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Missing Correlations!

A. Bhagwat, R. Wyss, W. Satula, J. Meng, Y. K. Gambhir,
Deficiency of Spin Orbit Interaction in Relativistic Mean Filed Theory

nucl-th/0605009；

T. Lesinski, M. Bender, K. Bennceu, T. Duguet, J. Meyer,
The tensor part of the Skyrme energy density functional.
I. Spherical nuclei.      nucl-th/0704073

... We conclude that the currently used central and 
spin-orbit parts of the Skyrme energy density functional are not flexible
enough to allow for the presence of large tensor terms.

Need of alternative studies 

1. Introduction-motivations-

as residual interactions

the need of extensions either by considering new coupling terms
like the tensor interactions

or to go beyond the Hartree approximation



Need of genuine three-nucleon force 
not only in few-nucleon systems 
but also in medium-mass nuclei

(1)few-nucleon systems, 
H. Kamada et al.,
Benchmark test calculations of a four-nucleon bound state
Phys. Rev. C64, 044001(2001) and references-therein

Lack of B.E. 

(2)S. Fujii, R. Okamoto, K. Suzuki, PRC (2004), 
Lack of B.E. of 16O, 40Ca

(3)A. Nogga, P. Navratil, B. R. Barrett, J. P. Vary,
Phy. Rev. C73, 064002(2006),  arXIV: nucl-th/0511082

7Li
(4)E. Caurier et al, 

The shell model as a unified view of nuclear structure,
Rev. Mod. Phys. 77, 428-488(2006)

(5)T. Otsuka, talk for JUSTIPEN-LACM Meeting at Oak Ridge National    
laboratory, Tennessee, USA, March 5-8, 2007.



Progress in our understanding of nuclear forces

Phenomenological three-nucleon force

Chiral Nuclear Force

As a recent review:

R. Machliedt
nucl-th/07040807

Nuclear forces from chiral effective field theory

http://www.int.washington.edu/talks/WorkShops/int_07_3/



The 2π
 

exchange part

The new terms

Notations follows the ref. J. L. Friar, D. Hueber, U. van Kolck, Phys. Rev. C59, 53(1999)

Explicit expressions for the Chiral 3NF
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Some mistakes are corrected following
A. Nogga, P. Navratil, B. R. Barrett, J. P. Vary
nucl-th/0511082v1!

A. Nogga, P. Navratil, B. R. Barrett, J. P. Vary, Phys. Rev. C73, 064002(2006)



However, the 3NF has 
not yet been completely determined!

The low-energy constants, Ci ’s, included in the 3NF at NNLO,  
are needed to be determined by structure calculations.

The famous ‘Ay puzzle’ of nucleon-deuteron scattering is not 
resolved by the 3NF at NNLO.

Thus, one important outstanding issue is the 3NF at N3LO, 
which is under construction.

R. Machleidt, arXiv:nucl-th/07040807
Nuclear forces from chiral effective field theory



Overall, the nature of the ‘real’ and ‘effective’ three-  
body forces  remains quite complicated and elusive.

Fayache, Vary, Barrett, Navratil, Aroua, nucl-th/0112066

An initio No-Core Shell Model with Many-Body Forces

Need of careful treatment of 
the ‘real’ and ‘effective’ three-body forces 



Correlation problems in UMOA

Solving of subsystem equations
in an entire many-body system

Systematically and consistently

With employing 2NF

n=2

n=2, 3
With employing 2NF+3NF



2. Short Review of UMOA with 2NF
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Second quantization form 

ui: auxiliary, but self-consistently determined potential
Medium effect

To treat short-range correlation 
of NN force
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Unitary transformation of Hamiltonian 
and its cluster expansion
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Two-body cluster terms
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Evaluation of Three-body cluster terms
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K. Suzuki and R. Okamoto, Prog. Theor. Phys.76, 127(1986)

Similarly we can evaluate four-body cluster terms.



Particle-hole transformation of transformed Hamiltonian
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Contributions to Ground-state energy and 
effective one-, two-, three-body Hamiltonians
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Contributions of 3-,4-body cluster terms 
to single particle(hole) Hamiltonian



Comparison of G-matrix, CCM and  UMOA (1)
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Comparison of G-matrix, CCM and  UMOA (2)



Relation between 
Non-unitary and unitary transformation

i -e e , e ;non-unitaryH Hω ω ω=

(2) (2) (2)†arctanh( - )S ω ω=
Relation between wave operator and correlation operator

I. Shavitt, L.T. Redman, J. Chem. Phys. 73(1980), 5711
P. Westhouse, J. Quantum Chem.20(1981), 1243.
K. Suzuki, Prog.Theor.Phys.68(1982),246

i ( 2) ( 2) ( 2)-e e , e ;unitaryS S SH H=



Decoupling equation and its general solution
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Determination of two-body correlation operator
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General solution for the wave operator

Eigen value equation for the two-body sub-system
in an entire many-body system
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Decoupling equation in two-body  subsystem
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Decoupling property of “effective two-body” interaction



Self-consistency between single-particle  potential and 
“two-body effective interaction”(two-body cluster terms)

J. da Providencia and C. M. Shakin, 
Ann. Phys.30(1964), 95.



How to choose P and Q spaces?

We should choose P and Q as spaces
which are well separated in energy

in order to make the mixing between P and Q spaces 
small as long as possible.

The one-body hamiltonian hi contains self-consistent potential ui , 
and determination of Q(u1 +u2 )Q has been considered

to be very difficult, because there is 
no prescription for calculating matrix elements of ui

between states with very high momentum.



