Structure at and Beyond the Neutron Dripline

Collaboration LPC-CHARISSA-DEMON H AI Falou, FM Marqués, JL Lecouey, <u>NA Orr</u>, ...

Structure at and Beyond the Neutron Dripline *

Motivation

Experimental Approach

"Backgrounds"

Structure of ⁷He

N=7 : ¹⁰Li & ⁹He

Conclusions

*... "a view from the end of the beamline"

The Light Neutron-Rich Nuclei ...

... driplines and beyond experimentally accessible, extreme test of models (shell model, shell model in continuum, "ab initio", cluster, etc)

Light Unbound Neutron-Rich Systems

input for 3-body models

3-body systems \Rightarrow n-n and core-n interactions

eg. ¹¹Li : ⁹Li-n interaction \Rightarrow spectroscopy of ¹⁰Li

Light Unbound Neutron-Rich Systems

• evolution of shell structure with N/Z

... N=7 inversion

PG Hansen et al.

Light Unbound Neutron-Rich Systems

• evolution of spin-orbit interaction with N/Z

... ⁵He & ⁷He 3/2⁻ – 1/2⁻

Gamow Shell Model : N Michel et al.

Experimental Approach

... breakup or "knockout" + inflight decay

Kinematically "Complete" Measurement

DEMON 90 modules (NE213) ⇒ ToF & position

*E*_n ~ 10%

Experimental Response Function

Resolution

Efficiency

model distributions must be "filtered" through the simulation

Reactions

- (i) **1-neutron "knockout"** C(⁸He,⁶He+n)X
- (ii) 1 & 2-proton "knockout"
 C(¹¹Be,⁹Li+n)X, C(¹¹Be,⁸He+n)X

(iii) fragmentation (-xp,-xn) $C(^{11}Be,^{6}He+n)X, C(^{14}B,^{6}He+n)X, C(^{14}B,^{8}He+n)X$

Selection "Rules" - Sudden Approximation

- (i) **1-neutron knockout** \Rightarrow **neutron hole in proj. g.s. configuration** $C(^{8}\text{He},^{7}\text{He})X \rightarrow vp_{3/2}^{-1}$ [⁸He C²S ($vp_{3/2}$) ≈ 4]
- (ii) **1** & 2-proton knockout $\Rightarrow \Delta I_n = 0$ proj. valence neutron config. $C(^{11}Be, ^{10}Li)X, C(^{11}Be, ^{9}He)X \rightarrow vs_{1/2} [^{11}Be C^2S(vs_{1/2}) \approx 0.8]$
- (iii) fragmentation (-xp,-xn) \Rightarrow valence neutron config. + others $C(^{14}B,^{9}He)X \rightarrow vs_{1/2} + vp_{1/2}$

NB: for broad final states, lineshape dependent on initial state

Example : $C(^{17}C, ^{15}B+n)X$ – single-proton knockout

 $E_r = 85 \pm 15 \text{ keV}$ $\Gamma_{\rm sp}$ << 100 keV

BACKGROUND: $C(^{17}C, ^{15}B+n)X$ – single-proton knockout

... "background" ≡ non-resonant continuum

NB: uncorrelated or event-mixed distribution

BACKGROUND : $C(^{14}B, ^{6}He+n)X - fragmentation$

"background" ≡ neutrons evaporated from PLF + continuum

BACKGROUND : $C(^{8}He, ^{6}He+n)X$ – halo dissociation

"background" ≡ neutrons from sequential breakup + continuum

⁷He : C(⁸He,⁶He+n) @ 240 MeV/nucleon

g.s. $(3/2^{-}) + E_{\chi} (1/2^{-}) = 0.56 \pm 0.10$ MeV, $\Gamma = 0.75 \pm 0.08$ MeV small $3/2^{-} - 1/2^{-}$ splitting \Rightarrow significant decrease in V_{SO} [??]

LAND Collaboration, M Meister et al. PRL (2002)

⁷He : C(⁸He,⁶He+n) @ 15 MeV/nucleon

g.s. [$E_r(3/2) = 0.44 \text{ MeV}, \Gamma = 0.16 \text{ MeV}$] + background $\Rightarrow \underline{NO}$ evidence for excited state

⁷He : C(⁸He,⁶He+n) @ 15 MeV/nucleon

g.s. + E_{χ} (1/2⁻) = 0.56 MeV, Γ = 0.75 MeV + <u>NO</u> background

C(¹¹Be,⁶He+n) & (¹⁴B,⁶He+n) @ 35 MeV/nucleon

g.s. $[E_r(3/2)] = 0.44 \text{ MeV}, \Gamma = 0.16 \text{ MeV}] + background$ $<math>\Rightarrow \underline{NO}$ evidence for excited state

 $N=7 1/2^{-} - 1/2^{+}$ Level Inversion

... ¹⁰Li & ⁹He ??

PG Hansen et al.

¹⁰Li : C(¹¹Be,⁹Li+n) @ 35 MeV/nucleon

background/non-resonant continuum*

* normalised for comparison at high Ed

Scattering/Virtual s-Wave States

 $a_s = 0 \text{ fm no FSI}$; $a_s << 0 \text{ fm stronger FSI}$

JL Lecouey, thèse

Initial State Dependence of Unbound States

sudden approximation

 \Rightarrow neutron configuration of projectile preserved ($\Delta I_n = 0$)

G Bertsch et al., PRC (1998), L Chen et al. PLB (2001)

Initial State Dependence of Virtual s-States

$a_s = 0 \text{ fm no FSI}$; $a_s << 0 \text{ fm stronger FSI}$

JL Lecouey, thèse

¹⁰Li : C(¹¹Be,⁹Li+n) @ 35 MeV/nucleon

NB: p-wave resonance $E_d > \sim 0.6 \text{ MeV}$

⁹He : C(¹¹Be,⁸He+n) @ 35 MeV/nucleon

background/non-resonant continuum

⁹He : C(¹¹Be,⁸He+n) @ 35 MeV/nucleon

 $a_s = 0 \sim -3 \text{ fm} (3\sigma) + \text{non-resonant continuum}$

⁹He : C(¹⁴B,⁸He+n) @ 35 MeV/nucleon

background/non-resonant continuum

⁹He : C(¹⁴B,⁸He+n) @ 35 MeV/nucleon

 $a_s \approx 0 \text{ fm } + E_r = 1.2 \text{ MeV} (I=1) + non-resonant continuum$

Conclusions & Perspectives

- low-lying spectroscopy of light systems beyond the neutron dripline using breakup of RNB ...
- $\rightarrow {}^{7}\text{He}: \text{ no evidence for low-lying spin-orbit partner of g.s.} [{}^{6}\text{He core excitations}]$ $→ {}^{10}\text{Li}: \text{ low-lying s-wave strength } (a_{s} = -14\pm2 \text{ fm})$ $\Rightarrow N= 7 \text{ inversion confirmed}$ $[but ... \pi p_{3/2} @vs_{1/2}]$ $→ {}^{9}\text{He}: \text{ low-lying s-wave strength } (a_{s} \approx 0 \text{ fm}) + E_{x} \approx 1.2 \text{ MeV}$ (l>0) $\Rightarrow N= 7 \text{ inversion ... ??}$ $[FSI << {}^{9}\text{Li+n} ??]$
 - more realistic <u>structure</u> + <u>reaction modelling</u> needed ...
 including non-resonant continuum + other backgrounds

