Light Nuclei from chiral EFT interactions

Petr Navratil Lawrence Livermore National Laboratory*

Collaborators:

V. G. Gueorguiev (UCM), J. P. Vary (ISU), W. E. Ormand (LLNL), A. Nogga (Julich), S. Quaglioni (LLNL), E. Caurier (Strasbourg)

*This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. UCRL-PRES-236709

Program INT-07-3: Nuclear Many-Body Approaches for the 21st Century, 13 November 2007

Outline

- Motivation
- Introduction to *ab initio* no-core shell model (NCSM)
- *Ab initio* NCSM and interactions from chiral effective field theory (EFT)
 - Determination of NNN low-energy constants
 - Results for mid-p-shell nuclei
- Beyond nuclear structure with chiral EFT interactions
 - Photo-disintegration of ⁴He within NCSM/LIT approach
 - n+4He scattering within the NCSM/RGM approach
 - Preliminary: n+7Li scattering within the NCSM/RGM approach
- Outlook
 - 40Ca within importance-truncated ab initio NCSM

Talk by Sofia Quaglioni last week

Motivation

Goal:

- Describe nuclei from first principles as systems of nucleons that interact by fundamental interactions
 - Non-relativistic point-like nucleons interacting by realistic nucleon-nucleon and also three-nucleon forces
- Why it has not been solved yet?
 - High-quality nucleon-nucleon (NN) potentials constructed in last 15 years
 - Difficult to use in many-body calculations
 - NN interaction not enough for A>2:
 - Three-nucleon interaction not well known

New developments: chiral EFT NN+NNN interactions

- Need sophisticated approaches & big computing power
- Ab initio approaches to nuclear structure
 - A=3,4 many exact methods
 - 2001: A=4 benchmark paper: 7 different approaches obtained the same ⁴He bound state properties
 - Faddeev-Yakubovsky, CRCGV, SVM, GFMC, HH variational, EIHH, NCSM
 - A>4 few methods applicable
 - Green's Function Monte Carlo (GFMC)
 - S. Pieper, R. Wiringa, J. Carlson et al.
 - Effective Interaction for Hyperspherical Harmonics (EIHH)
 - Trento, results for ⁶Li
 - Coupled-Cluster Method (CCM), Unitary Model Operator Approach (UMOA)
 - Applicable mostly to closed shell nuclei
 - *Ab Initio* No-Core Shell Model (NCSM)

Presently the only method capable to apply chiral EFT interactions to A>4 systems

Ab Initio No-Core Shell Model (NCSM)

- Many-body Schrodinger equation
 - A-nucleon wave function

$$H|\Psi\rangle = E|\Psi\rangle$$

Hamiltonian

$$H = \sum_{i=1}^{A} \frac{\vec{p}_i^2}{2m} + \sum_{i< j}^{A} V_{NN}(\vec{r}_i - \vec{r}_j) \quad \left(+ \sum_{i< j< k}^{A} V_{ijk}^{3b} \right)$$

- Realistic high-precision nucleon-nucleon potentials
 - Coordinate space Argonne ...
 - Momentum space CD-Bonn, chiral N³LO ...
- Three-nucleon interaction
 - Tucson-Melbourne TM', chiral N²LO
- Modification by center-of-mass harmonic oscillator (HO) potential (Lipkin 1958)

$$\frac{1}{2} Am\Omega^2 \vec{R}^2 = \sum_{i=1}^{A} \frac{1}{2} m\Omega^2 \vec{r_i}^2 - \sum_{i < j}^{A} \frac{m\Omega^2}{2A} (\vec{r_i} - \vec{r_j})^2$$

- No influence on the internal motion
- Introduces mean field for sub-clusters

$$H^{\Omega} = \sum_{i=1}^{A} \left[\frac{\vec{p}_{i}^{2}}{2m} + \frac{1}{2} m \Omega^{2} \vec{r}_{i}^{2} \right] + \sum_{i < j}^{A} \left[V_{NN} (\vec{r}_{i} - \vec{r}_{j}) - \frac{m \Omega^{2}}{2A} (\vec{r}_{i} - \vec{r}_{j})^{2} \right] \left(+ \sum_{i < j < k}^{A} V_{ijk}^{3b} \right)$$

