Low-momentum ring diagrams of neutron matter at and near the unitary limit

L.-W. Siu, T.T.S. Kuo (Stony Brook) R. Machleidt (Idaho)

> 10.12.07Seattle INT

Many-body problems with tunable interaction

$$
H\Psi_0(A) = E_0\Psi_0(A), A \to \infty
$$

\n
$$
H = H_0 + V, \qquad V \text{ is tunable}
$$

\n
$$
H_0\Phi_0 = E_0^{free}\Phi_0 \qquad \qquad \Phi_0 = \frac{1}{\sqrt{1/1/1}} \qquad \qquad
$$

Goldstone expansion for the ground-state energy shift

$$
\Delta E_0 = (E_0 - E_0^{free}) =
$$

Unitary limit:

as = scattering length of *V , V* is *tuned* such that:

$$
a_s \to \pm \infty
$$
, or $1/a_s \to 0$

At unitary limit (Bertsch problem), expect

$$
\xi = \frac{E_0}{E_0^{free}} = \text{universal ratio } \approx 0.44
$$

for two-species fermionic systems (e.g. neutron matter)

How to tune interaction *V?*

- **Cold Fermi gas** (laser trapped) Much progress made past few years Tune atomic-*V* by external magnetic field Observed BCS-BEC cross-over near Feshbach resonance $(a_s = \pm \infty)$
- **Nuclear systems**

Tune *V*_{NN} by master (Machleidt) !! Tune V_{NN} by Brown-Rho scaling (meson mass is medium dependent) ???????

CD-Bonn $V_{NN}({}^{1}S_{0})$ of different a_{s}

We tuned only m_{σ} attraction in ${}^{I} \hspace{-1pt} S_o$ mainly from σ -exchange one bound state exist

 a_s depends sensitively on m_{σ}

Model-space approach:

•Space {*k>* Λ} is integrated out:

 V_{bare} renormalized to $V_{\mathit{low-k}}$ *Vbare* has strong short range repulsion V_{low-k} is smooth, and energy independent

• Space { *k*≤Λ}: use *Vlow-k* to calculate all-order sum of ring diagrams

Note we need V_{low-k} of specific a_s , including $a_s \to \pm \infty$.

$$
V_{low-k}^a
$$
 of specific scattering length a

Start from V^a , a bare CD-Bonn potential of scat. length a. V_{low-k}^a (of same a) given by:

$$
T(k',k,k^2) = V^a(k',k) + \int_0^\infty q^2 dq \frac{V^a(k',q)T(q,k,k^2)}{k^2 - q^2 + i0^+},
$$

$$
T_{low-k}(p', p, p^2) = V_{low-k}^a(p', p)
$$

+ $\int_0^{\Lambda} q^2 dq \frac{V_{low-k}^a(p', q) T_{low-k}(q, p, p^2)}{p^2 - q^2 + i0^+},$
 $T(p', p, p^2) = T_{low-k}(p', p, p^2); (p', p) \le \Lambda.$

 V_{low-k}^a obtained from solving the above T -matrix equivalence equations using the iteration method of Lee-Suzuki-Andreozzi

V_{low-k} of potentials with various scattering lengths

We first do HF calculation using V_{low-k} :

$$
\Delta E_0^{HF} = \sum_{ij < k_F} \langle ij | V_{low-k} | ij \rangle
$$

=

With this approximation,

$$
\xi = \frac{E_0^{free} + \Delta E_0^{HF}}{E_0^{free}}
$$

To do better than HF:

HF includes only the lowest-order diagram:

We want to sum the *pphh* ring diagrams to all orders such as

Summation of ring diagrams:

$$
\Delta E_0^{pp} = \frac{-1}{2\pi i} \int_0^1 d\lambda \int_{-\infty}^{\infty} e^{i\omega 0^+} tr_{<\Lambda} [G^{pp}(\omega, \lambda) V_{low-k}]
$$

Using Lehmann's representation of G^{pp} ,

 ΔE_0^{rr} (all order) becomes

 $\Delta E_0^{pp} = \iint_0^1 d\lambda \sum_m \sum_{ijkl < \Lambda} Y_m(ij, \lambda) Y_m^*(kl, \lambda)$ $\times \langle kl|V_{low-k}|ij\rangle$

The transition amplitudes Y_m given by RPA equation; m denotes states dominated by hole-hole components.

