Toward a Unified Description of 4n N=Z Light Nuclei in the "Ab initio" Symplectic No Core Shell Model

Tomas Dytrych

Kristina Sviratcheva, Chairul Bahri, Jerry Draayer, James Vary

INT, October 2007

Outline

- 1. Motivation
- 2. Overview of symplectic symmetry
 - •Relation to α -cluster model wave functions
 - Inclusion of highly deformed particle-hole configurations within symplectic space
 - Discussion on center of mass spuriousity
- 3. Expansion of symplectic states in shell model basis
- 4. "proof-of-principle" results

Motivation

Scale Explosion: combinatorial growth in dimensionality of basis for heavier nuclei and increasing $N\hbar\Omega$ model spaces

High $N\hbar\Omega$ configurations essential for:

improving overall convergence of the spectrum

reproducing B(E2) without effective charges

modelling deformed and cluster modes

Solution to Scale Explosion

Symplectic $\operatorname{Sp}(3,\mathbb{R})$ symmetry-adapted basis

G. Rosensteel and D. J. Rowe, Phys. Rev. Lett. 38, 10 (1977)

Properties of symplectic basis:

✓Complete

Translationally invariant

✓Natural for description of many-body collective dynamics

- quadrupole and monopole vibrations
- microscopic realization of Bohr-Mottelson model is embedded within Sp(3,R)
- rotational dynamics in continuous range from rigid rotor to irrotational flow

 $\checkmark \mbox{Appropriate for description of } \alpha\mbox{-clusters}$

In the classical limit symplectic symmetry underpins rotation of deformed stars and galaxies!

G. Rosensteel, Astrophys. J. 416, 291 (1993)

Reduction of Model Space

Sp-NCSM approach

Overview of Symplectic Sp(3,R) Symmetry

Collective model chain $\operatorname{Sp}(3, \mathsf{R}) \supset \operatorname{GCM}(3) \supset \operatorname{ROT}(3)$

impractical for expansion in terms of shell model basis

Shell model chain $Sp(3, \mathbb{R}) \supset SU(3) \supset SO(3)$

expandable in harmonic oscillator basis

Plabeled by Elliot's SU(3) quantum numbers $(\lambda \mu) \longleftarrow (\beta, \gamma)$

Shell Model Chain Basis

Translationally invariant generators of Sp(3,R) can be expressed in terms of harmonic oscillator raising and lowering operators: $b_{ni}^{\dagger} = \frac{1}{\sqrt{2}} (x_{ni} - ip_{ni})$ $b_{ni} = \frac{1}{\sqrt{2}} (x_{ni} + ip_{ni})$

Symplectic $\operatorname{Sp}(3, \mathsf{R}) \supset \operatorname{SU}(3) \supset \operatorname{SO}(3)$ basis is generated using raising operators A_{ij}

Construction of Shell Model Chain Basis

- Separate Expandable in m-scheme basis; labeled by $(\lambda_{\sigma} \mu_{\sigma})S_{\sigma}$
- spurious center of mass excitation free
- annihilated by the symplectic lowering operators

$$B_{ij}|(\lambda_{\sigma}\,\mu_{\sigma})S_{\sigma}
angle=0$$

Expanding Symplectic Bandheads in *m*-scheme Basis

Single fermion creation operator is $SU(3) \times SU(2)$ irreducible tensor: $a_{\eta l j m_i}^{\dagger} = a_{l j m_i}^{\dagger(\eta 0)}$

Expanding Symplectic Bandheads in *m*-scheme Basis

This procedure does not generate translationally invariant $SU(3) \times SU(2)$ bandheads!

$$\sum_{n=0}^{N} \psi_{cm}(n) \otimes \psi_{int}(N-n)$$

Quick Fix: project out center of mass spuriosity excitations by symmetry preserving operator.

center-of-mass HO raising and lowering operators

Result: center-of-mass spuriosity free bandhead ... $\psi_{cm}(0)\otimes\psi_{int}(N)$

with the same symmetry

Proof Of Principle

Calculations performed in symplectic basis achieved good description of low-lying spectra and B(E2) values ... <u>BUT</u> ... with simplistic or symmetry preserving phenomenological interactions.

How badly will symplectic symmetry be broken when realistic interactions are employed?

Project NCSM eigenstates onto symplectic $Sp(3, \mathsf{R}) \supset SU(3) \supset SO(3)$ basis.

Trivial task if we find expansion of symplectic states in terms of m-scheme basis

$$\begin{array}{c} 4 \\ \text{Example:} \ ^{4}\text{He} \\ \\ proton single \\ particle states \\ \frac{1}{2} \left(00\frac{1}{2} - \frac{1}{2}, 00\frac{1}{2} \frac{1}{2} \right) \left(00\frac{1}{2} - \frac{1}{2}, 22\frac{5}{2} \frac{5}{2} \right) \\ \frac{1}{2} \left(00\frac{1}{2} - \frac{1}{2}, 00\frac{1}{2} \frac{1}{2} \right) \left(00\frac{1}{2} - \frac{1}{2}, 22\frac{5}{2} \frac{5}{2} \right) \\ -\sqrt{\frac{1}{5}} \left| 00\frac{1}{2} - \frac{1}{2}, 00\frac{1}{2} \frac{1}{2}, 22\frac{5}{2} \frac{3}{2} \right) \\ -\sqrt{\frac{1}{20}} \left| 00\frac{1}{2} - \frac{1}{2}, 20\frac{1}{2} \frac{1}{2}, 22\frac{5}{2} \frac{3}{2} \right) \\ +\frac{1}{2} \left| 00\frac{1}{2} - \frac{1}{2}, 22\frac{5}{2} \frac{5}{2}, 00\frac{1}{2} - \frac{1}{2}, 00\frac{1}{2} \frac{1}{2} \right) \\ -\sqrt{\frac{1}{5}} \left| 00\frac{1}{2} \frac{1}{2}, 22\frac{5}{2} \frac{3}{2}, 00\frac{1}{2} - \frac{1}{2}, 00\frac{1}{2} \frac{1}{2} \right) \\ -\sqrt{\frac{1}{20}} \left| 00\frac{1}{2} \frac{1}{2}, 22\frac{5}{2} \frac{3}{2}, 00\frac{1}{2} - \frac{1}{2}, 00\frac{1}{2} \frac{1}{2} \right) \\ -\sqrt{\frac{1}{20}} \left| 00\frac{1}{2} \frac{1}{2}, 22\frac{5}{2} \frac{3}{2}, 00\frac{1}{2} - \frac{1}{2}, 00\frac{1}{2} \frac{1}{2} \right) \\ \end{array}$$

