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1. Introduction-motivations-

Missing Correlations!

A. Bhagwat, R. Wyss, W. Satula, J. Meng, Y. K. Gambhir,
Deficiency of Spin Orbit Interaction in Relativistic Mean Filed Theory
nucl-th/0605009;

the need of extensions either by considering new coupling terms
like the tensor interactions
or to go beyond the Hartree approximation

T. Lesinski, M. Bender, K. Bennceu, T. Duguet, J. Meyer,
The tensor part of the Skyrme energy density functional.
|. Spherical nuclei.  nucl-th/0704073

... We conclude that the currently used central and
spin-orbit parts of the Skyrme energy density functional are not flexible
enough to allow for the presence of large tensor terms.
as residual interactions

—> Need of alternative studies



Need of genuine three-nucleon force
not only in few-nucleon systems
but also In medium-mass nuclel

(1)few-nucleon systems,
H. Kamada et al.,
Benchmark test calculations of a four-nucleon bound state
Phys. Rev. C64, 044001(2001) and references-therein
Lack of B.E.

(2)S. Fujii, R. Okamoto, K. Suzuki, PRC (2004),
Lack of B.E. of 160, 40Ca

(3)A. Nogga, P. Navratil, B. R. Barrett, J. P. Vary,
Phy. Rev. C73, 064002(2006), arXIV: nucl-th/0511082
7L
(4)E. Caurier et al,
The shell model as a unified view of nuclear structure,
Rev. Mod. Phys. 77, 428-488(2006)

(5)T. Otsuka, talk for JUSTIPEN-LACM Meeting at Oak Ridge National
laboratory, Tennessee, USA, March 5-8, 2007.



Progress in our understanding of nuclear forces

Phenomenological three-nucleon force

ﬂ

Chiral Nuclear Force

As arecent review:

R. Machliedt
nucl-th/07040807
Nuclear forces from chiral effective field theory

http://www.int.washington.edu/talks/WorkShops/int_07_3/



Explicit expressions for the Chiral 3NF

A. Nogga, P. Navratil, B. R. Barrett, J. P. Vary, Phys. Rev. C73, 064002(2006)
Notations follows the ref. J. L. Friar, D. Hueber, U. van Kolck, Phys. Rev. C59, 53(1999)

The 2n exchange part

2 —_ - — —
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ﬁ | = the momentum of the pion exchanged between nucleons 1 and k
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Fijiﬂz(?“ﬁ[ 4 (q.q)}z el owe(q xq;)

i#]=k

FZ
The new terms —
Vl(k)ler_ Oa j Co (O'J q ) (1,1 ((—)_’i.a.)’
K i;sjz;tk[SFﬂz (F;A (qj+m) ( ]) J

Some mistakes are corrected following

\/ (K)icontact _1 Z _C (‘r--‘r ) A. Nogga, P. Navratil, B. R. Barrett, J. P. Vary
ijk 2 F4A j k)
izjzk\ Tz 4%y nucl-th/0511082v1!

A,=700MeV, g, =129, F, =92.4 MeV, m, =183.03 MeV,
the cutoff for regularization of the 3NF, A=500 MeV.



However, the 3NF has
not yet been completely determined!

The low-energy constants, C/s, included in the 3NF at NNLO,
are needed to be determined by structure calculations.

The famous ‘A, puzzle’ of nucleon-deuteron scattering is not
resolved by the 3NF at NNLO.

Thus, one important outstanding issue is the 3NF at N3LO,

which is under construction.

R. Machleidt, arXiv:nucl-th/07040807
Nuclear forces from chiral effective field theory



Overall, the nature of the ‘real’ and ‘effective’ three-
body forces remains quite complicated and elusive.

