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Internucleon Interactions

Details unconstrained for higher 
momenta

Fit all low-energy NN data

High momentum modes complicate  
many-body calculations

Hierarchy: V
NN

> V
3N 

> ...  all are effective theories

Desire low-momentum interactions 
for nuclear structure calculations

3N forces: current frontier in 
many-body calculations for 
medium-mass nuclei
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Low-Momentum Interactions

Vlow k (): class of energy-independent 
low-momentum interactions which exactly 
reproduce known NN data below 

Collapse to similar potentials as →2.0fm-1

Generate low-momentum interactions for low-energy problems of interest

Evolve cutoff to desired resolution scale 
using exact RG equation

High-k modes integrated out as  lowered

 0
d

d
  :Require 


T

S.K. Bogner, T.T.S. Kuo, and A. Schwenk, Phys. Rep. 386, 1 (2003).
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Advantages for Nuclear Structure

3H

Using lower cutoffs:

Improved convergence for 

structure calculations

Energy independence useful for 

nuclear structure

Variation of observables with cutoff
probes error due to neglected 
physics.
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What is a “Mixed-Symmetry” State?

Goal: Understand properties microscopically w/ Vlow k

Collective Excitations which are p/n asymmetric

Deformed Nuclei

“Scissor”modeRotor

FS

MS

Nearly-Spherical Nuclei

Isovector        
Quadrupole

core

Isoscalar
Quadrupole

FS MS

Focus: Isovector quadrupole excitations of valence nucleons

Understand collective coupling of proton-neutron (p/n) subsystems

Sensitive to: shell structures, p/n part of valence shell interaction

νπ

π

ν

J. D. Holt                                                                                                                 INT, Oct. 2007

(A. Richter et al)

N. Pietralla et al.
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Experimental Spectra/Signatures
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MSSs in A≈90 Nuclei

93Nb 93Nb Orce et. al (2006)

n=502p1/2

1g9/2

1g7/2

2d3/2

2d5/2

1h11/2

3s1/2

p=38

Model SpaceModel Space

88Sr Core

n=502p1/2

1g9/2

1g7/2

2d3/2

2d5/2

1h11/2

3s1/2

p=38

Model SpaceModel Space

88Sr Core

Experimental Landscape

Pietralla et al., PRL 83 (1999)

Pietralla et al., PRL 84 (2000)

Fransen et al., PRC 67 (2003)
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Calculation Methods

Generate valence shell effective 
interaction from microscopic     
Many body theory:

Vlow k + 2nd order terms   
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Intermediate states: 
taken two oscillator shells
above/below model space

Experimental s.p. energies from: 89Y and  89Sr

Future: Validate against exact 
many-body theories (NCSM, CC,...)

OXBASH code for diagonalization
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EM Transition 
Operators: 
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First Applications

First Real Test: 93Nb
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1+
3+

2+
1

2+
3

0.24(3)

[0.18]

0.56(5)

[0.69]

0.44(3)

[0.43]2+
2

B(M1) [µN
2]

Expt.
[Theory]

Simple test: 94Mo

π2p1/2

π1g9/2

π2p1/2

π1g9/2
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12

5

2+
12+

1 

Also: 92Zr, 96Ru

Can we identify MSSs here?

Will EM transitions be preserved?

Concern: Large M1 strength 
could arise from spin-flip of
unpaired proton

Quantify spin/orbital  M1

contributions and check 
IS/IV character of excitations
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Parameters

ep=2.1e, en=1.2e

gs
p =3.18, gs

n=-2.18

gl
p=1, gl

n=0
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MS in the Odd-Mass Nucleus 93Nb

J.N. Orce, JDH et al., Phys. Rev. Lett. 97, 062504 (2006).
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MS in the Odd-Mass Nucleus 93Nb

J.N. Orce, JDH et al., Phys. Rev. Lett. 97, 062504 (2006).
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MS in the Odd-Mass Nucleus 93Nb

J.N. Orce, JDH et al., Phys. Rev. Lett. 97, 062504 (2006).
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First identification of 
MSSs in an odd-mass 

nearly-spherical nucleus.
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Two-Phonon MS States in 93Nb

Much more complicated situation: e.g.,          two two-phonon states  



ms2,2

3



ms2,2
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Two-Phonon MS States in 93Nb

Much more complicated situation: e.g.,          two two-phonon states  



ms2,2

3

Two candidates
from M1 transition

Confirmed by E2
transitions



ms II,2

3


ms II,2

1

Identified and 
predicted properties
of two-phonon 
MSSs in 93Nb:



ms II,2

5


ms II,2

7

JDH, N. Pietralla, T.T.S Kuo, and J.W. Holt, in preparation
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Evolution of Key Signatures of MS

How do MS structures evolve
towards Z=50 shell closure?

Predict evolution of MS
properties in experimentally-
unstudied nuclei...

