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Many-body problems with tunable interaction

HUy(A) = Eg¥y(A), A — oo
H=H,+ V. V' is tunable
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Goldstone expansion for the OW“O + Q::Q £
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Unitary limit:

a, = scattering length of ', V'is tuned such that:

as — Foo, or 1/ay — 0

At unitary limit ( Bertsch problem), expect

E;
5 — {;]f? e

free = universal ratio ~ (.44
0

for two-species fermionic systems (e.g. neutron
matter)



How to tune interaction J'?

 Cold Fermi gas (laser trapped)

Much progress made past few years

Tune atomic-V by external magnetic field
Observed BCS-BEC cross-over near
Feshbach resonance (a, = +o)

* Nuclear systems

Tune V' by master (Machleidt) !!
Tune Vy by Brown-Rho scaling

(meson mass 1s medium dependent)
2999799



CD-Bonn V), (!S,) of different a,
_ Img[MeV] laffm] __lrffm]

original 452.0 -18.97 2.82
tuned 475.0 -4.949 3.77
447.0 -42.52 2.66
44285 - (-12070)  2.54
442 .80 +00 2.54
434 +21.01 2.31 —\L
We tuned Qn]y m, one bound state exist

attraction in S, mainly from o-exchange

a, depends sensitively on m
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Model-space approach:

. Space {k>A} 1s integrated out:

V,,..tenormalized to V, .
V, ... has strong short range repulsion
Vi 18 smooth, and energy independent

* Space {k<A}:
use V., to calculate all-order sum of ring
diagrams

Note we need V', , of specific a, , including a, — +oo.



a

o of specific scattering length a

Start from V¢, a bare CD-Bonn potential of

scat. length a. V%, , (of same a) given by:
(T k2) = VR 1)1 2dgV BT (k%)
T(A ?Aj k ) =V (A . A)‘|‘f0 ( dq Ag q2+20+ :

'T}.’.Ou.-*—é(p,vpv pZ) — [ou— (p p)

A ¢ ow—k\P»d TZ ow—k\4, P, P~
b g e 0 sl 0.7
p? —q*+i0F

T\, p°) = Tow-r(p 0, p7): (Vip) <A

@ ;. obtained from solving the above

T-matrix equivalence equations using
the iteration method of Lee-Suzuki-Andreozzi



V,ow.i Of potentials with various scattering lengths
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We first do HF calculation using V.

‘X?{}'Ei’—flﬂ ‘ZJ >
With this approximation,

free . A nHF
¢ _ Lky +AL
Jree
1y
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To do better than HF:

HF includes only the lowest-order diagram:

OO

We want to sum the pphh ring diagrams to
all orders such as

QMQQ:K} -
AE,= "




Summation of ring diagrams:

pphh free Green function:
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in terms of pphh true Green function
GPP(w,\) = F(w) + AF(w)Vipw_1GP(w, \)
A S A

I
+

t I
AEY = =1 o AN TS (9‘“‘” tr A |GPP(w, M) Vigw—r]

Umng Lehma.nn's representation of G*7.
A LR (all order) becomes

AFERY = f[ d)\_d,”_d,j,s;;{ k}m(U )\)}m(kl A)
X (kU Vipw—1|%])

-

The transition amplitudes Y,,, given by

RPA equation; m denotes states dominated
by hole-hole components.



pphh-RPA equation:

YefR(g ef, MY, (ef, A) = w, Y (24, A);
(EJ €, f) <A

R(ij.ef.\ |
KF + F ) ~‘]~‘ f + /\(1 n})<'l‘] ‘11'7.()1{.‘—;(

f)]

m denotes states dominated by
hole-hole components, namely

<Y:n 1 }jn> = —1land (2(3 ]) — (1 — T _;‘Yl’.f)'

()
= (1.0) for k; (<, >)kp

We use HF s.p. spectrum, namely

€ — 2‘,” +T:IJ{EFQ}E‘LKFUH—;.‘gh>



Brief Summary

e Dy slightly tunning V(cdbonn),
get V' (modified cdbonn of various a)

e Choose A to define a momentum
model space with (£ < A)

e Integrate out £ > A to get
model-space effective interaction V,2 .
which is E-indep. and of scat. length a.

e Nuclear matter ground st. energy £y
calculated from the all-order
sum of the pphh ring diagrams
(£ < A) such as

(iii)



Results of low-momentum ring-diagram summation
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choice of A:
(1) Viyn constrained by
NN scattering with £, < 300MeV
= A~ 2.0fm™!

¢ T . 08
(2) Fix point : 5% =0



Determination of the fixed-point (CD Bonn-oo)
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Integrating out {k > A} leads to
two types of renormalized interactions:

(1) Energy-independent Vi,

(2) Energy-dependent GM(w),
it is energy dependent,
rather complicated for computation

We shall use both for ring diagrams.

Formally these two approaches are equivalent;
just like " Bloch-Horowitz” vs 7 Rayleigh-Schroedinger”



In energy-dependent approach,
we first calculate model-space GM matrix:

Gii(w) = Viji

M ;)
+ZMLH;}M < “

w—h? l. Q;”_?} l. 3‘m+;[1+0”;']( )

QM is Pauli operator, assuring intermediate states
outside momentum model space {k < A}:

GM is energy-dependent; note w is determined
aelf—conalatemh* (not free parameter).



Ring-diagram all-order sum in energy-dep. for-
malism:

AEM} — f“ d/\zfrf—-'rjﬂ-:: \}m(g.} /\)}T:*(k[ A)OH r;(: m)

I

Y and w given by RPA equation:

Viefl(€i + €5)0i5. + AL — 1 — 15) Lijep(w)]|Yim(ef, A)
— fu"”?-("‘u? )\)}”;(ij A) (E J €, f) < A

with self-consistent condition

— ;u"m(w? )\) = "‘{"’;H(A)



2 ring diagram methods

(iii)
(1) each vertex = V1
(i) each vertex = G-matrix



Ring diagram computation (CDB—<)
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Ground state energy of neutron matter at unitary limit
( CDB-x)
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Potential Energy / 41.4fm?
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At ay, — £0o0, our ring results give

AEy = ak% + 3, a = —0.165, 8 = —0.004

SUuppose we take

a = —1 = —0.166666... and 3 = 0,

Then the universal ratio 1s

Ey°+AEy _ 4 A
&= OEU‘"“ =35 = 0.4444..




Experimental Values :

£ Authors

0.36(15) Bourdel el.al
0.51(4) Kinast et.al.
0.46(5) Partridge et.al.
0.4610Y5 Stewart et.al.



Summary and Discussion

By slightly tuning m,, of V(CD-Bonn),
we obtain neutron potentials of
a, = oo, -10, +20....

7

@ ;. obtained by integrating out {k > A}

All-order sum of ring diagrams
e 1111 s - 1/a
calculated using V2

Fix point is at A = 2.3fm™!

Our results indicate & = % at the unitary limit
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