Coordinates, basis and model space

Bound states (and narrow resonances): Square-integrable A-nucleon basis

- NN (and NNN) interaction depends on relative coordinates and/or momenta
 - Translationally invariant system
 - We should use Jacobi (relative) coordinates
- However, if we employ:
 - i) (a finite) harmonic oscillator basis
 - ii) a complete $N_{\text{max}}h\Omega$ model space
- Translational invariance even when Cartesian coordinate Slater determinant basis used
 - Take advantage of powerful second quantization shell model technique
 - Choice of *either* Jacobi *or* Cartesian coordinates according to efficiency for the problem at hand

This flexibility is possible only for harmonic oscillator (HO) basis. A downside: Gaussian asymptotic behavior.

Model space, truncated basis and effective interaction

- Strategy: Define Hamiltonian, basis, calculate matrix elements and diagonalize. But:
- Finite harmonic-oscillator Jacobi coordinate or Cartesian coordinate Slater determinant basis

- Complete $N_{\text{max}}h\Omega$ model space

lel space

Nucleon-nucleon interaction

Repulsive core and/or short-range correlations in $V_{\rm NN}$ (and also in $V_{\rm NNN}$) cannot be accommodated in a truncated HO basis

Need for the effective interaction

Effective Hamiltonian in the NCSM

 $H: E_1, E_2, E_3, \dots E_{d_p}, \dots E_{\infty}$

 $H_{\text{eff}}: E_1, E_2, E_3, \dots E_{d_p}$

$$QXHX^{-1}P=0$$

model space dimension

$$H_{\rm eff} = PXHX^{-1}P$$

unitary $X=\exp[-\arctanh(\omega^+-\omega)]$

- •Properties of $H_{\rm eff}$ for A-nucleon system
 - •A-body operator
 - •Even if *H* two or three-body

•For
$$P \to 1$$
 $H_{\text{eff}} \to H$

As difficult as the original problem

- *n*-body cluster approximation, $2 \le n \le A$
- $H^{(n)}_{eff}$ *n*-body operator
- Two ways of convergence:
 - For $P \rightarrow 1$ $H^{(n)}_{eff} \rightarrow H$
 - For $n \to A$ and fixed $P: H^{(n)}_{eff} \to H_{eff}$

Effective interaction calculation in the NCSM

n-body approximation

$$H^{\Omega} = \sum_{i=1}^{A} h_i + \sum_{i < j}^{A} V_{ij} + \sum_{i < j < k}^{A} V_{ijk}$$

• For *n* nucleons reproduces exactly the full-space results

(for a subset of eigenstates)

- n=2, two-body effective interaction approximation

$$h_1 + h_2 + V_{12} \rightarrow X_2 \rightarrow P_2 \Big[h_1 + h_2 + V_{2eff,12} \Big] P_2 \rightarrow P \Big[\sum_{i=1}^A h_i + \sum_{i < j}^A V_{2eff,ij} \Big] P_1$$

- n=3, three-body effective interaction approximation

$$h_{1} + h_{2} + h_{3} + V_{12} + V_{13} + V_{23} + V_{123} \longrightarrow P_{3} \left[h_{1} + h_{2} + h_{3} + V_{3eff,123}^{2b+3b} \right] P_{3} \longrightarrow P \left[\sum_{i=1}^{A} h_{i} + \frac{1}{A-2} \sum_{i < j < k}^{A} V_{3eff,ijk}^{2b} + \sum_{i < j < k}^{A} V_{3eff,ijk}^{3b} \right] P_{3}$$

$$Q_n X_n H^{(n)} X_n^{-1} P_n = 0$$

³H and ⁴He with chiral N³LO NN interaction

• NCSM convergence test

Comparison to other methods

N³LO NN	NCSM	FY	НН
³ H	7.852(5)	7.854	7.854
⁴ He	25.39(1)	25.37	25.38

- ➤ Short-range correlations ⇒ effective interaction
- ► Medium-range correlations \Rightarrow multi-hΩ model space
- ➤ Dependence on
 - ■size of the model space (N_{max})
 - •HO frequency $(h\Omega)$
- ➤ Not a variational calculation
- ➤ Convergence OK
- ➤NN interaction insufficient to reproduce experiment