Fayache, Vary, Barrett, Navratil, Aroua, nucl-th/0112066
An initio No—Core Shell Model with Many—Body Forces

V

Need of careful treatment of
the ‘real’ and ‘effective’ three-body forces



Correlation problems in UMOA

Solving of subsystem equations

INn an entire many-body system

© ©
Systematically and consistently guo ug?go
O 03::@;___@}0 ®
With employing 2NF O (5 60 OO O
2

|

With employing 2NF+3NF



2. Short Review of UMOA with 2NF

Hamiltonian of a many nucleon system
Interacting via a nucleon-nucleon ipteraction

H= Zt +Z Z(ti+ui)+ Zvij_izui

I<]j i | i<

—Zh"' Z Zui , h=t+u

i<

V :realistic NN int. < AV8, AV18, CD-Bonn, Nijmegen, NLO,---

Coulomb int. Medium effect

u;. auxiliary,myently determined potential

Anti-hermitian two-body correlation operator

g2 — Z i [S(z)T — _8(2)] To treat short-range correlation

Second Juantization form of NN force

S(Z):(ij > (aB|S,175)clc,esc,

2 | afys



Description of correlations in similarity transformation

Schroedinger eq. for a many-body system

H‘\P0>:E0‘T0>

|To> correlated ground state

‘CDO> reference state (uncorrelated state)

Exponential ansatz

‘LPO> — eS(Z) ‘(I)O> eS(2) unltal’y N S(Z)'l‘ _ _8(2)
e He e i) 5o ¥,

=e ° He® ]|@,) = |D,)




Unitary transformation of Hamiltonian
and its cluster expansion

- _a(2) (2)
H=e" He® (S = -S@)
~(@1) ~(@2) (@O
=H +H " +H
Second quantization form
HY =Y (alh|f)clc
of
g 1Y ;
=, 0;}/5<aﬁ|V12|]/§>CCCC —§<a|ul|ﬂ>cacﬂ

2 2
~(3)_ 1 ~(2) RR 1
(3] 3 o) o3 o e

afyd

"""""""" Non-perturbative, but Correlation expansion

—_~

{——> Commutator expansion H :H+[H,S(2)] %[[H S@, S<2)]]



Two-body cluster terms

Viz =€ (R + 1, +V,,)e™ — (R + 1)

or €¥H,e% =(h+h)+Vw H,=h+h +v,

~ . Two-body subsystem Hamiltonian
U =€ (U +u,)e™ —(u, +u,) y Y

Three-body cluster terms induced by
the two-body correlations

~(2NF)

Vizz =€ S8 (h+h +h +V,+V, -l—V:,n)eS’l23
—(h +h, +h, +Viz +Vas + Va1);
[V&N ? 50asS2 }

81(22?2332"'8&3"'%1



Evaluation of Three-body cluster terms

~(2NF) — ~(v) ~(h)
Vi2z = V123 + V123,

Vi = Y V2, S+ Sal- 32, (S, S + STl + [[Ve2, S + Sl S + a1+

(123)

VN Z{ zllh +h, 8,1, S + §,1+ ¢l +h,, S, 1, S, 823"‘313]}
_E[[[hﬁ'hz 1S5 + Sl 3(2)]

(123)

K. Suzuki and R. Okamoto, Prog. Theor. Phys.76, 127(1986)

Similarly we can evaluate four-body cluster terms.



Particle-hole transformation of transformed Hamiltonian

H~ N Eo Ground-state energy
2 (alh |A)aa, -2 (@[ |B)<, bl
aff af

r
a| h S') %a;b;, + Zﬂxa'
“

h ‘ﬂ> s_b,a, Effective one-body
Hamiltonian

2 7(2) T4t
+(31) 2 (@B, |r5)alazaa;
affyo
1\2 Inth72) | .o\ o & & & IR
+H3) 2 (@B [rd") s5s58, 550,00, b,
afyo i Effective two-body
n Z <0{,B' Véﬁ) 7,f5> s;s(%a;b},byay e Hamiltonian
af'yo'
? 73) t ot o
+(3) 2 (|, | BB1) A 88, 8,8, 8,
afys Effective three-body

4. Hamiltonian



Contributions to Ground-state energy and
effective one-, two-, three-body Hamiltonians

Ground-state energy

~ 1 . 1 -
Bom Y (2105 T (a2 o 3 (haav] e )

|
A<pp 2! Apu<pp * Auv<pp

, D (v | Auve) -

4!/1W¢Spp
Effective one-body Hamiltonian .