Example: ⁴He

 $2\hbar\Omega$

Start with symplectic bandhead (0 0)S=0

$$\left| (0\,0)L = 0J = 0M_J = 0 \right\rangle = \left| 0\,0\frac{1}{2}\,\frac{1}{2}, 0\,0\frac{1}{2}\,-\frac{1}{2}; 0\,0\frac{1}{2}\,\frac{1}{2}, 0\,0\frac{1}{2}\,-\frac{1}{2} \right\rangle$$

Construction formula is trivial:

$$\begin{array}{ccc} |(2\,0)L = 2J = 2M_J = 2 \\ \vdots \\ |(2\,0)L = 0J = 0M_J = 0 \\ \end{pmatrix} = A_{0\,0}^{(2\,0)} |(0\,0)L = 0J = 0M_J = 0 \\ \end{pmatrix}$$

Apply raising operator on symplectic states generated at $2\hbar\Omega$ subspace

$$|(40)L=2J=2M_J=2\rangle = -\sqrt{\frac{4}{63}} A_{20}^{(20)} |(20)L=2J=2M_J=2\rangle +\sqrt{\frac{2}{21}} A_{21}^{(20)} |(20)L=2J=2M_J=1\rangle +\sqrt{\frac{7}{18}} A_{00}^{(20)} |(20)L=2J=2M_J=2\rangle + A_{22}^{(20)} \left(-\sqrt{\frac{4}{63}} |(20)L=2J=2M_J=0\rangle + \sqrt{\frac{7}{18}} |(20)L=0J=0M_J=0\rangle\right)$$

Symplectic states within $N\hbar\Omega$ subspace are generated using $(N-2)\hbar\Omega$ symplectic states

α – Cluster Model of ¹⁶O

 α + ¹²C

Constituent clusters "frozen" to ground states.

Relative motion of clusters carries Q oscillator quanta.

Few facts about symplectic states and α -cluster model wave functions:

Deformed symplectic states possess appreciable overlaps with cluster wave functions.
 Overlap 100% for the most deformed symplectic bandheads.
 "0p-0h" Sp(3,R) "slices" are not sufficient to reproduce α-cluster modes.

We need to incorporate $Sp(3,\mathbb{R})$ "**slices**" build over highly deformed symplectic bandheads.

Y. Suzuki, Nucl. Phys. A448, 395 (1986).

Results

Sp $(3,\mathbb{R})$ model space includes:

All symplectic "slices" built over $0\hbar\Omega$ (0p-0h) and $2\hbar\Omega$ (2p-2h) bandheads

"Slice" built over the most deformed $4\hbar\Omega$ (4p-4h) bandhead

Generated up to $N_{\rm max}$ =6 model space

Probability Distribution: Ground State 85%-90%

"slices" built over 2p-2h bandheads: 5%

"slices" built over 2p-2h bandheads : 10%

Probability Distribution: 2⁺and 4⁺

Only 3 "slices" built over 0p-0h bandheads: 80% "slices" built over 2p-2h bandheads: 4%

Spin Distribution in NCSM eigenstates

Independence of Oscillator Strength

6 spin S=0 symplectic "slices" compose 95% of S=0 component of NCSM eigenstates

Independent of oscillator strength

Same results for the bare interaction

Major Reduction in Model Space

Dimension of model space

... and gets even better for higher model spaces

 $B(E2:2^+ \rightarrow 0^+)$

Model space: $N_{\text{max}} = 6$

the most dominant Sp(3,R) slices reproduce NCSM results

Deformations present within NCSM eigenstates

ground state of ¹²C

Near oblate deformed shapes dominate: (0 4), (1 2), (0 2), (2 4)

Area \propto probability of given symplectic states

Deformations present within NCSM eigenstates

ground state of ¹⁶O

Spherical shape dominates: (0 0)

Prolate deformation present: (2 0), (4 0) and (6 0)

Area \propto probability of given symplectic states

Deformations present within NCSM eigenstates

first 0^+ excited state of 16 O

Interplay between $0\hbar\Omega$ (blue) and $2\hbar\Omega$ symplectic "slices" (red)

4p-4h symplectic slices negligible

Area \propto probability of given symplectic states

Summary

Ab-initio No Core Shell Model: successfully reproduces (low-lying) features of the deuteron, alpha particle, ¹²C and even¹²O

Comparison of converged NCSM eigenstates with Sp(3,R)-symmetric states shows:

Reproduction of NCSM results by a few Sp(3,R) states

✓85%-90% overlaps

✓100% B(E2; $2^+_{1} \rightarrow 0^+_{1}$)

Dramatic reduction in model space (several orders of magnitude)

Symplectic-NCSM: effective model space reduction scheme.