Nuclear forces

- Unlike electrons in the atom the interaction between nucleons is not known precisely and is complicated
- Phenomenological NN potentials provide an accurate fit to NN data
 - CD-Bonn 2000
 - One-boson exchange π , ρ , ω + phenomenological σ mesons
 - $\chi^2/N_{data} = 1.02$
- But they are inadequate for A>2 systems
 - Binding energies under-predicted
 - N-d scattering: A_v puzzle; n-3H scattering: total cross section
 - Nuclear structure of *p*-shell nuclei is wrong

Need to go beyond standard NN potentials

- NNN forces?
 - Consistency between the NN and the NNN potentials
 - Empirical NNN potential models have many terms and parameters
 - Hierarchy?
 - Lack of phase-shift analysis of three-nucleon scattering data
- Predictive theory of nuclei requires a consistent framework for the interaction

Start from the fundamental theory of strong interactions QCD

- QCD non-perturbative in the low-energy regime relevant to nuclear physics
- However, new exciting developments due to Weinberg and others...
 - Chiral effective field theory (EFT)
 - Applicable to low-energy regime of QCD
 - Capable to derive systematically inter-nucleon potentials
 - Low-energy constants (LECs) must be determined from experiment

Chiral Effective Field Theory

- Chiral symmetry of QCD $(m_u \approx m_d \approx 0)$, spontaneously broken with pion as the Goldstone boson
- Systematic low-momentum expansion in $(Q/\Lambda_{\gamma})^n$; $\Lambda_{\gamma} \approx 1$ GeV, $Q \approx 100$ MeV
 - Degrees of freedom: nucleons + pions
 - Power-counting: Chiral perturbation theory (χ PT)
- Describe pion-pion, pion-nucleon and inter-nucleon interactions at low energies
 - Nucleon-nucleon sector S. Weinberg (1991)
 - Worked out by Van Kolck, Kaiser, Meissner, Epelbaum, Machleidt...
- Leading order (LO)
 - One-pion exchange
- NNN interaction appears at next-to-next-to-leading order (N²LO)
- NNNN interaction appears at N³LO order
- Consistency between NN, NNN and NNNN terms
 - NN parameters enter in the NNN terms etc.
- Low-energy constants (LECs) need to be fitted to experiment
- N³LO is the lowest order where a high-precision fit to NN data can be made
 - Entem and Machleidt (2002) N³LO NN potential
- Only TWO NNN and NO NNNN low-energy constants up to N³LO

Challenge and necessity: Apply chiral EFT forces to nuclei

Chiral N²LO NNN interaction

Application of *ab initio* NCSM to determine c_D , c_E : A=3

• Fit c_D , c_E to experimental binding energy of 3 H (3 He)

Convergence test for $c_D=2$ $c_E=0.115$

NCSM

Jacobi coordinate HO basis $N^3LO NN \leftrightarrow V_{2eff}$ $N^2LO NNN \leftrightarrow bare$

 $c_D - c_F$ dependence that fits A=3 binding energy

- Another observable needed
 - N-d doublet scattering length
 - Correlated with $E_{\rm gs}$

Another possibility:
Properties of heavier nuclei

Application of *ab initio* NCSM to determine $c_{\rm D}$, $c_{\rm E}$: ⁴He

• Fit constrained c_D , c_E to ⁴He binding energy

Convergence test for $c_D=2$ $c_E=0.12$

NCSM

Jacobi coordinate HO basis $N^3LO NN \leftrightarrow V_{3eff}$ $N^2LO NNN \leftrightarrow V_{3eff}$