<a|’5(1)|ﬂ>5<a\ha\ﬂ>— 2. <0"1|”712|:3’1>+§ D (aAu| By | PAn)

ASpp * Auspp

1 -
Y <05/1ﬂ‘/|01234|/8/1ﬂ‘/>i"'

B!Eyvs,op
Effective two-body interaction

(@B |16) = (ap| | 78) - T (@] 757)

" A<pr

1

+§ Z <aﬂﬂﬂ‘61234‘75/1y>¢...
- A
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Contributions of 3-,4-body cluster terms
to single particle(hole) Hamiltonian

U

|

VD | )
(b)

|

| |
-0 é’]>@m>@;

e —>  [hy+hg, S1a]

(c)

(d)




Comparison of G-matrix, CCM and

UMOA (1)

G-matrix theory CCM UMOA
Baszie Element - =}_"[+T---I+“" ,ET,H_T__1+£:{[+ R Wia=G+1/2{GH G+ GG1)
- + EEEB
- + -- =Hernmitian counter
- Pﬂ.ll—t Df F'm-
=3 of Ladders
. =G4+ G G+ G GGt ---
=(GH4-Folded diagrams
MNon-Hermitian
H L {(Hermitian if the o Heorimit:
ermitierty starting energies MNon-Henimitian ermtian
are all degenerate)
Erdependence Erdependent Frindependent Erindependent
1 d"G(e)

n

nl de"




Comparison of G-matrix, CCM and UMOA (2)

G-matrix theory CCM UMOA
Decoupling Non-decoupled Half-decoupled Decoupled
Property 'ﬁ II:I ? ! L0 _ _0
A so | AR s | AR o
Self-consistency Generally impoe=ible Poemble Poaaible
4 A A 4 » +
Qj*OCqu#D @——{)Q:mx:ﬂ O:_Q(I_x:ﬂ
Ground-state energy E= O-»O E= -0 B= O__O

{Potential energy of
a Closed-Shell Core)

+OED+---

{No other contributions)

+({Contributiona
from three-or-more
-body Cluster trems)




Relation between
Non-unitary and unitary transformation

~

H =e“He“, e”;non-unitary

I~

_a(2) (2) (2) -
H=e>"He> ,e® ;unitary

Relation between wave operator and correlation operator
S® = arctanh(w®?-®")

|. Shavitt, L.T. Redman, J. Chem. Phys. 73(1980), 5711
P. Westhouse, J. Quantum Chem.20(1981), 1243.
K. Suzuki, Prog.Theor.Phys.68(1982),246



Decoupling equation and its general solution

) =e”|g) k=12d
o =QuwP — @’ =0

Q-e“He”-P=0,H =H, +V,H, = PH,P+QH,Q
— QVP + QHQw - @PHP — wPVQw =0

w:kZd;Q“//kX%k‘P



Matrix elements of U = eS

U=01+0-0")1+oo"+o o)™
1
a)Ta)‘ak>:yﬂak>, ‘vk>s—a)‘ak>; k=12,---,d

K

For |p)eP,|q)eQ

(p'|U | p>=Z(1+uE)‘”2<p'|ak><ak| p),

d

(qlU | p) =D @+ ) 2w (alvi) (e | p),

k=1
d

<p|U |CI>:_ (1+140) 1/2/uk<p|ak><vk |Q>’

q'lU |g) = {(1+uk M2 -1a' i) (vl a)+ 6

k=1



Determination of two-body correlation operator

Projection operators in two-body state space
P@ L Q®? =1 P?* = p@ Q@° —Q®? PAQ®@ - QVP® -

Eigen value equation for the two-body sub-system
In an entire many-body system

H,=h+h +v,,
Hy, |w?) = EP|w?), (k=12,-,d,d+1--,n)

‘W(2)> (P(2)+Q(2))‘W(2)> ‘ (2)>+w(2)‘ (2)>,(k:1,2,---,d)
‘ (2)> P(Z)‘W(2)> Q(Z)‘W(2)> (2)‘ (2)>

