupled-cluster theory (CCSD, CCSDT, ...)

Theoretical approaches that are not size extensive:

® Diagonalization in a space of np-nh exitations (n < A). (CISD, CISDT...)



Size (extensivity) matters!

Only size extensive theories produce a result and an error that scale as A.
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Three-nucleon forces: Why?

* Nucleons are not point particles (i.e. not elementary).

« We neglected some internal degrees of freedom (e.g. A-resonance,
“polarization effects”, ...), and unconstrained high-momentum modes.

Example from celestial mechanics:
Earth-Moon system: point masses
and modified two-body interaction

Tidal Bulge from Moon

Earth
- -— Moon
Water

Renormalization group transformation:

Removal of “stiff” degrees of freedom
at expense of additional forces.

Other tidal effects cannot be included
in the two-body interaction! Three-body
force unavoidable for point masses.

Tidal Bulges from Moon and Sun

NMoon

\ Orbital Paths
of Earth and
Eur Moon



A theorem for three-body Hamiltonians
Polyzou and Gléckle, Few Body Systems 9, 97 (1990)

Different two-body Hamiltonians can be made to fit two-body and three-body data by

including a 3NF into one of the Hamiltonians.

Theorem. Let
H;=H,+ H +Vy and I?ij=Hi+Hj+ IT’;; (1.1)

be two-body Hamiltonians with the same binding energies and scattering matrices
for each pair of particles i and j. Assume that the two-body Hamiltonians are
asymptotically complete and that the unitary transformations relating these two-body
Hamiltonians, which necessarily exist, have bounded Cayley transforms. Then there
exists a three-body interaction, W, such that the two three-body Hamiltonians

H=H +H,+H;+ Vi, +V,5+ 15 (1.2}
and

H=H+W (1.3)
with

H=H, +H,+H;+ V,, + Vys + V3, (1.4)

have the same binding energies and scattering matrix.

Corollary. Under the assumptions of the theorem, if V4, is a three-body interaction
then there exists another three-body interaction V,, ;4 such that

H=H +H,+H;+ Vi, + Vo3 + V3 + Vya3
and
H=H1+H2+H3+l712+l723+]?31+I7“23)

have the same binding energies and scattering matrix.

forces are not needed.

three-body interactions.

two-body interaction.

Implications: (1) There are no experiments measuring only three-body binding energies and phase
shifts that can determine if there are no three-body forces in a three-body system.
The question makes no sense. The correct statement is that there may be some
systems for which it is possible to find a representation in which three-body

(2) Different off-shell extensions of two-body forces can be equivalently realized as

(4) Three-body forces cannot be determined in a manner that is independent of the




Chiral potential up to order N3LO

Feynman diagrams Phase shifts reproduced to y2/datum=1

2N Force 3N Force 4N Force About 24+ parameters
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Interaction: V,,,,. from Av18 + chiral 3NF

E(YHe) [MeV]
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As cutoff A is varied, motion
along Tjon line.

Addition of A-dependent three-
nucleon force yields agreement
with experiment.

Three-nucleon force perturbative
at cutoff A=1.9 fm1 for these
nuclei.

A. Nogga, S. K. Bogner, and A. Schwenk,

*H 1He
A [f111_1] T Viewr oterms D-term FE-term| T Viewr o-terms D-term E-term
1.0 21.06 —28.62 (.02 0.11 —1.06]38.11 —62.18 (.10 0.54 —4.87
1.3 25.71 —34.14 0.01 1.39 —1.46]150.14 —7T8.86 0.19 B.O8 —T.5
1.6 2845 —37.04 —-0.11 0.556 —0.32|57.01 —86.82 —0.14 3.61 —1.94
1.9 30.25 —38.66 —0.48 —0.50 0.90|60.84 —89.50 —1.83 —3.48 0. 68
2.5(a) 33.30 —4094 —-2.22 —-0.11 1.49167.56 —90.97 —11.06 —0.41 .62
2.5(b) 33.51 —41.29 —-2.26 —1.42 297168.03 —-92.86 —11.22 —8.67 16.45
3.0(+%) 3698 —43.91 —4.49 —-0.73 3.6T|7TE.TT —99.03 —-22.82 -—-2.63 16.95




Coupled-cluster theory with three-nucleon forces
for 4He
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FIG. 5: (Color online) CCSD results for the binding energy
of *He as a function of the oscillator spacing and for model
spaces consisting of N = 3 to N = 6 oscillator shells. The
CCSD calculations are based on low-momentum NN and 3N
interactions, where the full and dashed lines respectively de-
note the energy obtained with and without 3NFs.
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FIG. 6: (Color online) Data points: CCSD results (taken at
the Aiw minima) for the binding energy of *He with 3NFs as
a function of the number of oscillator shells. Dashed lines:
Exponential fit to the data and asymptote of the fit. Full
line: Exact result.

