

Collaborators: W. H. Dickhoff, D. Van Neck, K. Langanke, G. Martinez-Pinedo , R. Roth , C. Giusti, F. D. Pacati

Microscopic nuclear structure theory Microscopic nuclear structure theory

•Wish to predict properties of nuclei from the A-body Hamiltonian:

$$
H = T + V = \sum_{i=1}^{A} \frac{\mathsf{p}_i^2}{2 \ m} + \sum_{i < j}^{A} V_{ij} + \dots
$$

- ab-initio approaches:
	- Monte Carlo methods (A [≤] 12)
	- \cdot no-core shell model, coupled cluster ($^{16}O, ^{40}Ca$ for now)
- alternatives:
	- Many-body Green's functions: "phonons" as degrees of freedom
		- \rightarrow strong link to spectroscopy
		- \rightarrow starts from the nucleon-nucleon force

 \rightarrow optical potential (DOM) and QP-DFT

Green's functions in many-body theory

One-body Green's function (or propagator) describes the motion of quasi- particles and holes:

$$
g_{\alpha\beta}(\omega) = \sum_{n} \frac{\langle \Psi_0^A | c_{\alpha} | \Psi_n^{A+1} \rangle \langle \Psi_n^{A+1} | c_{\beta}^+ | \Psi_0^A \rangle}{\omega - (E_n^{A+1} - E_0^A) + i\eta} + \sum_{k} \frac{\langle \Psi_0^A | c_{\beta}^+ | \Psi_k^{A-1} \rangle \langle \Psi_k^{A-1} | c_{\alpha} | \Psi_0^A \rangle}{\omega - (E_0^A - E_k^{A-1}) - i\eta}
$$

…this contains all the structure information probed by nucleon transfer (spectral function):

$$
S_{\alpha}(\omega) = \frac{1}{\pi} \text{Im} g_{\alpha\alpha}(\omega) = \sum_{n} |\langle \Psi_n^{\text{A}} | c_{\alpha} | \Psi_0^{\text{A}} \rangle|^2 \, \delta(\omega - (E_0^{\text{A}} - E_n^{\text{A}}))
$$

One-hole spectral function hole spectral function -- example example

$$
S^{(h)}(p_m, E_m) = \sum_{n} |\langle \Psi_n^{A-1} | c_{\overline{p_m}} | \Psi_0^A \rangle|^2 \delta(E_m - (E_0^A - E_n^{A-1}))
$$

\n
$$
\rightarrow \text{distribution of momentum } (\mathbf{p_m}) \text{ and energies } (\mathbf{E_m})
$$

- **, free particle propagator**
	- **, correlated particle propagator**
		- **, "irreducible" self-energy**

 Σ^{\bigstar}

correlations are embedded in the "irreducible" self-energy:

expand in terms of the dressed propagator: \longrightarrow all orders **resummation**

Coupling single particle to collective modes - I

•**Non perturbative expansion of the self-energy:**

FRPA: Faddeev summation of RPA propagators FRPA: Faddeev summation of RPA propagators

•**Both pp (ladder) and ph (ring) modes included** •**Pauli exchange at 2p1h/2h1p level**

•**All order summation through a set of Faddeev equations**

INT-07-03, Seattle, November 7, 2007 References: CB, et al., Phys. Rev. C63, 034313 (2001); Phys. Rev. A76, 052503 (2007)

<u>Self-consistent Green's function</u> approach

Why "self-consistent" propagators ?

- Dressed propagators account for (the observed) strength fragmentation
- Self-consistency guaranties:
	- fulfillment of basic conservation laws [but not trivial to reach beyond 1st order (HF)…]
	- consistency among different ways of evaluating the binding energy
	- independence from the reference state

Applications to Electron Applications to Electron Systems Systems

Self-consistent Green's function fot the Ground State Energy of the Electron Gas Ground State Energy of the Electron Gas

GW approximation: $G = self-consistent$ sp propagator W≡ screened Coulomb interaction → RPA with dressed propagator

Electron gas: -XC energies (Hartrees)

Accurate self-energies are needed for extending DFT to include quasiparticles explicitly (QP-DFT):

FRPA for the Neon atom FRPA for the Neon atom

Binding energies for Atoms Binding energies for Atoms

Energies in Hartree / Relative to the experiment in mH

cc-pV(TQ)Z bases, extrapolated as $E_X = E_{\infty}+AX^{-3}$ Phys. Rev. A76, 052503 (2007).

+ work in progress

Valence Ionization Energies Valence Ionization Energies

- \bullet FRPA is of at least the same quality (or even a bit better) than FTDA/ADC(3), but:
	- it holds promise for a coherent description of both small and large systems
	- and satisfies the requirements for of developemts of quasiparticle-**DFT**
- \bullet More needs to be done…
	- Investigations for larger atoms are under way
	- Self-consistency
	- Relativistic effects can be added

Applications to Nuclei Applications to Nuclei

- Strong short-range cores require "renormalizing" the interaction:
	- –G-matrix, V_{UCOM}, Lee Suzuki, Bloch-Horowitz, V_{low-k}, ...
- •Long-range correlations \rightarrow FRPA !!

