Description of mixed-mode dynamics within the Interacting Vector Boson Model: 1. Symplectic extension - the even-even mclei

A. I. Georgieva, H. G. Ganev, V. P. Garistov and J. P. Draayer

Nuclear Many-Body Approaches for the 21st Century November 5 - 30, 2007

Boson creation and annihilation operators

INT07-03 New degree of freedom – the T- spin

Applications of symplectic algebras in nuclear structure physics Sp(12,R)

The symplectic extension takes into account the change of the number of phonon excitations (bosons) in the nuclear system.

$$\begin{array}{ll} u(6) \supset su(3) \otimes u(2) \supset so(3) \otimes u(1) \\ [N] & (\lambda,\mu) & (N,T) & K & L & T_0 \end{array}$$

Larger spaces (infinite dimensional)

The complete spectrum of the system can be calculated only trough the diagonalization of the Hamiltonian in the subspaces of all the UIR of U(6), belonging to a given UIR of Sp(12,R).

The new reduction chains

INT07-03

Parity of the states $\pi = (-1)^T$

H₊ Classification scheme

NT\T_3	5	4	3	2	1	0	-1	-2	-3	-4	-5
00						(0,0)					
22					(2,0)	(2,0)	(2,0)			Ground	1
0						(0,1)				Band	
44				(4,0)	(4,0)	(4,0)	(4,8)	(4)			
2					(2,7)	(2,1)	(2,)				
U	_ Octu	ipole				(0,2)		<u> </u>			
66	Ba	nd	(6,0)	(6,0)	(6,0)	(6,0)	(6,0)	(6,0)	(6,0)		
4				(4,1)	(4,1)	(4,1)	(4,1)				
					(2,2)	(2,2)	(2,2)				
U		· · ·	<u> </u>			(0,3)					
88		(8,0)	<mark>(8,0</mark>)	(8,0)	(8,0)	(8,0)	(8,0)	(8,0)	(8,8)	(8,0)	
6		/	(6,1)	(6,1)	(6,1)	(6,1)	(6.7)	(6,1)			
4				(4,2)	(4,2)	(4,2)	(2,3)	(4,2)			
				1	(2,3)	(0.4)	(4,3)				
						(0,-					
10 10	(10,0)	(10,0)	(10,0)	(10,0)	(10,0)	(10,0)	(10,0)	(10,0)	(10,0)		(10,0)
0		(7,1)	(0 , 1)	(0 , 1)	(0,1)	(0,1)	(0 , 1)	(0 , 1)	(0 , 1)	(0,1)	\mathbf{i}
4			(0,2)	(0,2) (4.3)	(0,2)	(0,2) (4.3)	(0,2) (4.3)	(0,2) (4.3)	(0,2)		
2				(1,2)	(2,4)	(2,4)	(2,4)	(1,0)			\setminus \setminus
0						(0,5)					
I	NT-07-	-03				.					

The **Hamiltonian** of the system can be expressed in terms of the first and second order Casimir operators of the subalgebra from a chain.

$$H = aN + bN^2 + \alpha_3 T^2 + \beta_3 L^2 + \alpha_1 T_0^2$$

The energy spectrum: The eigenvalues of H:

$E(N,L,T, T_0) = aN + bN^2 + \alpha_3 T(T+1) + \beta_3 L(L+1) + \alpha_1 T_0^2$

increasing function of N

$$T = \frac{N}{2}, \frac{N}{2} - 1, \frac{N}{2} - 2, \dots, 0 \lor 1$$
$$T_0 = -T, -T + 1, \dots, T - 1, T$$

The successful reproduction of the experimental energies for each L is achieved as a result of their consideration as *functions* of the number of phonon excitation $N = -\sqrt{3} [A^0(p,p) + A^0(n,n)]$ that build the collective states $|N, L, T, T_0 >$.

Odd-even staggering

The Staggering: Odd-even staggering between ground and octupole bands is defined through following function:

 $Stg(L)=6\Delta E(L) - 4\Delta E(L-1) - 4\Delta E(L+1) + \Delta E(L+2) + \Delta E(L-2)$

6-dimensional Davidson Potential

- Takes into account rotation vibration interaction in a many body system from the vibrational point of view
- Algebraically solvable provides meaningful basis for more realistic approximations

Figure 3: The Davidson potential for a diatomic molecule.

