

Collaborators: W. H. Dickhoff, D. Van Neck, K. Langanke, G. Martinez-Pinedo , R. Roth , C. Giusti, F. D. Pacati

Microscopic nuclear structure theory

• Wish to predict properties of nuclei from the A-body Hamiltonian:

$$H = T + V = \sum_{i=1}^{A} \frac{p_i^2}{2 m} + \sum_{i < j}^{A} V_{ij} + \dots$$

- *ab-initio* approaches:
 - Monte Carlo methods ($A \le 12$)
 - no-core shell model, coupled cluster (¹⁶O,⁴⁰Ca for now)
- alternatives:
 - Many-body Green's functions: "phonons" as degrees of freedom
 - \rightarrow strong link to spectroscopy
 - \rightarrow starts from the nucleon-nucleon force

 \rightarrow optical potential (DOM) and QP-DFT

Green's functions in many-body theory

One-body Green's function (or propagator) describes the motion of quasi- particles and holes:

$$g_{\alpha\beta}(\omega) = \sum_{n} \frac{\langle \Psi_{0}^{A} | c_{\alpha} | \Psi_{n}^{A+1} \rangle \langle \Psi_{n}^{A+1} | c_{\beta}^{+} | \Psi_{0}^{A} \rangle}{\omega - (E_{n}^{A+1} - E_{0}^{A}) + i\eta} + \sum_{k} \frac{\langle \Psi_{0}^{A} | c_{\beta}^{+} | \Psi_{k}^{A-1} \rangle \langle \Psi_{k}^{A-1} | c_{\alpha} | \Psi_{0}^{A} \rangle}{\omega - (E_{0}^{A} - E_{k}^{A-1}) - i\eta}$$

...this contains <u>all the structure information</u> probed by nucleon transfer (spectral function):

$$S_{\alpha}(\omega) = \frac{1}{\pi} \operatorname{Im} g_{\alpha\alpha}(\omega) = \sum_{n} \left| \langle \Psi_{n}^{A\pm 1} | c_{\alpha} | \Psi_{0}^{A} \rangle \right|^{2} \delta(\omega - (E_{0}^{A} - E_{n}^{A\pm 1}))$$

One-hole spectral function -- example

$$S^{(h)}(p_m, E_m) = \sum_n |\langle \Psi_n^{A-1} | c_{\overrightarrow{p_m}} | \Psi_0^A \rangle|^2 \, \delta(E_m - (E_0^A - E_n^{A-1}))$$

$$\Rightarrow \text{ distribution of momentum } (\mathbf{p_m}) \text{ and energies } (\mathbf{E_m})$$

INT-07-03, Seattle, November 7, 2007

- , *free particle* propagator
 - , correlated particle propagator
 - *"irreducible"* self-energy

correlations are embedded in the *"irreducible"* self-energy:

expand in terms of the dressed propagator: \longrightarrow all orders resummation

Coupling single particle to collective modes - II

• Non perturbative expansion of the self-energy:

FRPA: Faddeev summation of RPA propagators

Both pp (ladder) and ph (ring) modes included
Pauli exchange at 2p1h/2h1p level

•All order summation through a set of Faddeev equations

References: CB, et al., Phys. Rev. C63, 034313 (2001); Phys. Rev. A76, 052503 (2007)

<u>Self-consistent Green's function</u> approach

...wide range of applications #

Why "self-consistent" propagators ?

- Dressed propagators account for (the observed) strength fragmentation
- Self-consistency guaranties:
 - fulfillment of basic conservation laws
 [but not trivial to reach beyond 1st order (HF)...]
 - consistency among different ways of evaluating the binding energy
 - independence from the reference state

Applications to Electron Systems

INT-07-03, Seattle, November 7, 2007

Self-consistent Green's function fot the Ground State Energy of the Electron Gas

GW approximation:

G = self-consistent sp propagator W= screened Coulomb interaction → RPA with dressed propagator

Electron gas : -XC energies (Hartrees)

Accurate self-energies are needed for extending DFT to include quasiparticles explicitly (QP-DFT):

