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Introduction

Dynamic Mean Field Theory (DMFT)
An exact method for strongly correlated lattice fermions in infinite dimensions.

Georges and Kotliar, PRB 45, 6479 (1992)

A. Georges, G. Kotliar, W. Krauth, M. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

Having Nuclear Physics in Mind
.

Fermi Gas with contact interaction - A limiting case of neutron matter.

Experimentally accessible using cold atoms.

Perfect “playground” for many-body theories.
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Lattice Fermions in d =∞ Dimensions

Consider the Hubbard model in d-dimensions

H =
X
ijσ

tijc
†
i,σcj,σ +

1

2
U

X
i,σ

c†i,σci,σc
†
i,−σci,−σ

For a simple cubic lattice

εk = t0(2d− 2
dX

j=1

cos kj) ; t0 =
~2

2ma2

where kj = ( 2π
N
· integer) for a box of size (Na)d.

For d −→∞ the hopping t0 should be scaled as 1/
√
d to yield a nontrivial model.

At this limit

δ(k) =
1

Nd

X
n∈sites

ei 2π
N

n·k −→ 1

Consequently the self-energy becomes a local function.

W. Metzner and D. Vollhardt, PRL 62, 324 (1989)
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The Green’s function and Self-Energy

By definition the Green’s function is given by

Gij,σ(τ − τ ′) ≡ 〈Tci,σ(τ)c†j,σ(τ ′)〉

The Green’s function and the Self-energy are related through

Gσ(k, iωn) =
1

iωn + µ− εk − Σσ(k, iωn)
; ωn ≡

(2n+ 1)π

β

At the limit d −→∞

Momentum space

Σσ(k, iωn) −→ Σσ(iωn)

The Fourier transform of the Green’s
function takes a simple dependence
on k,

Gσ(k, iωn) =
1

iωn + µ− εk − Σσ(iωn)

Coordinate space

Σij,σ(iωn) −→ δijΣσ(iωn)

The site-diagonal Green’s function

Gii,σ(iωn) =
X

k

1

iωn + µ− εk − Σσ(iωn)
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The single-site impurity model

Consider the effective action

Seff = −
Z β

0

dτ

Z β

0

dτ ′
X

σ

c†i,σ(τ)G−1
0 (τ − τ ′)ci,σ(τ ′)

+U

Z β

0

dτ ni↑(τ)ni↓(τ) (1)

The corresponding Green’s function
is given by

G(τ − τ ′) = 〈Tci,σc†i,σ〉Seff (2)

and the self-energy is defined from
the interacting Green’s function

Σ(iωn) = G−1
0 (iωn)− G−1(iωn) (3)

The connection to the physical lattice is made through the demand

G(τ − τ ′) = Gii(τ − τ ′) . (4)
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DMFT - The self-consistency condition

Seff [G0]

Q
Q

Q
Q

Q
Q

QQs

G, Σ = G−1
0 − G−1

�
�

�
�

�
�

��+Gii =
P

1
iωn+µ−εk−Σ

Q
Q

Q
Q

Q
Q

QQk

G−1
0 = G−1

ii + Σ

�
�

�
�

�
�

��3
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DMFT - General features

Exact for d −→∞

For finite d, use the approximation Σ(k, iωn) ≈ Σ(iωn).

Free Fermi gas is recovered when the interaction is switched off.

At U −→ 0 DMFT reproduces first order perturbation theory.

Gives the correct result in the atomic limit, U −→∞.

The approximation Σ(k, iωn) ≈ Σ(iωn) can be relaxed replacing the single-site
by a cluster of sites.
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Solving the impurity problem

The “free” impurity Green’s function G0 is approximated by the function

G0(iωn)−1 = iωn + µ−
X

p

V 2
p

iωn − ε̃p

which corresponds to the Anderson Hamiltonian

HAnd =
X

p≥2,σ

ε̃pa
†
pσapσ +

X
p≥2,σ

Vp(a†pσcσ + c†σapσ) + Un↑n↓

For small number of auxiliary fields apσ this Hamiltonian can be solved using
standard diagonalization methods, or for T = 0 the Lanczos method.
M. Caffarel and W. Krauth, PRL 72, 1545 (1994)
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Fermi Gas with a Contact interaction

In order to apply the DMFT to the Fermi Gas Hamiltonian

H = − ~2

2m

X
σ

Z
dxψ†σ(x)∇2ψσ(x)

+
1

2
V0

X
σ

Z
dxψ†σ(x)ψ†−σ(x)ψσ(x)ψ−σ(x)

One has to become “griddy”, so

x −→ an ; p −→ 2π

Na
k

ψσ(x) −→ (a)3/2ψnσ

and
{ψnσ, ψ

†
nσ} = δnn′δσσ′
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The Lattice Hamiltonian

The discretization leads to

H = − ~2

2ma2

X
σ

X
nn′

Dnn′ψ†nσψn′σ +
1

2

V0

a3

X
σn

ψ†n σψ
†
n−σψn σψn−σ

The spectra of the free Hamiltonian is given by

εp =
~2

ma2
∆p ; ∆p = 2

X
i

sin2 pi

2

H contains the parameter V0 that should be connected to the scattering length
Papenbrock & Bertsch, PRC 59, 2052 (1999)