Two-body force: V., with A=1.9 fm-! from Argonne V18 Main result: Exact result
Three-body force: Chiral EFT at order N2LO (isospin ¥z only) | ¢losely matched!




Important (technical) detail: normal-ordered Hamiltonian

The Hamiltonian is normal-ordered w.r.t. the vacuum state |®>.

H = Zqu& aq-|— Z (pr||sr) a & aras
pqrs

= Z% + EZ ij||ig)
) 1]

+ 2 (qu + Z (pi||q7) ) {ajaq} + - Z (pq||sr){ajalards}

2] 4 pgrs

Similarly, the Hamiltonian of the 3NF becomes

. 1 . 1 e\ A
Hy = < > lijklligh) + 5 > tjpllijg{alas}  vacuum energy and density-dependent one-body terms

?'jk ijpq
1 Z (ipq|lirs){ajalasa, ) +hy . Density-dependent two-body terms
1pqrs
~ 1 .
hy = o > (pgr||stu){ajalala,aa,} Residual three-body terms
pgrstu
Note: 1. The form of the Hamiltonian is different for each nucleus under consideration.

2. Normal-ordering necessary for evaluation of similarity-transformed Hamiltonian.

3. “Density-dependend” terms are coherent sums over two- and three-body matrix elements.
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Contributions to the binding energy of 4He

e 2-body only

" u.0-body 3NF

-

“~-a l-body 3NF
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FIG. 7: (Color online) Relative contributions |AE/E| to the
binding energy of *He at the CCSD level. The different points
denote the contributions from (1) low-momentum NN inter-
actions, (2) the vacuum expectation value of the 3NF. (3) the
normal-ordered one-body Hamiltonian due to the 3NF, (4)
the normal-ordered two-body Hamiltonian due to the 3NF,
and (5) the residual 3NFs. The dotted line estimates the
corrections due to omitted three-particle three-hole clusters.

Residual 3NF can be neglected!

S
Hy = 23 (ijklligh) + 5 > _(igpllij){ajag}

igk iipg

+3 3 tipallirsafalasa,} + hs

Lpgrs

Main results:

Residual 3NF can be
neglected.

Enormous reduction of
computational effort

*“Two-body machinery” can
be applied



Déja vu

H. Kimmel, K. H. Lihrmann, J. G. Zabolitzky, P. Navratil and E. Ormand,
Phys. Rep. 36, 1 (1978) Phys.Rev. Lett. 88, 152502 (2002)

From the abstract:

“For nuclei two body forces as usual do not yield From the conclusion:

results in  agreement with experiments. The .-.utilize the interesting fgatu_re :

introduction of exchange currents into the elastic that the three-body effective interaction appears to act
electron form factor and three body forces greatly primarily as a density-dependent two-body interaction.”
improves the situation.”

Form factor for 18O within CC: AV18 + UIX

Monopole shifts from 3NF as density-dependent
NN force (Shown below: Spectrum in 22Na).

Expt. (374.5 MeV) +ro—
Expt. (750.0 MeV) ——
3745 MeV
750.0 MeV

KB

BC

usD

KB x=0.90
BC x=0.85
EXP

e
T
0

0.5

Mihaila and Heisenberg, PRL 84 (2000) 1403. A. Zuker, PRL90, 42502 (2003).




Improved CCSD(T) results for 4He: perturbative 3p-3h clusters
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FIG. 8: (Color online) CCSD(T) results for the binding en-
ergy of *He as a function of the oscillator spacing and for
model spaces consisting of N = 3 to N = 6 oscillator shells.
The contributions from 3NFs are limited to the density-
dependent zero-, one-, and two-body terms and exclude its
residual three-body terms.
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FIG. 9: (Color online) Data points: CCSD(T) results (taken
at the iw minima) for the binding energy of *He with 3NF's
as a function of the number of oscillator shells. Dashed lines:
Exponential fit to the data and asymptote of the fit. Full line:
Exact result.