FRPA for the Neon atom

Binding energies for Atoms

	HF		FTDA	FRPA	E×p.
He:	+44		+1	+1	-2.904
Be:	+94		+24	+24	-14.667
Ne:	- 281	· .	+15	+11	-128.928
Mg:	426		+358	+356	-200.043
Ar:	- 723		+377	+373	-527.549

Energies in Hartree / Relative to the experiment in mH

cc-pV(TQ)Z bases, extrapolated as $E_X = E_{\infty} + AX^{-3}$

Phys. Rev. A76, 052503 (2007). + work in progress

Valence Ionization Energies

	HF	2 nd	FTDA	FRPA	Exp.	•
He: 1s	-14	-2	+2	+4	-0.904	
Be: 2s 1s	+34 -200	+23 -87	+20 -11	+21 -7	-0.343 -4.533	Systematic improvement of ionization
Ne: 2p 2 <i>s</i>	-57 -149	+30 +32	-15 -21	-10 -15	-0.793 -1.782	energies when including RPA propagators:
Mg: 3s 2p	+28 -161	+7 -26	+11 -10	+4 -10	-0.281 -2.12	about 4mH for valence orbits
Ar: 3p 3s 2p	-11 201 -410	-6 -84 -359	-1 -13 -53	+1 +10 -39	-0.579 -1.075 -9.160	Energies in Hartree/ Difference w.r.t. the
•-			F-TDA	F-RPA		experiment in mH cc-pV(TQ)Z basis, extrapolated
T-07-03, Seat	tle, Novemb	per 7, 2007				theory

INT-07-03, Seattle, November 7, 2007

- FRPA is of at least the same quality (or even a bit better) than FTDA/ADC(3), but:
 - it holds promise for a coherent description of both small and large systems
 - and satisfies the requirements for of developemts of quasiparticle-DFT
- More needs to be done ...
 - Investigations for larger atoms are under way
 - Self-consistency
 - Relativistic effects can be added

Applications to Nuclei

- Strong short-range cores require "renormalizing" the interaction:
 - G-matrix, V_{UCOM} Lee Suzuki, Bloch-Horowitz, V_{low-k}, ...
- Long-range correlations \rightarrow FRPA $\! \# \!$

Non perturbative expansion of the self-energy:

Non perturbative expansion of the self-energy:

• 2 nucleons in free space: \rightarrow solve for the scatt. matrix...

$$T(\omega) = V + V \frac{1}{\omega - (k_a^2 + k_b^2)/2m + i\eta} T(\omega) \qquad \qquad \mathbf{T}(\omega) = \bullet \cdots \bullet + \mathbf{T}(\omega)$$

Non perturbative expansion of the self-energy:

• 2 nucleons in medium: \rightarrow resum pp ladders...

Treating short-range correlations directly... -

Non perturbative expansion of the self-energy:

energy dep. part

• Identify the pp resummations (which account for short range correlations) in the expansion of $R(\omega)$:

Treating short-range corr. with a G-matrix ____

• The short-range core can be treated by resumming ladders outside the model space:

Treating short-range corr. with a G-matrix _____

• The short-range core can be treated by resumming ladders outside the model space:

Treating short-range corr. with a G-matrix

• The short-range core can be treated by resumming ladders outside the model space:

$$G(\omega) = V + V \frac{\hat{Q}}{\omega - (k_a^2 + k_b^2)/2m + i\eta} G(\omega)$$

Treating short-range corr. with a G-matrix ____

• The short-range core can be treated by resumming ladders outside the model space:

→ It is NOT a good idea to fix the starting energy in $G(\omega)$ at the HF/mean field level !!

