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The Lipkin model:

N Fermions occupying 2 degenerate levels,
degeneracy at least N-fold.

Interaction lifts or lowers a Fermion pair
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as a consequence:
model is reducible into even or odd N

Hamiltonian conveniently rewritten 
after energy shift and rescaling:



model shows phase transition at  λ
 

= 1
including symmetry breaking in that for
λ>1 a ‘deformed’ phase occurs 
where even and odd N become degenerate

spectrum
with respect 
to ground 
state: ground
state at 0



nothing interesting in middle,
symmetry around E = 0

in fact, magnification along the line
2E/N= –1 looks like

1λ>

λSpectrum as function of  
λ

phase transition for all λ>1 at
2E/N= –1 (and 2E/N= + 1)

level repulsion – watch EP!



EPs in complex  λ
 

- plane for various N
Exceptional Points are square root singularities
where  two levels and their eigenfunctions
coalesce. They occur in the vicinity of level
repulsions for complex values of the parameter
which gives rise to level repulsion. For a finite
N-dimensional problem all levels are analytically
connected at the EPs; there are N(N-1) EPs.
The EPs give rise to the structure of the spectrum 
(level repulsion), yielding among others to phase
transitions and/or chaos.



N=8 (blue), =16(red), =32(black), =96(pink)

EPs in complex  λ
 

- plane for various N



The inner circle

remains free of 
singularities

If the EPs retain their character in the 
thermodynamic limit 

the Hamilton-op cannot have
N →∞

| | 1λ <

In contrast, for increasing N, EPs accumulate
in particular along the real λ

 
- axis for λ>1 

1λ≥



1) an ‘obvious’ self-adjoint limit
‘obvious’: not at all or not unique.
A self-adjoint op cannot have an EP on 

the real line.

2) the dense population of EPs could forbid
analytic connectedness;
for finite N, all levels are analytically connected.
A dense set of singularities on a line/curve
constitutes a natural boundary of analytic domain



Once more a look at the spectra:

and ‘enumerate’ the lower
part of the levels 2Ek /N= ε(x)
by the ‘continuous’ label
0<x<1

We take cuts for various
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A closer look at the derivatives reveals the
special role of the transition point:

The red line at ε
 

= –1 
separates the 
normal (above) from
the deformed (below)
phase. Note again the
λ- independence
of the transition:  it is 
always at ε

 
= –1.



When the spectrum passes through the red line it
shows – for N infinity – a point of inflection with 
a vanishing derivative while the second derivative is 
infinity, it is a singularity.
For the energy at ε

 
= –1 as well as for the state 

vector we do understand the independence of  λ
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where j=N/2. The second term vanishes in limit.

Note: this implies an optimal localisation
for this special state.

Recall: for finite N all states are 
analytically connected.
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Trying to describe these
curves, one must catch
the singular behaviour.
Denoting by xc (λ) the
point of inflection,
the best fit is obtained by

where, however, the ( )ka λ are different below
and above the red line:
the two regimes are disconnected analytically!



Examples of the quality of the fits, k=3;
the respective derivatives compare the 
derivative of the data with that of the primary 
fit.



In this figure we can look 
at one particular level 
(x fixed) and study its 
behaviour as a function of 
λ.

A typical example is the 
transition at λ=5 for x=0.58

again the same notorious 
cusp with behaviour
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Summary:

1. The EPs accumulate densely including 
the real λ

 
– axis for λ

 
> 1 evoking a 

dense set of log-singularities .
2. For real λ

 
the two phase regimes become 

analytically disconnected.
3. There are two limits for the operator: 

the normal phase and the deformed phase

N →∞for



Questions left (at this stage)

Do the eigenvectors of each phase form a 
complete set?

Is each spectrum an analytic function of  λ?

While the two phases are seemingly 
disconnected for real λ, is there a path in the
λ

 
– plane that connects them?



Future developments:
use time dependent
interaction parameter λ:
switch λ

 
on – off  or just on

can – for                        –
a transition occur when λ

 
switches

from λ<1 (normal phase) 
to λ>1 (deformed phase)?

state: off-equilibrium ?

N →∞



The EndThe End

thank you for your attention



λc versus x:  seems to obey
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energy gap at the transition point,
for large but finite N
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