COMPUTATIONAL CHALLENGES FOR 3-BODY FORCES IN THE SHELL MODEL

Hai Ah Nam

San Diego State University Computational Science, PhD Student

Collaboration with: Calvin Johnson, SDSU W. Erich Ormand, LLNL

This work performed under the auspices of the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

The Shell Model

• Typical eigenvalue problem

$$H\Psi_i = E_i \Psi_i$$

• Construct many-body basis states $|\phi_i\rangle$ so that

$$\Psi_i = \sum_n C_{in} \phi_n$$

 Calculate Hamiltonian matrix elements

$$\boldsymbol{H}_{ij} = \left\langle \boldsymbol{\phi}_{j} \left| \boldsymbol{H} \right| \boldsymbol{\phi}_{i} \right\rangle$$

 Diagonalize to obtain eigenvalues & eigenvectors

$$H = \sum_{i} \varepsilon_{i} a_{i}^{\dagger} a_{i} + \frac{1}{4} \sum_{ijkl} V_{ijkl} a_{i}^{\dagger} a_{j}^{\dagger} a_{l} a_{k}$$
$$H = \sum_{i} \varepsilon_{i} a_{i}^{\dagger} a_{i} + \sum_{ijklmn} V_{ijklmn} a_{i}^{\dagger} a_{j}^{\dagger} a_{k}^{\dagger} a_{n} a_{m} a_{l}$$

i

ijklmn

$$\phi = \frac{1}{\sqrt{A!}} \begin{vmatrix} \phi_i(\mathbf{r}_1) & \phi_i(\mathbf{r}_2) & \cdots & \phi_i(\mathbf{r}_A) \\ \phi_j(\mathbf{r}_1) & \phi_j(\mathbf{r}_2) & \phi_j(\mathbf{r}_A) \\ & \ddots & \vdots \\ \phi_l(\mathbf{r}_1) & \phi_l(\mathbf{r}_2) & \cdots & \phi_l(\mathbf{r}_A) \end{vmatrix}$$
$$= a_i^+ \dots a_j^+ a_l^+ |0\rangle$$

Shell Model Codes

- Oak Ridge (1969)
 - Coefficients of Fractional parentage

• Glasgow (1977)

- Good Jz (M-scheme)
- J restored in diagonalization

• OXBASH (1985)

- J-projected M-scheme
- Smaller matrices

RITSSCHIL (1985)

CFP

• DUSM (1989)

Permutation groups

• ANTOINE (1991 & 1999)

- M-scheme
- Apply matrix on-the-fly
- Large dimensions

• NATHAN (1998)

- J-projected similar to ANTOINE
- "Hybrid" M-scheme-CFP code

REDSTICK (now)

- Based on ANTOINE papers
- M-scheme
- Three-body interactions

CMICHSM & MFD (now)

Effects of 3 Body Interactions

- Increase total binding energy
- Increase spin-orbit splitting
 - Improve low-lying excitation spectra (correct ground state spin)
- Spin-observables
 - Magnetic moment
 - Gamow-Teller transition strengths

BETTER AGREEMENT WITH EXPERIMENT!!

Current Investigations

- Higher p-shell, low sd-shell nuclei
 - ⁹Be, ¹⁵O, ¹⁶O, ¹⁷O
- 2-body results 0

⁹Be

Ormand, Caurier

(2005)

71, Issue 4, id. 044312

⁹ Be		NCSM GFN				GFMC
	Exp	INOY	CDB2k	N ³ LO	AV8′	AV8′
$E_{gs}\left(\frac{3}{2},\frac{1}{2}\right)$	-58.16	-56.05	-51.16	-50.47	-50.20	-49.9(2)
$E\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)$	-56.48	-50.95	-47.81	-47.57	-46.84	—

The three nucleon interaction plays a critical role in determining the structure of nuclei BUT is computationally challenging