Unitary correlator operator method (UCOM)

Use a unitary operator $e^{ig(x,p)}$ to correct the short-range behavior of the wave function

"Unitary Correlator Operator Method" potential (V_{UCOM})

V_{UCOM} is a truncation of the UCOM expansion at the 2-body level:

[CB, N.Paar, R.Roth, P.Papakostantinou, nucl-th/0608011]

<u>Self-consistent Green's function</u> approach

Ab-initio calculations with the F-RPA method

 Self-consistency loop in bases of up to 8 oscillator shells (~10⁴ 2p1h/2h1p confgurations)

• V_{UCOM} (AV₁₈ based)

• G-matrix (AV₁₈ based)

 Little dependence on the oscillator parameter (b_{HO}) for the G-matrix → convergence !! [CB, Phys. Lett. **B643**, 268 (2006)]

 \rightarrow Recent technical improvements: larger bases/isotopes possible, up to ~10⁷ Dyson states. Work is in progress...

Single neutron levels around ¹⁶O (G-mtx & V_{UCOM})

[CB, Phys. Lett. B643, 268 (2006)]

INT-07-03, Seattle, November 7, 2007

Single neutron levels around ¹⁶O (G-mtx & V_{ucon})

Single neutron levels around ¹⁶O (G-mtx & V_{UCOM})

 Particle-hole gap, better described by the 2-body G-matrix interaction

	Theory:	Exp.:			
G-matrix:					
E _{d3/2} -E _{p1/2}	16.5	16.6			
E _{s1/2} -E _{p1/2}	12.2	12.4			
V _{UCOM} :					
E _{d3/2} -E _{p1/2}	19.3	16.6			
E _{s1/2} -E _{p1/2}	14.6	12.4			

[CB, Phys. Lett. **B643**, 268 (2006)]

INT-07-03, Seattle, November 7, 2007

<u>Self-consistent Green's function</u> approach

Two-phonons in (D)RPA - (explicit 2p2h)

- **ph** states described in terms of MF orbits
- includes correlations in the g.s.

account
 for spectral
 distribution
 of qp and qh

One- and two-phonons in ¹⁶O

C.B., W.H.Dickhoff, PRC**68**, 014311 (2003).

States with a strong p-h character are only slightly modified by 2-phonon configurations

 \rightarrow 3 body forces? clustering?

Several new levels arise as twophonon states

Anharmonicity effects are not strong for this nucleus... but still present (splitting of multiplets)

• 6 major oscillator shells

G-matrix based on Bonn-C

Stability with dressed propagators

 $E_{cut} = max energy of two$ phonon configurations

The results for the low energy excitations become more stable when dressing (self-consistency) is included.

 \rightarrow dressing improves convergence by including selected contributions from higher np-nh excitations

Conclusions and Outlook

• Self-Consistent Green's Functions (SCGF), in the Faddeev RPA (FRPA) approximation are well suited to describe the coupling between particle and collective modes of a many-body system.

- *Ab-initio* applications:
 - accurate ionization energies for atoms
 - coherent description of atoms/ e gas, possible?
 - convergent calculations in nuclei

-work in progress...

- Possible applications to nuclear structure and nuclear astrophysics are many (but not covered in this talk):
 - spectral strength/correlations
 - one- and two- nucleon knock out
 - nuclear response (giant resonances, neutrino scattering)

•Theoretical background for developing dispersive optical model (DOM) and quasiparticle-DFT (QP-DFT).

Thanks to my group and my collaborators:

W. H. Dickhoff (Washington University, St.Louis)

> **D. Van Neck** (University of Gent)

G. Martinez-Pinedo, K. Langanke

(GSI, Darmstadt)

R. Roth (TU, Darmstadt)

C. Giusti, F. D. Pacati (University of Pavia)

...and THANKS for your attention!

Self-consistent Green's function approach

Correlations form two-nucleon knock out

- ¹⁶O(e,e'pn)¹⁴N
- initial wave function from SCGF
- Pavia model for final state interactions

• $\mathbf{p}_{B} \equiv \mathbf{q} - \mathbf{p}_{1} - \mathbf{p}_{2}$

0

Proton-neutron knockout: ¹⁶O(e,e'pn)¹⁴N

[D. Middleton, et al. Eur. J. Phys. A29, 261 (2006)]

Experiment: MAMI

Theory: SCGF/Pavia scattering model

• Test run, low energy resolution:

- The 1⁺₂ final state dominates tensor correlations!
- *long-range* correlations in the two-hole wave function are critical