Algebraic constructions that survive the addition of Davidson potentials

The Collective Model
Sp (2,R) ≈SU(1,1)

A 5- dimensional Davidson Potential

The eigenstates can be classified according to the chain

 $SU(1,1) \times SO(5) \supset U(1) \times SO(5) \supset SO(3)$ v n α L

$$|\mathbf{n} \upsilon \alpha \mathbf{L} > \mathbf{E}_{\mathbf{r}}$$

$$_{\nu} = [2n+1+ (\nu + 3/2)^2 + ε] ηω$$

The spherical harmonic oscillator

SU(1,1) × **SO(3)**

$$E_{nl} = [2n + 1 + (l + \frac{1}{2})^2 + \varepsilon]$$

The 6-dimensional Davidson Potential is naturally contained in the IVBM trough the reduction chain

Completting the state labeling

The reduction along the chain

INT07-03 $(\omega)_6 = \sum (\lambda, \mu)_3 \otimes (\nu)_2$

Hamiltonian from the first and second order Casimir operators of the subalgebras from the chain.

$$H = aN + bN^2 + \alpha_6 A^2 + \alpha_1 M_2^2 + \beta_3 L^2$$

The energy spectrum: The eigenvalues of H:

 $E(\mathbf{N}, \boldsymbol{\omega}, \boldsymbol{\nu}, \mathbf{L}) = aN + bN^2 + \alpha_6 \boldsymbol{\omega}(\boldsymbol{\omega} + 4) + \alpha_2 \boldsymbol{\nu}^2 + \beta_3 L(L+1)$

The basis vectors:

| N
$$\omega$$
; (λ `, μ `) ν ; KL >

Relations to the u(6) limit $T = \omega/2$ $T_0 = v/2$ Parity of the states $\pi = (-1)^T$

Excited β (K^{π} =0⁺) and γ (K^{π} =2⁺) bands

 \mathbf{H}_{+}

O(6)- limit

ω = N, N-2, ..., 0; ν = ω, ω-2, ..., -ω;(λ = ω+ν/2, μ = ω-ν/2)

Ν\ν	10	8	6	4	2	0	-2	-4	-6	-8	-10
0						(0,0)					
2					(2,0)	(1,1) (0,0)	(0,2)			ound ba	nd
4				(4,0)	(3,1) (2,0)	(2,2) (1,1) (0,0)	(1,3) (0,2)	(0,4)			
6			(6,0)	(5,1) (4,0)	(4,2) (3,1) (2,0)	(3,3) (2,2) (1,1) (0,0)	(2,4) (1,3) (0,2)	(1,5) (0,4)	(0,6)		
8		(8,0)	(7,1) (6,0)	(6,2) (5,1) (4,0)	(5,3) (4,2) (3,1) (2,0)	(4,4) (3,3) (2,2) (1,1) (0,0)	(3,5) (2,4) (1,3) (0,2)	(2,6) (1,5) (0,4)	(1,7) (0,6)	(0,8)	
10	(10,0)	(9,1) (8,0)	(8,2) (7,1) (6,0)	(7,3) (6,2) (5,1) (4,0)	(6,4) (5,3) (4,2) (3,1) (2,0)	(5,5) (4,4) (3,3) (2,2) (1,1) (0,0)	(4,6) (3,5) (2,4) (1,3) (0,2)	(3,7) (2,6) (1,5) (0,4)	(2,8) (1,7) (0,6)	(1,9) (0,8)	(0,10)
I	N-T07	03									

Application to transitional nuclei

O(6)-limit of IBM

X(5)-critical point

INT07-03 From the $N \iff L$ Reduction rules and yrast condition

The quantum numbers $L = N_{min}/2$ of the algebra so(3) characterize the representations of sp(4, R).

Describes sequences of states with the same angular momentum

Realizations of the unitary subalgebras of $sp(4,\mathbf{R})$

$[N,T_{\pm l}]=0, [N,T_{\theta}]=0$

Classification scheme

[k]₂ labels the su(2) representations.
 The columns are defined by the quantum number T = k/2 and the rows by the eigenvalues of N=kmax +r, r =0,2,4,6...

Vibrational spectra of nearly spherical nuclei

∆T → big ; for a given L, nincreases with the increase of E, left side of the parabolas, bands and the triplet of 0^+ , 2^+ , 4^+

Rotational spectra of well deformed nuclei

n decreases with the increase of *E*, right side of the parabolas

U(6) limit

H. Ganev, V. P. Garistov, and A. I. Georgieva, Phys. Rev. **C 69**, 014305 (2004)

- •Negative parity states
- •Yrast bands
- •Mixing of rotational and vibrational modes
- Staggering behavior

6-Dimentional Davidson potential

H. G. Ganev, A. I. Georgieva, and J. P. Draayer, Phys. Rev. C **71**, 054317 (2005)

 Mixing of rotational and vibrational modes – transitional and critical point symmetries

•The role of the proton-neutron interactions

•Consideration of yrast and non-yrast collective bands — the importance of N for the band head states

Conclusion

Sets of states with fixed L

H. G. Ganev, V. P. Garistov, A. I. Georgieva, and J. P. Draayer, Phys. Rev. **C 70**, 054317 (2004)

Distinguishes rotational and vibrational modes
Parabolic behavior of the states
Band head configurations

Relationships between the subgroups from different reduction chains

- •The pseudospin and its third projection
- •The exactly solvable Hamiltonians
- •Tensor structure of the physical operators

Thank you