• Non perturbative expansion of the self-energy:

• Non perturbative expansion of the self-energy:

 \cdot 2 nucleons in free space: \rightarrow solve for the scatt. matrix…

$$
T(\omega) = V + V \frac{1}{\omega - (k_a^2 + k_b^2)/2m + i\eta} T(\omega)
$$

• Non perturbative expansion of the self-energy:

 \cdot 2 nucleons in medium: \rightarrow resum pp ladders…

$$
\Gamma(\omega) \approx V + V \frac{n(k_a)n(k_b)}{\omega - (k_a^2 + k_b^2)/2m + i\eta} \Gamma(\omega)
$$

aan a

Treating short Treating short-range correlations directly range correlations directly…

•Non perturbative expansion of the self-energy:

energy dep. part

• Identify the pp resummations (which account for short range correlations) in the expansion of $R(\omega)$:

Treating short Treating short-range corr. with a G . with a G-matrix

• The short-range core can be treated by resumming ladders outside the model space:

$$
\Gamma(\omega) = V + V \frac{\hat{Q}}{\omega - (k_a^2 + k_b^2)/2m + i\eta} \Gamma(\omega)
$$
\n
$$
\Gamma(\omega) = \frac{1}{\Gamma(\omega)}
$$
\n
$$
\frac{1}{\Gamma(\omega)}
$$

Treating short Treating short-range corr. with a G . with a G-matrix

• The short-range core can be treated by resumming ladders outside the model space:

$$
G(\omega) = V + V - \frac{\hat{Q}}{\omega - (k_a^2 + k_b^2)/2m + i\eta} G(\omega)
$$
\n
$$
G(\omega) = \frac{1}{\sqrt{2\pi}} \left(\frac{1}{\omega} \right)^{1/2} \left(\frac{1}{
$$

Treating short Treating short-range corr. with a G . with a G-matrix

• The short-range core can be treated by resumming ladders outside the model space:

$$
G(\omega) = V + V \frac{\hat{Q}}{\omega - (k_a^2 + k_b^2)/2m + i\eta} G(\omega)
$$

Treating short-range corr. with a G-matrix \equiv

• The short-range core can be treated by resumming ladders outside the model space:

$$
\Sigma_{\alpha\beta}^{\text{BHF}}(\omega) = i \sum_{\gamma\delta} \int \frac{d\omega'}{2\pi} G_{\alpha\gamma,\delta\beta}(\omega + \omega') g_{\delta\gamma}(\omega') = \text{where } \sum_{\gamma\delta} \text{ and } \sum_{\gamma\delta} \text{ is the positive number of terms of the interval } \mathcal{F} = \frac{1}{\sqrt{2\pi}} \text{ where } \sum_{\gamma\delta} \text{ is the positive number of terms of the interval } \mathcal{F} = \frac{1}{\sqrt{2\pi}} \text{ and } \sum_{\gamma\delta} \text{ is the positive number of terms of the interval } \mathcal{F} = \frac{1}{\sqrt{2\pi}} \text{ and } \sum_{\gamma\delta} \text{ is the positive number of terms of the interval } \mathcal{F} = \frac{1}{\sqrt{2\pi}} \text{ and } \sum_{\gamma\delta} \text{ is the positive number of terms of the interval } \mathcal{F} = \frac{1}{\sqrt{2\pi}} \text{ and } \sum_{\gamma\delta} \text{ is the positive number of terms of the interval } \mathcal{F} = \frac{1}{\sqrt{2\pi}} \text{ and } \sum_{\gamma\delta} \text{ is the positive number of terms of the interval } \mathcal{F} = \frac{1}{\sqrt{2\pi}} \text{ and } \sum_{\gamma\delta} \text{ is the positive number of terms of the interval } \mathcal{F} = \frac{1}{\sqrt{2\pi}} \text{ and } \sum_{\gamma\delta} \text{ is the positive number of terms of the interval } \mathcal{F} = \frac{1}{\sqrt{2\pi}} \text{ and } \sum_{\gamma\delta} \text{ is the positive number of terms of the interval } \mathcal{F} = \frac{1}{\sqrt{2\pi}} \text{ and } \sum_{\gamma\delta} \text{ is the positive number of terms of the interval } \mathcal{F} = \frac{1}{\sqrt{2\pi}} \text{ and } \sum_{\gamma\delta} \text{ is the positive number of terms of the interval } \mathcal{F}
$$

 \rightarrow It is NOT a good idea to fix the starting energy in $G(\omega)$ at the HF/mean field level !!