⁴He Ground State Energy

-28.1

 $c_{\rm D} \approx -1 \sim 2$ preferred

 4 He binding energy dependence on $c_{
m D}$

- Two combinations of $c_{\rm D}$ $c_{\rm E}$ that fit both A=3 and ⁴He binding energies
 - Point A: $c_D \approx 1.5$
 - Point B: $c_D \approx 10$
 - ⁴He E_{gs} dependence on c_D weak
 - ⁴He and *A*=3 binding energies correlated

Explore *p*-shell nuclei

NNN important for heavier *p*-shell nuclei: ¹⁰B

- ¹⁰B known to be poorly described by standard NN interaction
 - Predicted ground state 1⁺0
 - Experiment 3⁺0
- Chiral NNN fixes this problem

Application of *ab initio* NCSM to determine $c_{\rm D}, c_{\rm E}$: ¹⁰B

- 10 B properties not correlated with A=3 binding energy
- Spectrum shows weak dependence on $c_{\rm D}$
- However: Order of 1^+_1 and 1^+_2 changes depending on c_D
 - This is seen in ratio of E2 transitions
 from ground state to 1⁺₁ and 1⁺₂

 $c_{\rm D} \approx -1.5 \sim -0.5$ preferred

 10 B NN+NNN $^{\circ}$ C dependence for N $_{
m max}$ = 6, h Ω =15 MeV

Application of ab initio NCSM to determine c_D , c_E : ¹²C

- Sensitivity of B(M1; $0^+0 \rightarrow 1^+1$) to the strength of spin-orbit interaction
 - Presence of the NNN interaction
 - Choice of the c_D - c_E LECs

 $c_{\rm D} \approx -1$ preferred

⁶Li with chiral NN+NNN interactions

- 6Li calculations with NN can be performed up to $16h\Omega$
 - Dimensions 10⁸
 - Very good convergence of the excitations energies with the chiral N³LO NN
 - Discrepancies in level splitting (e.g. 3+0); binding energy underestimated
- 6Li calculations with NN+NNN performed up to $8h\Omega$
 - Dimension only 1.5 million, but:
 - 13 GB input file with the three-body effective interaction matrix elements
 - A very challenging calculation performed at the LLNL **up** machine
 - Improvement of the 3+0 state position; binding energy in agreement with experiment

¹¹B with chiral NN+NNN interactions

- 11B also poorly described by standard NN interactions
 - Excitation energies
 - Gamow-Teller transitions
- Chiral NNN improves on both
 - Results using c_D =-1

Ab initio NCSM calculations with chiral EFT NN+NNN interactions: Summary

- *Ab initio* NCSM presently the only method capable to apply the chiral EFT NN+NNN interactions to *p*-shell nuclei
 - Technically challenging, large-scale computational problem
 - ~3000 processors used in ^{12,13}C calculations
- Applied to determine the NNN contact interaction LECs
 - Investigation of A=3, ⁴He and p-shell nuclei
 - Globally the best results with $c_{\rm D} \sim -1$
- NNN interaction essential to describe structure of light nuclei

Applications to nuclear reactions

- *Ab initio* description of nuclear reactions
 - Even stricter test of NN and NNN interactions
 - Important for nuclear astrophysics
 - Understanding of the solar model, big-bang nucleosynthesis, star evolution
 - Low-energy reactions difficult or impossible to measure experimentally
 - Need theory with predictive power
- In general, need to go beyond bound states
 - clustering
 - resonant and non-resonant continuum
- However, for a certain type of reactions bound-state techniques can be used
 - Photo-disintegration

Photo-disintegration of the α -particle: LIT method

Photo-absorption cross section

$$\sigma_{\gamma}(\omega) = 4\pi^{2} \frac{e^{2}}{\hbar c} \omega R(\omega) - \sum_{f} \left| \langle \Psi_{f} | \hat{D} | \Psi_{0} \rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$

Inclusive response function

- LIT method:
 - solve the many-body Schrödinger equation for $|\Psi_0
 angle$
 - apply the Lanczos algorithm to the Hamiltonian starting from:

$$|\phi_0\rangle = \langle \Psi_0|\hat{D}^\dagger\hat{D}|\Psi_0\rangle^{-\frac{1}{2}}\hat{D}|\Psi_0\rangle$$