_ < (2) |l//(2)> Sy
General solution for the wave operator

(2) >

d
2 2 2\ /5 (2)
@ =Y Q% yi?) (4,
k=1

Pe) (3,

” éf)> : bi-orthogonal state




Decoupling equation in two-body subsystem

Decoupling equation for transformed Hamiltonian of two-body subsystem

Q(Z)e's’tz leeﬁz P2 _

> QW (h +h, +Vi)P? =0

if Q?(h +h,)P? =0, then
Q(Z) {’/12 P _



Decoupling property of “effective two-body” interaction

QﬁlzP:Pﬁle:U

VY-
A

Uy, U, ﬁ12
—>
=0, =0, =0.etc
Uy, 612
S ﬁ
:0? 4—1@ :Ojetc




Self-consistency between single-particle potential and
“two-body effective interaction” (two-body cluster terms)

Lot | B> = 3T (ol lB%>

)\gpF

_ cancellation of
y U, v U, one-body and
Y O T v X =0 bubble-diagram

contribution
1t b

8 _512 6 _'812
A F N
J:NO A — M"X A — 0

9. S. ) ) .
e e J. da Providencia and C. M. Shakin,

+ + * * Ann. Phys.30(1964), 95.




How to choose P and Q spaces?

The one-body hamiltonian h; contains self-consistent potential u,,
and determination of Q(u,+u,)Q has been considered
to be very difficult, because there is
no prescription for calculating matrix elements of u,
between states with very high momentum.

4

We should choose P and Q as spaces
which are well separated in energy
In order to make the mixing between P and Q spaces
small as long as possible.



Two-step determination of the “effective interactions”

First-step decoupling Efficient calculation of effects

f high- t tat
(Two-body pn state space) oT high-momentumm States

A Approximate decoupling ;
1. 1) average over |_, L,

Qi in two-body relative-CM system
2

decoup{li;ag 2) diagonal in CM q.n.
Qnp

3) u,;=0 for Q O space

<a|ul“) |,B>—>Oforwhen 2n +0_ +2n,+/0, > p,

R T s or 2Ny + L, +20, + 1L, > py
. i e HY —f 1 u0) +t, + (U v
W= pt o =g o =0 12 —uT\Y 2 2 12
PV =P, Q" =Q;,vi2 =V ~(1)

(1)
V
p=2n+0_+2n +/, R

=16,18 ﬁ(l) e_s(l) Hes(l)



Second-step decoupling

Exact decoupling

D In two-body shell-model basis
0 4 175
1 \
A= =0
Vi
an (1 an =)
Py, Hy =t +u '+t +U, 7 + Va2
~ (11)
— S 5 vy,
0 decoupling
lpo
np PXI \ -
O P,

—~ (1) gy ~ (1) g
pih = p@ QU = Q(i),~§l2l) — ) H e > H eS

pn ?



Procedure of selfconsistent calculation

la|u | g)= 3 <a/1 v | m>
-~ X

HO =t +u™ +t, +ul” +v,,

J

SO > v - (au™ | g)= Y <a/1 Vs | ﬂ/1>

O

HO™ =t +u™® +t, +u™ + v,

@ Generate selfconfining pot. u,



Effects of the three-body cluster terms

Sizable contribution to the ground-state energy
Convergence of cluster expansion

In theory, unitarily transformation does not terminate
In its expansion series.

In the actual calculations, however,

E, = EéZBC) +AE(§380) T
AEéISBC)

(2BC)

almost converges
9

x100 ~ 1.5 (%)
Not always so for relative single particle energies

Reducing of the dependence of the calculated results on ha)
of employed s.p. H.O. basis

A significant effect in reproducing the correct nuclear size

K.Suzuki, R. Okamoto, Prog. Theor. Phys.76(1986),127-142.



For calculated results
see Dr. Fujil’ s talk
Thursday, September 27, 2007

http://www.int.washington.edu/talks/WorkShops/int_ 07 3/



3.Formulation of UMOA with 2NF and 3NF

Brief description was given in
K. Suzuki, Prog. Theor. Phys.79 (1998), 330.

