The thermodynamic limit of the Lipkin model

> Dieter HeissHendrik Geyer Frederik Scholtz

Stellenbosch University

The Lipkin model:

N Fermions occupying 2 degenerate levels, degeneracy at least *N*-fold. Interaction lifts or lowers a Fermion pair

 $H = \sum a_{k,m}^{\dagger} a_{k,m} + \lambda \sum a_{k,m}^{\dagger} a_{k',m'}^{\dagger} a_{k',-m} a_{k,-m}$ −−

as a consequence: model is reducible into *even* **or** *odd N*

Hamiltonian conveniently rewritten after energy shift and rescaling:

2 τ 2 $H = J_z + \frac{\lambda}{2N} (J_+^2 + J_-^2)$

model shows phase transition at $\lambda = 1$ including *symmetry breaking* in that for λ>1 a 'deformed' phase occurs where even and odd *N* become degenerate

spectrum with respect to ground state: ground state at 0

nothing interesting in middle, symmetry around $E = 0$ Spectrum as function of
nothing interesting in midd
symmetry around $E = 0$
phase transition for all $\lambda > 1$
 $2E/N = -1$ (and $2E/N = +1$
in fact, magnification along the
 $2E/N = -1$ looks like λ phase transition for all λ>1 at

2E/N= –1 (and *2E/N= + 1)*

in fact, magnification along the line *2E/N=* –1 looks like

level repulsion – watch EP!

EPs in complex λ - plane for various *N* Exceptional Points are square root singularities where two levels *and* their eigenfunctions coalesce. They occur in the vicinity of level repulsions for complex values of the parameter which gives rise to level repulsion. For a finite N-dimensional problem all levels are analytically connected at the EPs; there are N(N-1) EPs. The EPs give rise to the structure of the spectrum (level repulsion), yielding among others to phase transitions and/or chaos.

EPs in complex λ - plane for various N

 $N=8$ (blue), $=16$ (red), $=32$ (black), $=96$ (pink)

The inner circleremains free of singularities $| \lambda |$ $<$ 1

If the EPs retain their character in the thermodynamic limit $N\to\infty$ In contrast, for increasing N, EPs accumulate in particular along the real λ - axis for λ > 1

the Hamilton-op cannot have

1) an 'obvious' self-adjoint limit 'obvious': not at all or not unique. A self-adjoint op cannot have an EP on the real line.

2) the dense population of EPs could forbid analytic connectedness; for finite *N*, all levels are analytically connected. A dense set of singularities on a line/curve constitutes a natural boundary of analytic domain

Once more a look at the spectra:

We take cuts for various $\lambda \geq 1$

and 'enumerate' the lower part of the levels $2E_k/N=\epsilon(x)$ by the 'continuous' label 0<*x*<1

 $k = 1 \iff x = 0$ $k = N/2 \Leftrightarrow x = 1$ $k=1$

The red line at $\varepsilon = -1$ separates the normal (above) from the deformed (below) phase. Note again the

special role of th $\frac{1.4}{1.2}$

When the spectrum passes through the red line it shows – for N infinity – a point of inflection with a vanishing derivative while the second derivative is infinity, it is a **singularity.**

For the energy at $\varepsilon = -1$ as well as for the state vector we do understand the independence of λ

2 2×7 $1 \times 2 \times 2$ $(J_{\scriptscriptstyle +}^{\scriptscriptstyle {\cal L}} + J_{\scriptscriptstyle -}^{\scriptscriptstyle {\cal L}}) \parallel j,$ 2 $J_z + \frac{1}{2}J_z^2 + J_z^2)$ || j $\frac{1}{N}$ $\Big| J_z + \frac{1}{2N} (J_+^2 + J_-^2) \Big| |\, j,-j \Big|$ λ + [−] $\left[J_{-} + \frac{\lambda}{(J_{+}^2 + J_{-}^2)}\right]|j_{-}-j\rangle =$ $\left\lfloor \frac{J_z + \frac{J_z}{2N} (J_+^2 + J_-^2)}{2N} \right\rfloor$

$\langle j, -j \rangle + \lambda |j, -j + 2 \rangle \times O(\frac{1}{N})$ $= (1, -1) + \lambda$ $(1, -1 + 2) \times$

where *j=N/2*. The second term vanishes in limit. Recall: for finite N all states are analytically connected.

Note: this implies an optimal localisation for this special state.

Trying to describe these curves, one must catch the singular behaviour. Denoting by $x_c(\lambda)$ the point of inflection, the best fit is obtained by

2 k $=$ $\!0$ $(x - x_c(\lambda))^2 \sum a_k(\lambda) (\log |x - x_c(\lambda)|)^k$ $\sum a_k(\lambda)(\log|x-\rangle)$ where, however, the $a_k(\lambda)$ are different below and above the red line: the two regimes are disconnected analytically!

Examples of the quality of the fits, $k=3$; the respective derivatives compare the derivative of the data with that of the primary fit.

A typical example is the transition at λ=5 for *x*=0.58 again the same notorious cusp with behaviour $\left(\lambda - \lambda_c \right)^2 \log \mid \lambda - \lambda_c \mid + ...$

In this figure we can look at one particular level (*x* fixed) and study its behaviour as a function of

λ.

Summary: for $N\to\infty$

1. The EPs accumulate densely including the real λ – axis for $\lambda > 1$ evoking a dense set of log-singularities .

2. For real λ the two phase regimes become analytically disconnected.

3. There are two limits for the operator: the normal phase and the deformed phase

Questions left (at this stage)

Do the eigenvectors of each phase form a complete set?

Is each spectrum an analytic function of λ ?

While the two phases are seemingly disconnected for real λ, is there a path in the λ – plane that connects them?

Future developments: use time dependent interaction parameter λ: switch λ on – off $\,$ or just on $\,$

 $can - for \ N \to \infty$ a transition occur when λ switches from λ <1 (normal phase) to λ>1 (deformed phase)? state: off-equilibrium ?

thank you for your attention

 λ_c versus *x*: seems to obey

log *crit* $A + B$ — $\frac{X}{Y}$ *x* $\lambda_{\ldots} = A +$

energy gap at the transition point, for large but finite *N*