Two-step determination of the “effective interactions”
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Second-step decoupling
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Procedure of selfconsistent calculation
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Effects of the three-body cluster terms
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In theory, unitarily transformation does not terminate 
in its expansion series.

Convergence of cluster expansion

In the actual calculations, however, 

Reducing of the dependence of the calculated results on  
of employed s.p. H.O. basis

Sizable contribution to the ground-state energy

A significant effect  in reproducing the correct nuclear size

K.Suzuki, R. Okamoto, Prog. Theor. Phys.76(1986),127-142.

almost converges

ω=
Not always so for relative single particle energies



For calculated results
see Dr. Fujii’ s talk ,
Thursday, September 27, 2007

http://www.int.washington.edu/talks/WorkShops/int_07_3/



3.Formulation of UMOA with 2NF and 3NF
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Genuine three-nucleon force(3NF)

Brief description was given in
K. Suzuki, Prog. Theor. Phys.79 (1998), 330.



Three-body subsystem Hamiltonian dressed with two-body correlations
in an entire many-body system
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Calculation of three-body correlation operator
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Transformed Hamiltonian in terms of three-body correlations 
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Decoupling equation for transformed Hamiltonian 
of three-body subsystem
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Three-body cluster terms
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from 2NF and 3NF



Effective Two-body interaction matrix element 
derived from 2NF and 3NF
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Solving of eigenvalue eq. for three-body subsystem 
in an finite many-body system
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4. Calculation procedure
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Three-nucleon problem in free space



Two-step decoupling calculation
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First step decoupling

Diagonalization of three-body subsytem Hamiltonian
in CM-intrinsic basis vector

Construction of intrinsic basis vector
in terms of Jacobi coordinate basis 

in Harmonic oscillator
and its antisymmetrization



Normalized, but non-antisymmetrized three-body state 
in angular momentum coupling 

for Harmonic oscillator basis 
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Three-body state in total system(=CM- and intrinsic system) 
with angular momentum coupling
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Construction of an intrinsic state for (totally anti- 
symmetric) three-body state in terms of Jacobi basis
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CFP in three-nucleon state in total system

The intrinsic motion is augmented by c.m. H.O. basis state, |ncm,lcm), 
which couple to a total angular momentum I MI .

){ }|
IIcm Mcm NJTin A

Analogously the Jacobi state |Ak ) are augmented by C.M. states. Note that the
c.f.p.’s are m-independent. Therefore the c.f.p.’s are identical in the total and 
intrinsic basis as
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Three-body state for total system in m-scheme coupling

12 12 12 12 12 12

12 12 12 12 12 12

12 12 12 12

12 12

12 12 12 12

| | ( ) ,

| | ( ) ( ) , ( )

| | |

( | ( ) ,

|

t

t

k

cm cm CM CM

cm cm

IMTM

I I Ik

J

kcm cm cm

MTM

t
iII Acm m Jc

A

J t J t IT ab J t c

J t J t IT ab J t c

J t J t IT IM

ab J t

n n

m

n n mc C N TM i

J t

A

JM

A JM

J t

αβγ αβ γ

αβ γ

αβ γ

αβ

=

= ⋅

=

× ⋅ × ⋅

=

∑

∑

∑

∑

A A

A

A A

N

12 12

12 12 12 12

12 12

c.Transition matr c.m. statf.ix element ep

| |

( | ( ) ,

| | |

( | ( ) ,

k

k

cm cm

cm cm cm cm cm

cm cm

cm

J

A Jk

J

kcm cm cm cm

t
iII

I

iII A

IT IM

ab J t c C N TM i

J t J t IT IM

JMm

n A n JM

JM

A ab J t

m

m

n nc mC

γ

αβγ αβ γ

× × ⋅

∴ =

× × ⋅

∑

A

A A

��	�
������	�����
A




A

A

total 

intrinsic state

,

(2 ) ( )
2 2 2

2 2

J

k k k k

t

cm

a a b b c c

cm cm

JM

n

N TM i

n
N N N

n n n

≡ +
= +
= +

+ +
+

+
+

+
+ +

���	��

A
A




A A
A N L k=1,or, 2, or, 3



Matrix element of three-nucleon force 
for total system of three-body in m-scheme coupling
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Spin-orbital part of the transformation coefficient
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Isospin part of the transformation coefficient
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Second step decoupling

Diagonalization of three-body subsytem Hamiltonian
in shell-model basis vector

Construction of intrinsic basis vector
in terms of Harmonic oscillator shell model 
and its antisymmetrization



Construction of independent antisymmetric 
and orthonormalized three-body basis vectors
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Orthonormal basis vectors
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5. Summary

1) UMOA with 2NF and 3NF can be formulated 
systematically.

2) Explicit expression for 3NF, m-scheme matrix 
elements are known in coordinate Harmonic 
oscillator representation;

Thanks for 
A. Nogga, P. Navratil, B. R. Barrett, J. P. Vary,

Phys. Rev. C73, 064002(2006)

3) Considering of approximation methods and
efficient algorithms are on-going.

Some supercomputers (@ RCNP, RIKEN) 
could be open !!



Discussions

Use of Symplectic shell-model basis might be promising
as effective (or optimal) s.p. basis 

→efficient truncation of s.p. basis ?
→reducing the magnitude of three-or-more-body 

cluster terms effects ?

→
 

check of the reliability of the usual removal of 

C.M. motion effect

→description of cluster-like excitation ?

Great thanks to  David Rowe, Jerry Draayer
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