September 26, 2007: Institute for Nuclear Theory

Primary Operation

Lanczos (iterative method)

$$\hat{H}\mathbf{v}_{1} = \alpha_{1}\mathbf{v}_{1} + \beta_{1}\mathbf{v}_{2}$$

$$\hat{H}\mathbf{v}_{2} = \beta_{1}\mathbf{v}_{1} + \alpha_{2}\mathbf{v}_{2} + \beta_{2}\mathbf{v}_{3}$$

$$\hat{H}\mathbf{v}_{3} = \beta_{2}\mathbf{v}_{2} + \alpha_{3}\mathbf{v}_{3} + \beta_{3}\mathbf{v}_{4}$$

$$\hat{H}\mathbf{v}_{4} = \beta_{3}\mathbf{v}_{3} + \alpha_{4}\mathbf{v}_{4} + \beta_{4}\mathbf{v}_{5}$$

- Ideal for solving a large sparse matrix
- ~ 100-200 iterations for the lowest 10 eigenvalues
- Matrix-vector multiplication, vector dot products for α 's, β 's
- Memory and run-time bottleneck

Why is it so difficult?

• Large dimensions of the Hamiltonian matrix

grows dramatically with # of particles & valence space

$$Dim \approx \begin{pmatrix} N_{sps}^{p} \\ n^{p} \end{pmatrix} \begin{pmatrix} N_{sps}^{n} \\ n^{n} \end{pmatrix} \text{ e.g. } {}^{60}\text{Zn (fp-shell)} \begin{pmatrix} 20 \\ 10 \end{pmatrix} \begin{pmatrix} 20 \\ 10 \end{pmatrix} = 3.4 \times 10^{10}$$

• Large SPARSE matrix

Only store non-zero matrix elements

Nuclide	space	N _{val}	Z _v al	Dim basis	Sparsity (%)
²⁰ Ne	sd	2	2	640	13.0
²⁴ Mg	sd	4	4	28,503	0.74
²⁸ Si	sd	6	6	93,710	0.34
⁴⁶ V	pf	3	3	121,440	0.36
⁴⁸ Cr	pf	4	4	1,963,461	0.04

Example

Limits of HPC Resources

Shared & Distributed Computing Environment

Memory (RAM) ~ 2 - 4 GB/proc

- Thunder Linux: [1024 nodes / 4096 CPUs] 4 CPUs/node w/ 8 GB shared memory (8192 GB total)
- uP IBM: [108 nodes / 864 CPUs] 8CPUs/node w/ 32 GB shared memory (3456 GB total)
- Run-time ~ 12 hours
 (DAT time ~ 48 hours)
- Parallel File System (Disk)
 - Thunder: 338 TB
 - uP: 130 TB
 - Not all available to 1 user (small fraction)

More difficulties with 3-Body Forces

• Basis dimensions are the same (2 \rightarrow 3 body) but H is less sparse

- $H_{ij}=H_{pp}+H_{nn}+H_{pn}$ (2 body)
- $H_{ijk} = H_{ppp} + H_{nnn} + H_{ppn} + H_{nnp}$ (3 body)
- → More non-zero matrix elements
- MORE MEMORY INTENSIVE
- Increase in run-time
 - ¹⁰B, 4 \hbar Ω; Basis Dim = 581,740
 - 2-body has ~ 145 × 10⁶ non-zero elements
 ~ 1- 2 CPU-hr for lowest ten states
 - 3-body has ~ 2.2 × 10⁹ non-zero elements
 > 200 CPU-hr
- As if it wasn't already challenging!!

"One of us is in serious trouble!"

Sparsity Increases with 3 Body Forces

H. Nam

September 26, 2007: Institute for Nuclear Theory

Memory Limitation Solutions

• Store matrix elements on disk

- Requires much disk space, fast i/o.
- Disk access is ~1000 times slower than RAM access
- (e.g., OXBASH, Glasgow-Los Alamos, CMICHSM)

Store matrix elements in RAM

- Limited by # of nodes available.
- 3,000 processor @ 2GB = 6,000 GB RAM
- (e.g. MFD)

• On-the-fly: Recompute the many-body matrix elements

- Re-compute on each iteration from the two- (and three-) body matrix elements
- Efficient if you only compute non-zero matrix elements NEED TO KNOW WHICH ARE NON-ZERO!!!
- (e.g. ANTOINE, REDSTICK)

Dim = 10⁸, Sparsity = 0.05% = 2 TB (2,000 GB)