Hamiltonian with 2NF and 3NF

B Y E5 SIS z<t+u>{z IR

<] I<j<k <] I<j<k
—ZHJ{Z Z\/,JK—ZU} h=t+u
I<] I<j<k

(V,J , ij)<: Chiral Nuclear Force

Genuine three-nucleon force(3NF)



Three-body sub-system Hamiltonian
Hpps =(h +h + )+ (v, + Vo + V) + Vs,

Three-body subsystem Hamiltonian dressed with two-body correlations
In an entire many-body system

. _q2) Sl(Z)
Hiz=e H123 g

~ ~ ~ ~(2)
= (hl + h2 + h3) + (Vlz + V23 -I—V31)-I—V123,

~(2 )
V](_Z\)?, =€ 5(223) (hl + hZ + h3 +V12 +V23 +V31 +V123)eSA(223)

—(hl-|-|"l2 +|"5+\~/12 —|—\~/23 -I-\~/31);

~(2)  ~(2NF) _g(2) (2)
= Vi3 =Viz3  +e® V123e5123 ! 81(2232 =3, + S5+ 5y
~(2)
‘ |:V123 —V,,, as §%) — O}
three-body interaction hree-body interaction
iInduced by

_ dressed with the two-body correlations
the two-body correlations



Calculation of three-body correlation operator

Projection operators in three-body state space
P® 4+ Q® =1 PO _ p® Q(3>2 - Q®, pAQ® = QOP® =

Solution for the three-body subsystem Hamiltonian

ﬁ123‘w(3)> E(s)‘w(3)> (k=12,---,d® d® +1,...,n®)
‘W(3)> (P(3)+Q(3))‘y/(3)> ‘ (3)> (3)‘ (3)> (k=12,--,d®)
‘ (3)> p(3>‘w(3)> Q(B)‘W(3)> (3)‘ (3)>

< 3)|W(3)> S

¢k > . bi-orthogonal state

General solution for the wave operator

d() @1, @ 3) ~G)| 3
Q ‘ >< P <¢k @> '

o

Relation between mapping operator and correlation operator

:
S® = arctanh(o®-0®")



Transformed Hamiltonian in terms of three-body correlations

I~

- 5(3)

(3) (3) ¢ _g(2) (2) (3)
H=e° He® =e° [e° He® Je°

If SPT = _S® and SO = —S®7 then {exp[S(Z) + 8(3)]}T =exp| -S? -89,
but
{exp[S(z) + 8(3)}}T exp| S? + 89 |=exp| -S® - S Jexp| S? + 87 |
=1 ([S?,89]=0)
Anti-hermitian three-body correlation operator

S(3) Z Sljk’ [8(3)T S(3)]

i<j<k

Second gquantization form

2
s® :(ij Y. {aBy|Sy;lAuv)cicicic.e,c,

3 I afyiuv




Decoupling equation for transformed Hamiltonian
of three-body subsystem

Q(3) . 6'323 H 123 eS_Lzs . P(3) — O

_ N )
— Q¥ .= [(hl +h, +h,) + (Vi2 +Vos + Va1) +V123}eSizg PP =0

If -~ o~
Q¥ (h+h, +h) P® = Q% (Viz + Vaz + V1) P® =0,

~(2)
Q(3)V123 P® —0




Three-body cluster terms | from 2NF and 3NF

Vigs = e 3 [e'sl%) (N + 1, + 1, +V, +V,, +V,, +V,,)eSs Jesm
—(h +h, +h, +Viz + Voz + Va1)

~(2 ~ ~ ~
=g [Viz)s +(h+h, +h +Viz + Va3 + Vsl)J g5z

—(h +h, +h, + Va2 + Vs + Vaz)

