Microscopic nuclear structure calculations with unitarily transformed effective interactions

Shinichiro Fujii (Kyushu Univ.)

- **1. Unitary transformation**
- 2. Unitary-model-operator approach (UMOA)
- 3. "No-core" shell model

4. Results

g.s. energies, s.p. levels in *p*- and *sd*-shell nuclei neutron-rich C isotopes , ¹⁸O

5. Summary

INT Seminar, Seattle, Sep. 27, 2007

Derivation of effective interaction (Hamiltonian) by means of unitary transformation

Hamiltonian

 $H = H_0 + V$

Unitary transformation of H

$$\widetilde{H} = U^{-1}HU$$

 $U = e^{S}$, (S : anti-Hermitian, $S^{\dagger} = -S$)

Decoupling equation

 $Q(e^{-S}He^{S})P = 0$

Solution

 $S = \operatorname{arctanh}(\omega - \omega^{\dagger}), \ \omega = Q\omega P$ (with the restrictive condition PSP = QSQ = 0) K. Suzuki, Prog. Theor. Phys. **68** (1982), 246

Effective Hamiltonian	Effective interaction
$H_{\rm eff} = P\widetilde{H}P$	$V_{\rm eff} = P\widetilde{H}P - PH_0P$

Unitary transformation operator U in terms of ω

$$U = (1 + \omega - \omega^{\dagger})(1 + \omega^{\dagger}\omega + \omega\omega^{\dagger})^{-1/2}$$
$$= \begin{pmatrix} P(1 + \omega^{\dagger}\omega)^{-1/2}P & -P\omega^{\dagger}(1 + \omega\omega^{\dagger})^{-1/2}Q \\ Q\omega(1 + \omega^{\dagger}\omega)^{-1/2}P & Q(1 + \omega\omega^{\dagger})^{-1/2}Q \end{pmatrix}$$
S. Ōkubo, Prog. Theor. Phys. **12** (1954), 603

Derivation of effective interaction

Ground-state energies of ¹⁶O

Comparison of Expt. and UMOA results from modern NN interactions

Single–particle energies for hole states in ⁴⁰Ca

New approach to neutron-rich C isotopes

• Large-scale shell model

- Code: newly developed version of MSHELL
- Model space: the 0s 1p0f shells
- Nucleon excitation: up to 2 nucleons from the occupied shells for ¹⁴C

up to 2 nucleons to the 1p0f shells

Bare transition operator

• Microscopic effective interaction

Derived from a high-precision NN interaction (CD Bonn, …) and the Coulomb force in the neutron-proton formalism for the given model space through a unitary-transformation theory

In the present shell model without any adjustable parameters

→ wrong ordering for the 1/2⁺ and 5/2⁺ states in ¹⁵C due to the *small* modelspace size

To remedy the wrong ordering and reproduce the binding energies for the $1/2^+$ and $5/2^+$ states of the UMOA results

→ introduce a minimal refinement of the one-body energies for the $0d_{5/2}$ and $1s_{1/2}$ orbits of the neutron

The calculated results are denoted by "dressed"

$B(E2; 2_1^+ \rightarrow 0_1^+)$ in $^{14,16,18}C$ for "dressed" CD Bonn $e_n = 0.164e$ Expt. $e_n = 0$ ¹⁴C 3.42 3.74 ± 0.50 3.66 ¹⁶C $0.63 \pm 0.11(\text{stat}) \pm 0.16(\text{syst})$ 0.842.62 ¹⁸C 2.104.98

in e²fm⁴

$B(E2; 2_1^+ \rightarrow 0_1^+) \text{ in } {}^{14,16,18}C$

CD Bonn

for "dressed"

	$e_n = 0$	<i>e</i> _{<i>n</i>} = 0.164 <i>e</i>	Expt.
¹⁴ C	3.42	3.66	3.74±0.50
¹⁶ C	0.84	2.62	$0.63 \pm 0.11(\text{stat}) \pm 0.16(\text{syst})$
¹⁸ C	2.10	4.98	4.7 ^{+0.8} _{-0.6} (stat) ^{+1.4} _{-0.9} (syst)

in e²fm⁴

Summary

- Derived the effective interaction for a given model space from the high-precision modern NN force through a unitary transformation theory toward the microscopic description of structure of exotic nuclei
 - Unitary-model-operator approach (UMOA) g.s. energy for closed-shell nuclei, s.p. energy, …
 - Large-scale shell model (with information about s.p. states obtained by the UMOA) complicated structure, transition, …
- Including the genuine three-body force and diminishing the approximations in the calculation

Collaborators

UMOA Ryoji Okamoto (Kyushu Inst. of Tech.) Kenji Suzuki (Kyushu Inst. of Tech.) "No-core" shell model Takahiro Mizusaki (Senshu Univ.) **Takaharu Otsuka (Univ. of Tokyo)** Takashi Sebe (Hosei Univ.) **Akito Arima (Japan Science Foundation)** Application of the "No-core" shell model to ¹⁸O **Bruce R. Barrett (Univ. of Arizona)**