Low-momentum ring diagrams of neutron matter at and near the unitary limit

L.-W. Siu, T.T.S. Kuo (Stony Brook) R. Machleidt (Idaho)

> 10.12.07 Seattle INT



## Many-body problems with tunable interaction

$$\begin{aligned} H\Psi_0(A) &= E_0\Psi_0(A), \ A \to \infty \\ H &= H_0 + V, \quad V \text{ is tunable} \\ H_0\Phi_0 &= E_0^{free}\Phi_0 \qquad \Phi_0 = \frac{1}{77777} \quad \textbf{k}_F \end{aligned}$$

Goldstone expansion for the ground-state energy shift

$$\Delta E_0 = (E_0 - E_0^{free}) =$$



(iii)

### Unitary limit:

 $a_s$  = scattering length of V, V is <u>tuned</u> such that:

$$a_s \to \pm \infty$$
, or  $1/a_s \to 0$ 

At unitary limit ( Bertsch problem), expect

$$\xi = \frac{E_0}{E_0^{free}} =$$
 universal ratio  $\approx 0.44$ 

for two-species fermionic systems (e.g. neutron matter)

How to tune interaction *V*?

- Cold Fermi gas (laser trapped) Much progress made past few years Tune atomic-V by external magnetic field Observed BCS-BEC cross-over near Feshbach resonance  $(a_s = \pm \infty)$
- Nuclear systems

Tune  $V_{NN}$  by master (Machleidt) !! Tune  $V_{NN}$  by Brown-Rho scaling (meson mass is medium dependent) ???????

# CD-Bonn $V_{NN}({}^{1}S_{0})$ of different $a_{s}$

|          | $m_{\sigma}$ [MeV] | <i>a<sub>s</sub></i> [fm] | <i>r<sub>e</sub></i> [fm] |
|----------|--------------------|---------------------------|---------------------------|
| original | 452.0              | -18.97                    | 2.82                      |
| tuned    | 475.0              | -4.949                    | 3.77                      |
|          | 447.0              | -42.52                    | 2.66                      |
|          | 442.85             | -∞ (-12070)               | 2.54                      |
|          | 442.80             | +∞                        | 2.54                      |
|          | 434                | +21.01                    | 2.31                      |
|          |                    |                           |                           |

We tuned only  $m_{\sigma}$  one bound state exist attraction in  ${}^{1}S_{0}$  mainly from  $\sigma$ -exchange

 $a_s$  depends sensitively on  $m_\sigma$ 



# Model-space approach:

• Space  $\{k \ge A\}$  is integrated out:

 $V_{bare}$  renormalized to  $V_{low-k}$  $V_{bare}$  has strong short range repulsion  $V_{low-k}$  is smooth, and energy independent

Space {k≤A}:
 use V<sub>low-k</sub> to calculate all-order sum of ring diagrams

Note we need  $V_{low-k}$  of specific  $a_s$ , including  $a_s \rightarrow \pm \infty$ .

$$V_{low-k}^a$$
 of specific scattering length  $a$ 

Start from  $V^a$ , a bare CD-Bonn potential of scat. length a.  $V^a_{low-k}$  (of same a) given by:

$$T(k',k,k^2) = V^a(k',k) + \int_0^\infty q^2 dq \frac{V^a(k',q)T(q,k,k^2)}{k^2 - q^2 + i0^+},$$

$$\begin{split} T_{low-k}(p',p,p^2) &= V_{low-k}^a(p',p) \\ &+ \int_0^{\Lambda} q^2 dq \frac{V_{low-k}^a(p',q) T_{low-k}(q,p,p^2)}{p^2 - q^2 + i0^+}, \\ T(p',p,p^2) &= T_{low-k}(p',p,p^2); \ (p',p) \leq \Lambda. \end{split}$$

 $V_{low-k}^{a}$  obtained from solving the above T-matrix equivalence equations using the iteration method of Lee-Suzuki-Andreozzi

## $V_{low-k}$ of potentials with various scattering lengths



We first do HF calculation using  $V_{low-k}$ :

$$\Delta E_0^{HF} = \sum_{ij < k_F} \langle ij | V_{low-k} | ij \rangle$$

With this approximation,

$$\xi = \frac{E_0^{free} + \Delta E_0^{HF}}{E_0^{free}}$$



### To do better than HF:

HF includes only the lowest-order diagram:



We want to sum the *pphh* ring diagrams to all orders such as



### Summation of ring diagrams:



 $\Delta E_0^{pp} = \frac{-1}{2\pi i} \int_0^1 d\lambda \int_{-\infty}^\infty e^{i\omega 0^+} tr_{<\Lambda} [G^{pp}(\omega,\lambda) V_{low-k}]$ Using Lehmann's representation of  $G^{pp}$ ,

 $\Delta E_0^{pp}$  (all order) becomes

 $\Delta E_0^{pp} = \int_0^1 d\lambda \Sigma_m \Sigma_{ijkl < \Lambda} Y_m(ij, \lambda) Y_m^*(kl, \lambda) \\ \times \langle kl | V_{low-k} | ij \rangle$ 