 $pphh$ -RPA equation:

$$
\Sigma_{ef} R(ij, ef, \lambda) Y_m(ef, \lambda) = \omega_m Y_m(ij, \lambda);
$$

(i, j, e, f) Λ

$$
R(ij, ef, \lambda)
$$

=
$$
[(\epsilon_i + \epsilon_j)\delta_{ij,ef} + \lambda(1 - n_i - n_j)\langle ij|V_{low-k}|ef\rangle]
$$

m denotes states dominated by hole-hole components, namely $\langle Y_m | \frac{1}{Q} | Y_m \rangle = -1$ and $Q(i, j) = (1 - n_i - n_j)$. $n_i = (1,0)$ for $k_i \leq z > k_F$

We use HF s.p. spectrum, namely

$$
\epsilon_i = \frac{\hbar^2 k_i^2}{2m} + \sum_{h \le k} \langle ih | V_{low-k} | ih \rangle
$$

Brief Summary

- \bullet By slightly tunning V(cdbonn), get V^a (modified cdbonn of various a_s)
- Choose Λ to define a momentum model space with $(k \leq \Lambda)$
- Integrate out $k > \Lambda$ to get model-space effective interaction V_{low-k}^a , which is E-indep. and of scat. length a_s .
- Nuclear matter ground st. energy E_0 calculated from the all-order sum of the *pphh* ring diagrams $(k \leq \Lambda)$ such as

Results of low-momentum ring-diagram summation

choice of Λ :

(1)
$$
V_{NN}
$$
 constrained by
\n NN scattering with $E_{lab} \leq 300MeV$
\n $\Rightarrow \Lambda \approx 2.0fm^{-1}$

(2) Fix point:
$$
\frac{\partial \xi}{\partial \Lambda} = 0
$$

Determination of the fixed-point (CD Bonn- ∞)

Integrating out $\{k > \Lambda\}$ leads to two types of renormalized interactions:

 (1) Energy-independent V_{low-k}

(2) Energy-dependent $G^M(\omega)$, it is energy dependent, rather complicated for computation

We shall use both for ring diagrams.

Formally these two approaches are equivalent; just like "Bloch-Horowitz" vs "Rayleigh-Schroedinger" In energy-dependent approach, we first calculate model-space G^M matrix:

$$
G_{ijkl}^M(\omega) = V_{ijkl}
$$

+ $\Sigma_{rs} V_{ijrs} \frac{Q^M(rs)}{\omega - \hbar^2 k_r^2 / 2m - \hbar^2 k_s^2 / 2m + i0^+} G_{rskl}^M(\omega)$

 Q^M is Pauli operator, assuring intermediate states outside momentum model space ${k \leq \Lambda}$:

 G^M is energy-dependent; note ω is determined self-consistently (not free parameter).

Ring-diagram all-order sum in energy-dep. formalism:

$$
\Delta E_0^{pp} = i_0^1 d\lambda \Sigma_m \Sigma_{ijkl} \langle \Lambda Y_m(ij,\lambda) Y_m^*(kl,\lambda) G_{kl,ij}^M(\omega_m^-)
$$

Y and ω given by RPA equation:

$$
\sum_{eff} [(\epsilon_i + \epsilon_j) \delta_{ij,ef} + \lambda (1 - n_i - n_j) L_{ij,ef}(\omega)] Y_m(ef, \lambda)
$$

= $\mu_m(\omega, \lambda) Y_m(ij, \lambda);$ $(i, j, e, f) < \Lambda$

with self-consistent condition

$$
\omega = \mu_m(\omega, \lambda) \equiv \omega_m(\lambda).
$$

2 ring diagram methods

(i) each vertex $= V_{low-k}$ (ii) each vertex = G -matrix

CD-Bonn-∞ (a_s = -12070fm)

At
$$
a_s \to \pm \infty
$$
, our ring results give
\n $\Delta E_0 = \alpha k_F^2 + \beta$; $\alpha = -0.165$, $\beta = -0.004$

Suppose we take

$$
\alpha = -\frac{1}{6} = -0.166666...
$$
 and $\beta = 0$,

Then the universal ratio is $\xi = \frac{E_0^{free} + \Delta E_0}{E_0^{free}} = \frac{4}{9} = 0.4444...$

Authors E $0.36(15)$ Bourdel *el.al* $0.51(4)$ Kinast et.al. $0.46(5)$ Partridge *et.al.* $0.46^{+0.05}_{-0.12}$ Stewart *et.al.*

Summary and Discussion

By slightly tuning m_{σ} of V(CD-Bonn), we obtain neutron potentials of $a_s = \pm \infty, -10, +20,...$

 V_{low-k}^a obtained by integrating out $\{k > \Lambda\}$

All-order sum of ring diagrams calculated using V_{low-k}^a

Fix point is at $\Lambda \approx 2.3 fm^{-1}$

Our results indicate $\xi = \frac{4}{9}$ at the unitary limit