Unitary correlator operator method (UCOM)

Use a unitary operator $e^{ig(X,p)}$ to correct the short-range behavior of the wave function

"Unitary Unitary Correlator Correlator Operator Method Operator Method" potential potential (VUCOM)

 ${\sf V}_{\sf UCOM}$ is a truncation of the UCOM expansion at the 2-body level:

[CB, N.Paar, R.Roth, P.Papakostantinou, nucl-th/0608011]

<u>Self-consistent Green's function</u> approach

Ab-initio calculations with the F-RPA method

- • Self-consistency loop in bases of up to 8 oscillator shells (~104 2p1h/2h1p confgurations)
- • V_{UCOM} (AV₁₈ based)
- •G-matrix (A V_{18} based)
- • Little dependence on the oscillator parameter (b_{HO}) for the G-matrix \rightarrow

[CB, Phys. Lett. **B643**, 268 (2006)]

 \rightarrow Recent technical improvements: larger bases/isotopes possible, up to ~107 Dyson states. Work is in progress…

Single neutron levels around ¹⁶O (G-mtx & V_{ucom})

[CB, Phys. Lett. **B643**, 268 (2006)]

Single neutron levels around ¹⁶O (G-mtx & V_{UCOM})

Single neutron levels around ¹⁶O (G-mtx & V_{UCOM})

 \bullet Particle-hole gap, better described by the 2-body G-matrix interaction

[CB, Phys. Lett. **B643**, 268 (2006)]

<u>Self-consistent Green's function</u> approach

Two-phonons in (D)RPA – (explicit 2p2h)

- ph states described in terms of MF orbits
- includes correlations in the g.s.

• account for spectral distribution of qp and qh

One- and two-phonons in ¹⁶O

C.B., W.H.Dickhoff, PRC68, 014311 (2003).

States with a strong p-h character are only slightly modified by 2-phonon configurations \rightarrow 3 body forces? clustering?

Several new levels arise as twophonon states

Anharmonicity effects are not strong for this nucleus… but still present (splitting of multiplets)

• 6 major oscillator shells

• G-matrix based on Bonn-C

Stability with dressed propagators Stability with dressed propagators

 E_{cut} = max energy of twophonon configurations

Two-phonon (D)RPA (¹⁶O) Neutron s.p. spectra for 1b GF, vs h.o. length b_{HO} -10 0 Ξ $\sum_{\substack{\mathbf{a} \\ \mathbf{b} \\ \mathbf{b}}}$ G-matrix exp $\mathbf{d}_{3/2}$ **P**_{1/2} *G-matrixexp.* $^{\prime}$ O $^{\prime}$ ⁵

The results for the low energy excitations become more stable when dressing (self-consistency) is included.

1.7 1.8 1.9 2 2.1 2.2 b_{HO} [fm]

p3/2

-20

 \rightarrow dressing improves convergence by including selected contributions from higher np-nh excitations

Conclusions and Outlook Conclusions and Outlook

• Self-Consistent Green's Functions (SCGF), in the Faddeev RPA (FRPA) approximation are well suited to describe the coupling between particle and collective modes of a many-body system.

- *Ab-initio* applications:
	- accurate ionization energies for atoms
	- \cdot coherent description of atoms/ e -gas, possible?
	- convergent calculations in nuclei

work in progress…

- Possible applications to nuclear structure and nuclear astrophysics are many (but not covered in this talk):
	- spectral strength/correlations
	- one- and two- nucleon knock out
	- nuclear response (giant resonances, neutrino scattering)

•Theoretical background for developing dispersive optical model (DOM) and quasiparticle-DFT (QP-DFT).

Thanks to my group and my collaborators: Thanks to my group and my collaborators:

W. H. Dickhoff W. H. Dickhoff*(Washington University, St.Louis)*

> **D. Van Neck D. Van Neck***(University of Gent)*

G. Martinez G. Martinez-Pinedo, K. Langanke , K. Langanke

(GSI, Darmstadt)

R. Roth R. Roth*(TU, Darmstadt)*

C. Giusti, F. D. Pacati *(University of Pavia)*

…and THANKS for your attention!

<u>Self-consistent Green's function</u> approach

Correlations form two-nucleon knock out

- •**16O(e,e'pn)14N**
- initial wave function from SCGF
- Pavia model for final state interactions

• ${\bf p}_{\rm B} = {\bf q} - {\bf p}_1 - {\bf p}_2$

Proton-neutron knockout: ¹⁶O(e,e'pn)¹⁴N

[D. Middleton, et al. Eur. J. Phys. A**29**, 261 (2006)]

Experiment: MAMI

Theory: SCGF/Pavia scattering model

•Test run, low energy resolution:

- •The $1^{\scriptscriptstyle +}$ final state dominates - tensor correlations!
- • long-range correlations in the two-hole wave function are critical