1

4πas
=

1

V0
+
C

2a
=

1

V0
+ ΛK

C

4π

where

C =

Z
dp

(2π)3

1

∆p
≈ 0.5048

and ΛK = 2π/a is the momentum cutoff.
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The Effective Range

The effective range is given by reff ≈ 4/πΛK = 2a/π2.
In the unitary regime we would like

reffkF � 1

or
2a

π2

3

r
3π2〈n〉
a3

≈ 2

π
3

p
〈n〉 � 1

Here 〈n〉 is the number of particles per site.

In practice

0.1 ≥ 〈n〉 ≥ 0.01

so
0.3 ≥ reffkF ≥ 0.14
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Energy and density

The DMFT yields Σ(iωn), and

G(k, iωn) =
1

iωn + µ− εk − Σ(iωn)

The density and energy can be calculated through the Matsubara sums,

〈n〉 =
1

β

X
σk

∞X
iωn=−∞

ei0+

G(k, iωn)

〈H〉 =
1

2

1

β

X
σk

∞X
iωn=−∞

ei0+

(iωn + εk + µ)G(k, iωn)

The density can be calculated directly from the impurity action. If G = Gii this two
results should coincide. However, the best we can hope for is G ≈ Gii.
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Evaluation of the Matsubara sums

1 Create a Pade approximation for Σ,

ΣPade(iωn) =
P (iωn)

Q(iωn)
=

Pn
0 aj(iωn)jPn
0 bl(iωn)l

2 Use the Pade approximation and evaluate analytically the density, 〈n〉Pade, and
the energy 〈H〉Pade.

3 For a limited range of low frequencies calculate the difference

δ〈n〉 =
1

β

X
σk

iωNX
iωn=−iωN

„
1

iωn + µ− εk − Σ
− 1

iωn + µ− εk − P/Q

«
4 Finally,

〈n〉 = 〈n〉Pade + δ〈n〉

〈H〉 = 〈H〉Pade + δ〈H〉
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The Pade Approximation

In the limit ω −→∞, G −→ 1/ω.
⇒ the order of the polynomials P,Q should be equal.

For the Pade approximation the Matsubara sums can be evaluated analytically

∞X
iωn=−∞

ei0+ 1

iωn + µ− ε− P/Q
=

n+1X
p=1

Res

„
Q(ωp)

R(ωp)

«
β

eβωp + 1

where
R(ω) = (ω + µ− ε)Q(ω)− P (ω)

and ωp are the roots of R(ω).
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Numerical Results, T = 0

Notations

Energy cutoff - ΛE .

Momentum cutoff - ΛK =
√

2ΛE .

Grid size - a = 2π
ΛK

.

ns is the number of species in the Anderson model.
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Free Fermi Gas

The ”impurity” and the “Lattice” densities in comparison to free Fermi gas.

 0.6
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lattice
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The weak coupling regime

DMFT in comparison to perturbation theory.

E/N = εFG

„
1 +

10

9π
kF as +

4(11− 2log2)

21π2
(kF as)

2 + . . .

«

 0.8
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 0.95

 1

 1.05

 1.1

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1  0

E
/N

 [
E

FG
]

askF

DMFT, ns=8
Perturbation

ΛE=2
ΛE=4
ΛE=6

DMFT normalized to 1 at as = 0
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The strong coupling regime

Particle density at as −→∞
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Full lattice
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 ΛE=20

⇒ There is no phase transition. Unlike static mean field theory.
J. Chen and D. B. Kaplan, PRL 92, 257002 (2004).

Nir Barnea (HU, INT) The Fermi gas in Dynamic Mean Field Theory INT - Nuclear Many-Body 19 / 23



The strong coupling regime

Particle density at as −→∞

 0.001

 0.01

 0.1

 1

 10

 0.001  0.01  0.1

pa
rt

ic
le

s 
pe

r 
si

te
 <

n>

 µ/ΛE 

Full lattice

 ΛE= 4
 ΛE= 6
 ΛE= 8

 ΛE=10
 ΛE=20

⇒ There is no phase transition. Unlike static mean field theory.
J. Chen and D. B. Kaplan, PRL 92, 257002 (2004).

Nir Barnea (HU, INT) The Fermi gas in Dynamic Mean Field Theory INT - Nuclear Many-Body 19 / 23



The strong coupling regime

Particle density at µ = 0.1
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The strong coupling regime

Energy per particle at µ = 0.1
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The strong coupling regime
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The Fermi Gas in DMFT

Conclusions

1 DMFT describes very accurately the Fermi gas in the weak coupling regime.

2 In the strong coupling regime DMFT captures the general behaviour.

3 Unitarity is not realized, the results depend on the lattice filling, 〈n〉.

and a question

Can DMFT provide a new framework for analyzing nuclear physics?
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