Center-of-mass expectation: 20 keV



Helium isotopes:
weakly bound and unbound quantum systems

Aim: Ab-initio description of weakly bound systems and computation of life times of
particle-unstable >"He.

Basis set: Single-particle basis of bound, resonance and scattering states: Gamow shell
model - complex symmetric Hamiltonian

Two new aspects:

() o s 1. Particle-unstable nuclei ¥
E 2. Open-shell nuclei ()
. Q % Comparison with exact diagonalization
_ g Method ‘ “He °He | °He
— e
o ° 5N ] Re(k) CCSD (0SC) -6.21 -26.19 -21.53|-20.96
= +
o 78 K o CCSD (RHF) -6.10 -26.06 -21.55[-20.99
5 © 5 ° . CCSD (SC-RHF)  -6.11 -26.06 -21.55|-21.04
o Tg o CCSD(T) (0SC) -6.40 -26.30 -21.91|-22.83
capturing states G decaying sta\t\és ggzg(i) (SJ(EIPP;)HF -6.35 -26.24 -21.90-22.56
'C - -6.34 -26.24 -21.91|-22.62
N. Michel et al, PRC 67, 054311 (2003) Exact (1) ( ) 6.45 263 -291 |l.29.7
Xac -0.¢ -Z0.. = . = .

All fine, except ®He (large T corrections); <J°>=0.6
CCSDT yields <J?> =0.04




Coupled-cluster theory for weakly bound nuclei:
He-isotopes

‘He “He *He °He "He "He “He He

l7  Re[E] Im[E] Re[E] Im[E] Re[E] Im[E] Re[E] Im[E] Re[E] Im[E] Re[E] Im[E] Re[E] Im[E] Re[E] Im[E]
).56 -19.07 -0.18 -17.09 -0.25 -17.02 -0.01 -15.44 -0.28 -13.86 -0.14
).20 -23.25 -0.07 -22.22 -0.09 -23.07 -0.00 -21.58 -0.13 -20.69 0.00

)7 -24.19 -0.10 -25.44 -0.00 -24.16 -0.05 -23.67 -0.0

)8 -24.90 -0.12 -26.25 -0.00 -25.10 -0.04 -24.77 -0.0

-0.13 -26.45 -0.00 -25.34 -0.03 -25.05 -0.0

-( )0 ) ).0

-( ) ).0

s—p -4.94 -0.00 ) -
s—d -6.44 -0.00 ) -
s— f -6.82 -0.00 ) (
s—g -6.91 -0.00 -27.35 -0.00 -24.84 -0.15  -25.17 0.
00 -27.37 ) ( -
00 ) (
-0).:

s—h -6.92 -0.0(
s —i -6.92 -0.0( :
Expt. -7.72 0.00 -28.30 0.00 -27.41

).13 -26.49 -0.00 -25.38 -0.03 -25.10 -0.
).08(2) -31.41 0.00 -30.14 -0.05(3) -30.34 -0.

)9 -25.11
00 -28.83

(
(
09 -25.08
(
(

TABLE II: CCSD calculation of the *7'°He ground states with the low-momentum N®*LO nucleon-nucleon interaction for
increasing number partial waves. The energies E are given in MeV for both real and imaginary parts. Experimental data are
from Ref. [32]. Our calculated width of *“He is ~ 0.002MeV.

Interaction: V., with A=1.9 fm-! from chiral N3LO potential (no three-body forces)

low-

Main result: Converged ab-initio calculation of decay widths for unbound nuclei!



Summary

NN only:

« (Converged results for 3H, 4He, and 60.

« Almost converged results for 90Ca (1% error estimate)

« Approaches that are not size extensive problematic if size matters!
« Description of weakly bound He isotopes with Gamow states

3NFs:
« Developed CCSD for 3NF.

« Found that 0-, 1-, and 2-body parts of SNF are dominant (in *He).
« © Residual 3-body part of 3NF can be neglected.



Outlook
Densities and response to external potentials for comparison with DFT
- UNEDF
Revisit helium isotopes, study neutron-rich oxygen isotopes with 3NF

Spherical CC approach: Ca, Ni isotopes, “bare” interactions,
comparison with AFMC

- CCSD on a laptop