> Dim = 10⁹ = 200 TB (200,000 GB)

REDSTICK

Shell Model Code

- On-the-fly construction of Hamiltonian matrix
- Created by W. Erich Ormand & Calvin W. Johnson
- Fortran 90 & MPI
- 2-body version
 - 65+ subroutines
 - 16,000+ lines of code
- 3-body version
- Release spring 2008

Needs Improvements

- Run-time
- Current structure will have memory issues outside of lanczos bottleneck

REDSTICK Development

2004 – 2005

- Huh? What's REDSTICK?
- 2006 2007
 - New "Jump" algorithm applied to various subroutines in 2 body version
 - Improves run-time performance

Summer 2007

New 3-body code with similar jump type algorithm

• In Progress

- Analysis of parallelization schemes
- Implementation of parallelization schemes to 3 body code
- Improves memory utilization

Good Coding Sense

• Avoid expensive mathematical operations

Operation	Min Cycles per iteration (L1 Cache)
x(i) = y(i)	1.7
$\mathbf{x}(\mathbf{i}) = \mathbf{x}(\mathbf{i}) + \mathbf{y}(\mathbf{i})$	1.7
$x(i) = x(i) + s^*y(i)$	1.7
x(i) = 1/y(i)	15.1
x(i) = sqrt(y(i))	18.1

do i = 1, N
 do j = 1, N
 y(j,i) = x(j,i) / r(i)
 end do
end do

Avoid branching within inner loops

```
do i=1,n
                               if (r < 1.0e-16) then
 if (r < 1.0e-16) then
                                 do i=1,n
 a(i)=0.0; b(i)=0.0; c(i)=0.0
                                  a(i)=0.0; b(i)=0.0; c(i)=0.0
  else
                                  end do
   a(i)=x(i)/r
                             ▲ else
   b(i)=y(i)/r
                                 do i=1,n
   c(i)=z(i)/r
                                  a(i)=x(i)/r
                                   b(i)=y(i)/r
  end if
end do
                                    c(i)=z(i)/r
                                  end do
                                end if
```

September 26, 2007: Institute for Nuclear Theory

 Efficiently establish supporting arrays to determine non-zero matrix elements

• E.g.
$$\hat{H}^{pn} = \sum_{ijkl} V_{ijkl}^{pn} \pi_i^+ \pi_j v_k^+ v_l$$

$$H_{pn} = \sum_{ijkl} \left\langle \Phi_{f}^{p} \left| \pi_{i}^{+} \pi_{j} \right| \Phi_{i}^{p} \right\rangle \left\langle \Phi_{f}^{n} \left| \nu_{k}^{+} \nu_{l} \right| \Phi_{i}^{n} \right\rangle V_{ijkl}^{pn}$$

One body jump If *i* and *f* connect by a one-body operator, then m.e. $\neq 0$

• "Jump" Algorithm

COMPARE initial to final states to see if they're connected by a one-body operator

 $|\Phi_i\rangle \longrightarrow \pi_a^+ \pi_b |\Phi_i\rangle$

Create all possible **JUMP** states produced from the operators

Search the final states for the jump state

 $N^2 \rightarrow Nlog(N)$: Increase subroutine performance by a factor of 5-10 (depending on dim.)

September 26, 2007: Institute for Nuclear Theory

 Φ_{f}

Parallelization Analysis: Load Balancing

WORK DISTRIBUTION 1e+06 **ANALYSIS** 1e+05 10000 # of operations 1000 **TAU Output** std. dev. mean 100 n, c, t 0, 0, 0 n, c,t 1, 0,0 n, c,t 2, 0,0 n, c, t 3, 0, 0 n, c,t 4, 0, 0 10 n.c.t 5,0,0 n, c, t 6, 0, 0 n, c,t 7, 0,0 n, c, t B, D, O n.c.t 9.D.O 50000 1e+05 1.5e+05 0 n, c, t 10, 0, 0 n.c.t 11,0.0 **Basis State** n, c, t 12, 0, 0 n, c, t 13, 0,0 n, r, r 14, 0, 0 n, c, t 15, 0, 0 n, r, t 16, 0, 0 n.c.t 17,0,0 n.c.t 18,0,0 n, c, t 19, 0, 0 n, c, t 20, 0, 0 n, c, t 21, 0, 0 n, c, t 22, 0, 0 n, c, t 23, 0, 0 n, c, t 24, 0, 0 n, c,t 25, 0,0 n, c,t 26, 0,0 n, c, t 27, 0, 0 n, c, t 2 B, 0, 0 n.c.t 29,0,0 n, c, t 30, 0, 0 n, c, t 31, 0, 0 MPI_Barrier MONE