94Mo

96Ru

93Nb

98Pd

100Cd

92Zr

][   )22:1( 2

1,1 NmsMB  

JDH, Pietralla, Kuo, Holt, and Rainovski, Phys. Rev. C 76, 034326 (2007).
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Evolution of Key Signatures of MS

How do MS structures evolve
towards Z=50 shell closure?

Qualitative agreement with available data: 
parabolic behavior peaks at mid-shell 

Predict evolution of MS
properties in experimentally-
unstudied nuclei...

94Mo

96Ru

93Nb

98Pd

100Cd

92Zr

][   )22:1( 2

1,1 NmsMB  

JDH, Pietralla, Kuo, Holt, and Rainovski, Phys. Rev. C 76, 034326 (2007).
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Evolution of Key Signatures of MS

How do MS structures evolve
towards Z=50 shell closure?

Qualitative agreement with available data: 
parabolic behavior peaks at mid-shell 

Predict evolution of MS
properties in experimentally-
unstudied nuclei...

Collectivity strongest at mid-shell?  Nothing new
What else can we learn? Why does it happen in this region?

Pietralla et al., PRC (1998).

94Mo

96Ru

93Nb

98Pd

100Cd

92Zr

][   )22:1( 2

1,1 NmsMB  

JDH, Pietralla, Kuo, Holt, and Rainovski, Phys. Rev. C 76, 034326 (2007).
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Revealing p/n character: g factors

Configuration mixing:

94Mo

93Nb

98Pd 100Cd92Zr 96Ru

g-factors: sensitive to p/n content



2



MS2



2



2



2



FS2



2



2

Energy of p/n excitations crucial

Can we reveal p/n content of 
thestateswe’reinterestedin?

Shell closures: dissimilar p/n content

Mid-shell: nearly identical ( Z/A)
 “purest”

(Jakob, et al. ‘99)

(Mantica, et al. ‘01)
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JDH, Pietralla, Kuo, Holt, and Rainovski, Phys. Rev. C 76, 034326 (2007).
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g factor Measurements in Zr Isotopes

Compare with first measurements of magnetic moments 
of MSSs

V. Werner, Benczer-Koller, JDH, Kumbartzki, Perry, Pietralla et al., submitted to PRL.

Can this predicted g factor trend be seen experimentally?

g=+0.88(27)

× 0.98× 0.95

×-0.25× -0.31

× Calculations
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Nuc. SM Wfs 2+
1 2+

1,ms

92Zr 0.462 -0.129

0.078 0.725

94Mo 0.682 -0.461

0.426 0.652

96Ru 0.586 -0.584

0.512 0.548

98Pd 0.510 -0.681

0.576 0.448

100Cd 0.376 -0.787

0.638 0.305

Components of M1 matrix elements:



2

Evolution driven by orbital proton part

Approximations ~60%-70% of total wf

Show clear evolution in p/n character
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M1 Matrix Elements and SM Wavefunctions
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JDH, Pietralla, Kuo, Holt, and Rainovski, Phys. Rev. C 76, 034326 (2007).
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Mechanism for Evolution of MS

Immediately see behavior of M1 strength and g factors
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JDH, Pietralla, Kuo, Holt, and Rainovski, Phys. Rev. C 76, 034326 (2007).
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Microscopic Restoration of p/n Symmetry

• Degeneracy expected near mid-shell: “purest”collectiveexcitations

• Can this evolution be explained microscopically?

• Microscopic mechanism which explains existence, formation, and

evolutionary properties of MSSs in this nuclear region

- 2+
1 energies of N=50 isotones indicates evolution of 2+

π energy

• Energies of 2+
π, 2+

ν excitations vary with addition of protons (fill g9/2):

- 2+
1 energies of 92Sr and 102Sn indicate 2+

ν energies
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FS2

930 keV
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1390 keV

1500 keV
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SM Vlow k reasonably predicted 

measured cross-sections. 

94Mo(e,e´) Form Factors vs. Theory

O. Burda et al., Phys. Rev. Lett. 99, 092503 (2007).

Electron scattering cross sections: differential data

Provides new test of phonon 

character of 2+
ms

S-DALINAC (Darmstadt) for (e,e’)

iThemba Labs (S. Africa) for (p,p’)

Vlow k SM

QPM

IBM-2

Calculated cross sections from 

DWBA
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Conclusions

• Use microscopic low-momentum Vlow k for nuclear structure in 
nearly-spherical nuclei: focus on MSSs in vibrational nuclei

• First description of MS in odd-mass, nearly spherical 93Nb

• With experiment, showed first evidence for existence in 93Nb

• Microscopic mechanism addressing evolution of MSS 
experimental signatures

• Predicted electron/proton scattering cross sections in 94Mo

• Future work:

• Incorporate missing 3N forces into SM calculations
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