- calculate the LIT of $R(\omega)$

$$L(\sigma_R, \sigma_I) = \int \underbrace{R(\omega)} \frac{1}{(\omega - \sigma_R)^2 + \sigma_I^2} d\omega = \underbrace{-\frac{1}{\sigma_I} Im \left\{ \langle \psi_0 | \hat{D}^{\dagger} \frac{1}{E_0 + \sigma_R + i\sigma_I - \hat{H}} \hat{D} | \psi_0 \rangle \right\}}_{}$$

- invert the LIT and calculate the cross section
- Ingredients:

Ingredients: Continued fraction of Lanczos coefficients
$$-$$
 NCSM 4 He wave functions obtained from NN+NN χ EFT $-\frac{1}{\sigma_I} \frac{\langle \Psi_0 | \hat{D}^{\dagger} \hat{D} | \Psi_0 \rangle}{\chi EFT} -\frac{b_i^2}{(z-a_1)-\frac{b_2^2}{(z-a_2)-\frac{b_3}{\cdot \cdot \cdot}}}$

 $\sigma_I \sim 10 - 20 \text{ MeV}!$

The LIT method is a microscopic approach to perturbation-induced reactions (also exclusive!). The continuum problem is mapped onto a bound-state-like problem.

Numerical accuracy and NNN effects

- effective interaction at the threebody cluster level for both NN and NN+NNN
 - similar patterns
 - accurate convergence
- NNN force effects:
 - more binding
- reduced sizereduced dipole strength

$$\langle \Psi_0 | \hat{D}^\dagger \hat{D} | \Psi_0
angle \simeq rac{ZN}{3(A-1)} \langle r_p^2
angle$$

pure symmetric spatial wave functions

(8% off)

The ground-state properties present very similar smooth convergence patterns

Photo-disintegration of the α -particle: χ EFT NN+NNN interactions

- Still large discrepancies between different experimental data
 - up to 100% disagreement on the peak-height
- The NNN force induces a suppression of the peak
 - not enough to explain data from Shima et al.!
- In the peak region χΕΓΤ NN+NNN and AV18+UIX curves are relatively close:
 - weak sensitivity to the details of NNN force
 - expect larger effects in *p*-shell nuclei!

The differences in the realistic calculations are far below the experimental uncertainties: urgency for further experimental activity to clarify the situation.

Proper treatment of long-range properties: Towards *ab initio* reaction theory

- Need to go beyond NCSM and include
 - clustering
 - resonant and non-resonant continuum
- We can build upon ab initio
 NCSM to describe
 - discrete spectrum
 - continuum spectrum
 - coupling between them

Resonating group method (RGM)

• Ansatz:

$$\Psi^{(A)} = \sum_{\mathbf{v}} \hat{\mathcal{A}} \left[\Psi_{1\mathbf{v}}^{(A-a)} \Psi_{2\mathbf{v}}^{(a)} \varphi_{\mathbf{v}}(\vec{r}_{A-a,a}) \right] = \sum_{\mathbf{v}} \int d\vec{r} \varphi_{\mathbf{v}}(\vec{r}) \, \hat{\mathcal{A}} \, \Phi_{\mathbf{v}\vec{r}}^{(A-a,a)}$$

$$\Phi_{\mathbf{v}\vec{r}}^{(A-a,a)} = \Psi_{1\mathbf{v}}^{(A-a)} \Psi_{2\mathbf{v}}^{(a)} \, \delta(\vec{r} - \vec{r}_{A-a,a})$$

$$(A-a)$$

• The many-body problem is mapped onto various channels of nucleon clusters and their relative motion:

$$H\Psi^{(A)} = E\Psi^{(A)} \longrightarrow \sum_{\mathbf{v}} \int d\vec{r} \left[\mathcal{H}_{\mu\mathbf{v}}^{(A-a,a)}(\vec{r}',\vec{r}) - E\mathcal{N}_{\mu\mathbf{v}}^{(A-a,a)}(\vec{r}',\vec{r}) \right] \phi_{\mathbf{v}}(\vec{r}) = 0$$
 Hamiltonian kernel
$$\langle \Phi_{\mu\vec{r}'}^{(A-a,a)} | \hat{\mathcal{A}} H \hat{\mathcal{A}} | \Phi_{\mathbf{v}\vec{r}}^{(A-a,a)} \rangle$$

$$\langle \Phi_{\mu\vec{r}'}^{(A-a,a)} | \hat{\mathcal{A}}^2 | \Phi_{\mathbf{v}\vec{r}}^{(A-a,a)} \rangle$$
 Norm kernel

To treat clustering and continuum we extend the RGM approach by using NCSM ab initio wave functions for the clusters involved, and effective interactions derived from realistic two- and three-nucleon forces.

Single-nucleon projectile: the norm kernel

Jacobi or single-particle coordinates? Both ...

- An example: $= \sum_{n'n} R_{n'\ell'}(r') (\Phi_{\mu n'\ell'}^{(A-1,1)JT} | P_{A,A-1} | \Phi_{\nu n\ell}^{(A-1,1)JT}) R_{n\ell}(r)$
- Jacobi coordinate basis
 - Intrinsic motion only! Translational invariant matrix elements directly
- Slater determinant (SD) basis:

$$\begin{bmatrix}
\varphi_{00}(\vec{R}_{c.m.}^{(A-1)}) \otimes \varphi_{n\ell}(\vec{R}_{c.m.}^{(1)}) \end{bmatrix}^{\ell}$$

$$= \sum_{n_r\ell_r,NL} \langle n_r\ell_r,NL,\ell|00,n\ell,\ell\rangle_{\frac{1}{A-1}}$$

$$\times \left[\varphi_{n_r\ell_r}(\vec{\eta}_{A-1}) \otimes \varphi_{NL}(\vec{R}_{c.m.}^{(A)})\right]^{\ell}$$

Spurious c.m. motion! Translational invariant matrix elements indirectly

$$\begin{split} & \underbrace{SD} \langle \Phi_{\mu n'\ell'}^{(A-1,1)JT} | \underline{P_{A,A-1}} | \Phi_{\nu n\ell}^{(A-1,1)JT} \rangle_{SD} = \sum_{n_r \ell_r n'_r \ell'_r J_r} \langle \Phi_{\mu n'_r \ell'_r}^{(A-1,1)J_r T} | \underline{P_{(A-1,1)}} | \Phi_{\nu n_r \ell_r}^{(A-1,1)J_r T} \rangle \\ & \times \sum_{NL} \hat{\ell} \hat{\ell}' \hat{J}_r^2 (-1)^{s+\ell_r - s' - \ell'_r} \left\{ \begin{array}{l} s \, \ell_r J_r \\ LJ \, \ell \end{array} \right\} \left\{ \begin{array}{l} s' \ell'_r J_r \\ LJ \, \ell' \end{array} \right\} \times \langle n_r \ell_r N L l | 00 n \ell \ell \rangle_{\frac{1}{A-1}} \langle n'_r \ell'_r N L \ell' | 00 n' \ell' \ell' \rangle_{\frac{1}{A-1}} \end{split}$$

Procedure generally applicable if projectile (a) is obtained in the Jacobi coordinate basis

Single-nucleon projectile: the norm kernel

$$\mathcal{N}_{\mu\ell',\nu\ell}^{(A-1,1)}(r',r) = \delta_{\mu\nu} \, \delta_{\ell'\ell} \frac{\delta(r'-r)}{r'r} - (A-1) \sum_{n'n} R_{n'\ell'}(r') \langle \Phi_{\mu n'\ell'}^{(A-1,1)JT} | P_{A,A-1} | \Phi_{\nu n\ell}^{(A-1,1)JT} \rangle R_{n\ell}(r)$$

$$\langle \Phi_{\mu n'\ell'}^{(A-1,1)JT} | \textcolor{red}{P_{\!A,\!A-1}} | \Phi_{\mathtt{v}n\ell}^{(A-1,1)JT} \rangle$$