Parallelization

Efficient Parallelization

CPU

V₁,**V**₂

CPU

CPU

CPU

18

ARPACK (PARPACK) – optimized eigensolver (MFD)

- Limited by system resources
- ¹⁰B ~ 4 hours w/ 3500 processors
- Hybrid Programming Model MPI & OpenMP
 - Decreases minimum memory requirement
- Single Instruction, Multiple Data

 → Multiple Instruction, Multiple Data

What Else?

• Reconsider algorithms for efficient parallelization

Breaks up the large dimension vector

$$H \mathbf{v}_{1} = \mathbf{v}_{2} \Rightarrow \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{N} \\ v_{N} \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{N} \\ v_{N} \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{N} \\ v_{N} \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{N} \\ v_{N} \\ v_{N} \\ v_{N} \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{N} \\ v_$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} a_{11}v_1 + a_{12}v_2 + a_{13}v_3 \\ a_{21}v_1 + a_{22}v_2 + a_{23}v_3 \\ a_{31}v_1 + a_{32}v_2 + a_{33}v_3 \end{bmatrix} = \begin{bmatrix} | \\ \mathbf{a}_1 \\ | \\ | \end{bmatrix} v_1 + \begin{bmatrix} | \\ \mathbf{a}_2 \\ | \\ | \end{bmatrix} v_2 + \begin{bmatrix} | \\ \mathbf{a}_3 \\ | \\ | \\ | \end{bmatrix} v_3$$

- Storage and on-the-fly
 - 1 proc starts with on-the-fly & another tries to retrieve m.e. If already calculated throw out else use retrieved values

The Frontier of NCSM Calculations

- Two Body (m-scheme): 7 ≤ N ≤ 11, Nmax=10 N ≥ 12, Nmax = 6
 - Basis dimensions of 10⁸ have been achieved
 - Nmax=8 requires restructuring of code
- Three Body: Practical limit is Nmax = 6 for all p-shell nuclei
 - Thus far results (Nmax=6 up to ⁶Li (¹²C?), Nmax=4 up to ¹³C)
 - Our investigations include ¹⁵O, ¹⁶O, ¹⁷O, ⁹Be (4hbw... 6hbw?)
- Four Body: Nmax = 4
- Not only limited by the number of matrix elements
- Other limiting factors
 - Dimensions of the supporting vectors (1-body jumps, 2-body jumps, H_{ppp}, H_{nnn})
 - E.g ~ 4 billion two-body jumps (integer(4)) for ^{15}O , 6hbw = 16 GB
 - Lanczos vector storage

Future of HPC

• Bigger and better?

- IBM Power6
- If we need ~ 200,000 GB →
 (> 3000 nodes w/ 64 GB each)

• Bring out the big guns!

- BlueGene/L
- 65536 nodes / 131072 processors
- 512 MB... yikes! → ~ 33,500 GB total
- Hope
 - DARPA, High Productivity Computing
 - Use what you've got wisely.
 - Collaborate with Computer Scientists

September 26, 2007: Institute for Nuclear Theory

- 3-Body Forces are essential for ab initio nuclear structure calculations
- Computationally challenging due to memory and run-time performance limitations
- On-the-fly diagonalization methods provide greatest scaling potential (or a combination)
- Need efficient algorithms (suited for parallel optimization)
- Need to analyze workload distribution
- Need efficient parallelization schemes
- Considerable effort is still needed!!

Acknowledgements

- Calvin W. Johnson, SDSU
- W. Erich Ormand, N-Division, LLNL
- Greg Bronevetsky, CASC, LLNL
- Petr Navratil, N-Division, LLNL
- Department of Energy