The transition amplitudes  $Y_m$  given by RPA equation; m denotes states dominated by hole-hole components. pphh-RPA equation:

$$\Sigma_{ef} R(ij, ef, \lambda) Y_m(ef, \lambda) = \omega_m Y_m(ij, \lambda);$$
  
(*i*, *j*, *e*, *f*) <  $\Lambda$ 

$$\begin{split} &R(ij, ef, \lambda) \\ &= \left[ (\epsilon_i + \epsilon_j) \delta_{ij, ef} + \lambda (1 - n_i - n_j) \langle ij | V_{low-k} | ef \rangle \right] \end{split}$$

*m* denotes states dominated by hole-hole components, namely  $\langle Y_m | \frac{1}{Q} | Y_m \rangle = -1$  and  $Q(i, j) = (1 - n_i - n_j)$ .  $n_i = (1, 0)$  for  $k_i \ (\leq, >) k_F$ 

We use HF s.p. spectrum, namely

$$\epsilon_i = \frac{\hbar^2 k_i^2}{2m} + \sum_{h \le k_F} \langle ih | V_{low-k} | ih \rangle$$

# **Brief Summary**

- By slightly tunning V(cdbonn), get  $V^a$  (modified cdbonn of various  $a_s$ )
- Choose  $\Lambda$  to define a momentum model space with  $(k \leq \Lambda)$
- Integrate out  $k > \Lambda$  to get model-space effective interaction  $V_{low-k}^{a}$ , which is E-indep. and of scat. length  $a_s$ .
- Nuclear matter ground st. energy  $E_0$ calculated from the all-order sum of the *pphh* ring diagrams  $(k \leq \Lambda)$  such as



#### Results of low-momentum ring-diagram summation



## choice of $\Lambda$ :

(1) 
$$V_{NN}$$
 constrained by  
 $NN$  scattering with  $E_{lab} \leq 300 MeV$   
 $\Rightarrow \Lambda \approx 2.0 fm^{-1}$ 

(2) Fix point : 
$$\frac{\partial \xi}{\partial \Lambda} = 0$$

## Determination of the fixed-point (CD Bonn- $\infty$ )



Integrating out  $\{k > \Lambda\}$  leads to two types of renormalized interactions:

(1) Energy-independent  $V_{low-k}$ 

(2) Energy-dependent  $G^{M}(\omega)$ , it is energy dependent, rather complicated for computation

We shall use both for ring diagrams.

Formally these two approaches are equivalent; just like "Bloch-Horowitz" vs "Rayleigh-Schroedinger"

In energy-dependent approach, we first calculate model-space  $G^M$  matrix:

$$G_{ijkl}^{M}(\omega) = V_{ijkl} + \sum_{rs} V_{ijrs} \frac{Q^{M}(rs)}{\omega - \hbar^{2}k_{r}^{2}/2m - \hbar^{2}k_{s}^{2}/2m + i0^{+}} G_{rskl}^{M}(\omega)$$

 $Q^M$  is Pauli operator, assuring intermediate states outside momentum model space  $\{k \leq \Lambda\}$ :

 $G^M$  is energy-dependent; note  $\omega$  is determined self-consistently (not free parameter).

Ring-diagram all-order sum in energy-dep. formalism:

$$\Delta E_0^{pp} = \int_0^1 d\lambda \Sigma_m \Sigma_{ijkl < \Lambda} Y_m(ij,\lambda) Y_m^*(kl,\lambda) G_{kl,ij}^M(\omega_m^-)$$

Y and  $\omega$  given by RPA equation:

$$\Sigma_{ef}[(\epsilon_i + \epsilon_j)\delta_{ij,ef} + \lambda(1 - n_i - n_j)L_{ij,ef}(\omega)]Y_m(ef,\lambda)$$
  
=  $\mu_m(\omega,\lambda)Y_m(ij,\lambda); \quad (i,j,e,f) < \Lambda$ 

with self-consistent condition

$$\omega = \mu_m(\omega, \lambda) \equiv \omega_m^-(\lambda).$$

# 2 ring diagram methods



(i) each vertex =  $V_{low-k}$ (ii) each vertex = G-matrix





CD-Bonn- $\infty$  ( $a_s = -12070$  fm)



At 
$$a_s \to \pm \infty$$
, our ring results give  
 $\Delta E_0 = \alpha k_F^2 + \beta$ ;  $\alpha = -0.165$ ,  $\beta = -0.004$ 

Suppose we take

$$\alpha = -\frac{1}{6} = -0.166666...$$
 and  $\beta = 0$ ,

Then the universal ratio is  $\xi = \frac{E_0^{free} + \Delta E_0}{E_0^{free}} = \frac{4}{9} = 0.4444..$ 





## Summary and Discussion

By slightly tuning  $m_{\sigma}$  of V(CD-Bonn), we obtain neutron potentials of  $a_s = \pm \infty$ , -10, +20,...

 $V^a_{low-k}$  obtained by integrating out  $\{k > \Lambda\}$ 

All-order sum of ring diagrams calculated using  $V_{low-k}^a$ 

Fix point is at  $\Lambda \approx 2.3 fm^{-1}$ 

Our results indicate  $\xi = \frac{4}{9}$  at the unitary limit