$$= \sum_{n'_{A-1}\ell'_{A-1}J'_{A-1}} \langle A - 1\alpha' I'_1 T'_1 | [N_{A-2}i_{A-2}J_{A-2}T_{A-2}; n'_{A-1}\ell'_{A-1}J'_{A-1}] I'_1 T'_1 \rangle$$

$$\times \sum_{n_{A-1}\ell_{A-1}\mathcal{I}_{A-1}} \langle [N_{A-2}i_{A-2}J_{A-2}T_{A-2}; n_{A-1}\ell_{A-1}\mathcal{I}_{A-1}] I_1 T_1 | A - 1\alpha I_1 T_1 \rangle$$

$$imes \hat{T}_1'\hat{T}_1(-)^{1+T_1'+T_1} igg\{ egin{array}{ccc} rac{1}{2} & T_{A-2} & T_1 \ rac{1}{2} & T & T_1' \ \end{pmatrix} \hat{s}'\hat{s}\hat{I}_1'\hat{I}_1\hat{\mathcal{J}}_{A-1}'\hat{\mathcal{J}}_{A-1}(-)^{s'+s+\ell+\ell'_{A-1}} \ \end{array}$$

$$\times \sum_{L,Z} \hat{L}^{2} \hat{Z}^{2} (-)^{L} \left\{ \begin{array}{ccc} \mathcal{J}'_{A-1} & J_{A-2} & I'_{1} \\ \mathcal{J}_{A-1} & Z & I_{1} \end{array} \right\} \left\{ \begin{array}{ccc} \ell'_{A-1} & \frac{1}{2} & \mathcal{J}'_{A-1} \\ I_{1} & Z & s \end{array} \right\} \left\{ \begin{array}{ccc} \ell_{A-1} & \frac{1}{2} & \mathcal{J}_{A-1} \\ I'_{1} & Z & s' \end{array} \right\}$$

$$imes \left\{egin{array}{ll} L_2 & \ell_{A-1}' & \ell' \ \ell_{A-1} & Z & s' \ \ell & s & J \end{array}
ight\} \langle n'\ell', n_{A-1}'\ell_{A-1}', L|n_{A-1}\ell_{A-1}, n\ell, L
angle_{A(A-2)}
onumber$$

Jacobi coordinate derivation

$$A > 3$$

$$\mu = \{\alpha' I_1' T_1' s'\}$$

$$\nu = \{\alpha I_1 T_1 s\}$$

Single-nucleon projectile: the norm kernel

$$\mathcal{N}_{\mu\ell',\nu\ell}^{(A-1,1)}(r',r) = \delta_{\mu\nu} \, \delta_{\ell'\ell} \frac{\delta(r'-r)}{r'r} - (A-1) \sum_{n'n} R_{n'\ell'}(r') \langle \Phi_{\mu n'\ell'}^{(A-1,1)JT} | P_{A,A-1} | \Phi_{\nu n\ell}^{(A-1,1)JT} \rangle R_{n\ell}(r)$$

This formalism will allow the application of the NCSM+RGM approach to p-shell nuclei

Exchange part of the norm kernel: $(^4\text{He},n)$ basis

First step towards coherent picture: describe correctly low-energy neutron scattering on ⁴He. Jacobi and single-particle SD algorithm lead to results in complete agreement for the norm and Hamiltonian kernel.