~ ] ~(2NF)
- Vigg =732 “Vlzs NP \/123e5123 } +(h +h,+h, +Viz + Vo +V31)}e‘°123

A

—(h +h, + h, + Va2 + Vs + Va1),

three-body clustéer terms ~(2NF) 4@ 52
induced by the two-body [Vm Vi3 +€7EV,07 as 9y >0

correlations | .
three-body cluster terms induced by

three-body correlations, and dressed with
the two-body correlations



Effective Two-body interaction matrix element
derived from 2NF and 3NF

2NF SNF

829 829
Vizs  +€ 7%V, e "
L

(aBNP|y5) =(aB| V| y8) 4 D" (afA|Vaas | yoR)

A< pe

S

277 \N/gg":) Significant effects in reproducing
the correct nuclear size (in 160)

Microscopic origin of
Effective NN interaction with density dependence



4. Calculation procedure

Solving of eigenvalue eq. for three-body subsystem
In an finite many-body system

|:(hl +h, +hy) + (\712 + Vs "'\731) +\~/§2:| l//rglg,l\)/ITMt> = Er(1|3'|)' Wr(1I3I\)/ITMt>
O _0O ~O
o O _ P
QO...OO h —ti +Ui, (| —1, 2, 3)
O
o O

<Z——> Three-nucleon problem in free space



P

Two-step decoupling calculation

I

o Qe Partition of three-nucleon state space {‘ a,B7>}
I

|(3) First-step decoupling
Approximate decoupling

P() P cm.-diagonal approximation, ...
| > o
ﬂ 4 p=2Ng+ L)+ @0+ L+ 2N + L)
=2n,+ /0, +2n + /0, +2n.+ 1,

Second-step decoupling

precise decoupling
In shell-model states

To evaluate Pauli principle effects
precisely as long as possible



First step decoupling

Diagonalization of three-body subsytem Hamiltonian
In CM-intrinsic basis vector

g

Construction of intrinsic basis vector

In terms of Jacobi coordinate basis
In Harmonic oscillator

and its antisymmetrization



Normalized, but non-antisymmetrized three-body state
In angular momentum coupling
for Harmonic oscillator basis
l@) = n,t, j.m,m,), a={n.,j,m,}

| aﬂﬂ/) El nagajamamﬁx’ nbfbjbmﬂm,z’ nczcjcmximty)

|[ab]‘]abTab C)IMlTMt = Z <05,B| JabTab><JabTab7/| |T>
ma’mﬂ,f’fy,l\/lab,ra,rﬁ,ry,M;b
{

x| Nyl o fam, M, MLy Jomymy, el Jomyn)
- Z <a,8| ‘JabTab><JabTab7/| |T>‘| afy),

rr](xlmﬁlm;/lMablralTﬂlT}/lM;b

—|afy) = Z <a,8| 'JabTab><'JabTab7/| |T>'| [ab]JabTab C)IM|TM”

Jab Tap |

where
<05,B | JabTab><JabTab7/| |T>
= <jamajbmﬂ | JabMab><‘JabMabijV [ 1M, >

X<%m¢tx %m; |TabMTab><TabMTab%rn; | T™ t>
(aBy |[8b];,7, ©) y et = (@B JupToo) (I Ty [ 1M, TM)



Three-body state in total system(=CM- and intrinsic system)
with angular momentum coupling

N; total quantum number of intrinsic system

aloc: [Ny £y JINITITIM M)
= > (LeuMeuIM | IM, )| abe: [Ny, £ o My 1) @bc: [NIMTI]),

Mgy .M

<n0|v|€(:|v| Moy | n’CMé’CM Mgy > :§(n0|v| nbM)§(KCMEbM)§(n]:M’WEM)

Intrinsie

Total angular momentum of the total system

IM,, TM"

N+ £ v Mo
@)



Jacobi basis for intrinsic system of a three body system
| Aczs) =l [Nsl5)5Sts; %4&73]31-);
where [n,/, j,S;t, ) is anti-symmetric; (-)"*" %" = -1

Completeness of the Jacobi bases

YTANAI=1 (k=1 0r,2,0r3) l
A

Total angular momentumifor intrinsic system

. . . .. t
Total quantum number for intrinsic system  Intrinsic system N,JM,T™M

N =(2n, + £,) + (2N + £) @p

|I’13€3j3$3t3> [/1/34;‘73)

|6

@ p,d :Relative momenta

k=3




Construction of an intrinsic state for (totally anti-
symmetric) three-body state in terms of Jacobi basis