Single-nucleon projectile: the Hamiltonian kernel

$$\mathcal{H}_{\mu\ell',\nu\ell}^{(A-1,1)}(r',r) = (E_{A-1} + T_{rel}) \, \mathcal{N}_{\mu\ell',\nu\ell}^{(A-1,1)}(r',r) \\ + (A-1) \sum_{n'n} R_{n'\ell'}(r') \, \left\langle \Phi_{\mu n'\ell'}^{(A-1,1)JT} | V_{A-1,A} | \Phi_{\nu n\ell}^{(A-1,1)JT} \rangle R_{n\ell}(r) \right\rangle \\ - (A-1) \sum_{n'n} R_{n'\ell'}(r') \, \left\langle \Phi_{\mu n'\ell'}^{(A-1,1)JT} | V_{A-1,A} P_{A,A-1} | \Phi_{\nu n\ell}^{(A-1,1)JT} \rangle R_{n\ell}(r) \\ - (A-1)(A-2) \sum_{n'n} R_{n'\ell'}(r') \, \left\langle \Phi_{\mu n'\ell'}^{(A-1,1)JT} | V_{A-2,A} P_{A,A-1} | \Phi_{\nu n\ell}^{(A-1,1)JT} \rangle R_{n\ell}(r) \right\rangle \\ + \text{terms containing NNN potential}$$

Pauli principle effects in the NN potential kernel: $(^{4}\text{He},n)$ basis

Pauli principle effects in the NN potential kernel: $(^4\text{He},n)$ basis

- The first n⁺⁴He phase-shift calculations within the *ab initio* NCSM/RGM
 - Convergence tests with the low-momentum V_{lowk} NN potential
 - Calculations up to $16h\Omega$

Convergence reached with the V_{lowk} interaction

- The first n⁺⁴He phase-shift calculations within the *ab initio* NCSM/RGM
 - Convergence tests with the low-momentum V_{lowk} NN potential
 - Calculations up to $16h\Omega$

Convergence reached with the V_{lowk} interaction

- The first n+4He phase-shift calculations within the *ab initio* NCSM/RGM
 - Low-momentum V_{lowk} NN potential
 - ²S_{1/2} in perfect agreement with experiment
 - Known to be insensitive to the NNN interaction
 - ${}^2P_{3/2}$ and ${}^2P_{1/2}$ underestimate the data \Leftrightarrow threshold incorrect with the V_{lowk} NN potential
 - Resonances sensitive to NNN interaction

Fully *ab initio*. No fit. No free parameters. Very promising results...

- The first n+4He phase-shift calculations within the *ab initio* NCSM/RGM
 - Chiral EFT N³LO NN potential
 - Convergence in the ${}^2S_{1/2}$ channel
 - Model space up to $16h\Omega$
 - Effective interaction used
 - Open questions on how to apply the effective interaction theory

The first scattering calculation with chiral EFT interaction for *A*>4

• Multiple coupled channels

- Both closed and open
 - Included ⁷Li 3/2⁻ and 1/2⁻
- Solved by microscopic R-matrix on a Langrange mesh

• V_{low-k} interaction

- Preliminary (last week)
- $-8h\Omega$
- 2⁺ bound state

S-wave scattering length

Expt: a_{01} =0.87(7) fm

 a_{02} =-3.63(5) fm

 $J^{\pi} = 2^+; T = 1$

Calc: a_{01} =0.55 fm

 a_{02} =-0.59 fm

Outlook: Extension to heavier nuclei

- Importance-truncated NCSM (with R. Roth, TU Darmstadt)
 - Based on many-body perturbation theory
 - Dimension reduction from billions to ~10 million

$$\kappa_{
u} = -rac{raket{\Phi_{
u}} H' \ket{\Psi_{
m ref}}}{E_{
u}^{(0)} - E_{
m ref}^{(0)}}$$

$$|\kappa_
u| \, \geq \, \kappa_{
m min}$$

Convergence feasible for A=40 system: 40 Ca with V_{low-k} up to 4p4h E=-471 MeV

New tool for ab initio calculations beyond p-shell

Outlook

- p-shell and light sd-shell calculations with χ EFT NN+NNN interactions
 - Include $\chi EFT N^3LO NNN terms$
- *Ab initio* NCSM with continuum (NCSMC)
 - Augmenting the *ab initio* NCSM by the RGM technique to include clustering and resonant plus non-resonant continuum (with Sofia Quaglioni)
 - Description of cluster states
 - Low-energy nuclear reactions important for astrophysics
- Extension to heavier nuclei: Importance truncated NCSM (with Robert Roth)
 - ⁴⁰Ca