INIMTM i} = 3" AMM ')(A MM | NIMTM i)
A
= ZCAki | AMM t) = ZCA(i | A<=3MMt)’
A A
| Azs) =l [yl 5]5Sits; M;Lj;jg]JT)
C.i = (AJNJITIY;N =20, + £,) + (2N, + L)
k=3,C,; = (05 jsst; N, £, 7, 13T | NJITi);

) T L. . (k=10r2,0r,3)
( a kind of) coefficient of fractional parentage

CAki IS obtained by diagonalizing the anti-symmetrizer

in the Jacobi basis |A).

The | labels different intrinsic-system state
with the same quantum number set {N,J, T}



CFP in three-nucleon state in total system

The intrinsic motion is augmented by c.m. H.O. basis state, [ncm,lcm),
which couple to a total angular momentum | M,.

{‘ Nern cm)‘ N‘JTi>}|M

Analogously the Jacobi state |A,) are augmented by C.M. states. Note that the

c.f.p.’s are m-independent. Therefore the c.f.p.’s are identical in the total and
intrinsic basis as

Cai = (el cm | {A}, A1 e o) NITE,



Three-body state for total system in m-scheme coupling
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Matrix element of three-nucleon force
for total system of three-body in m-scheme coupling
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= Z<05;8| J12t12><J12t127/| |T>
><<0(',3'| J l12J[I12><‘J IPAETY A |T>
x[(@bl,, (][N len) | A
xC,.C, | A(NJTi VN | NITi )

X[ (N gl em | (A albl)J'12 |c9]

Given in
A. Nogga, P. Navratil, B. R. Barrett, J. P. Vary, Phys. Rev. C73, 064002(2006),
. but not in the same authors with the same title of nucl-th/0511082v1



Transition matrix elements
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Spin-orbital part of the transformation coefficient
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Isospin part of the transformation coefficient

T

isospin
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Calculation of m.e. of (t,+t, +t3) between three-body cm-,intrinsic states
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Second step decoupling

Diagonalization of three-body subsytem Hamiltonian
In shell-model basis vector

g

Construction of intrinsic basis vector
In terms of Harmonic oscillator shell model
and its antisymmetrization



Construction of independent antisymmetric
and orthonormalized three-body basis vectors

Antisymmetrization operator of three-body system

1
P(a1a2a3 |ﬁ1ﬂ2ﬂ3) = 5 Z op- 80(5a1ﬂ15a2ﬂ25a3ﬂ3)
* 9 (PB23)

The summation over all the permutation with respectto (81, 52, 5 3)
and & p takes the value +1(-1) for even (odd) parmutation.

satisfies the relation of projection operator
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A 2 A
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The Antisymmetrization operator in coupled-angular momentum representation
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A. Kuriyama, T. Marumori, K. Matsuyanagi, R.O.,
Prog.Theor.Phys.Suppl. N0.58(1975), 32, 103.



Orthonormal basis vectors

Diagonalization of P,

/ C.f.p. for three-body system

~ ~1 |1 0 ~
U PU, 2{0 0:| - U, =(U,(1),U,(2), )
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5. Summary

1) UMOA with 2NF and 3NF can be formulated
systematically.

2) Explicit expression for 3NF, m-scheme matrix
elements are known in coordinate Harmonic
oscillator representation;

Thanks for
A. Nogga, P. Navratil, B. R. Barrett, J. P. Vary,
Phys. Rev. C73, 064002(2006)

3) Considering of approximation methods and
efficient algorithms are on-going.

Some supercomputers (@ RCNP, RIKEN)
could be open !!



Discussions

Use of Symplectic shell-model basis might be promising
as effective (or optimal) s.p. basis

—efficient truncation of s.p. basis ?
—reducing the magnitude of three-or-more-body
cluster terms effects ?

— check of the reliability of the usual removal of
C.M. motion effect

—description of cluster-like excitation ?

Great thanks to David Rowe, Jerry Draayer
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