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Fermion Pairing

@ A salient property of multi-fermion systems.

@ Already in 1950 Meyer suggested that short-range
attractive N-N interaction yields J=0 nuclear ground states.

@ Mean field calculations with effective interactions describe

many nuclear properties, however they cannot provide a
complete solution.

@ After many years of investigations we now that the
structure of low-lying collective states in medium heavy to
heavy nuclei are determined by pairing correlations. This

was exploited by many successful models of nuclear
structure.
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@ Pairing in Nuclear Matter: Neutron superfluidity is present
in the crust and the inner part of a neutron star. Pairing
could significantly effect the thermal evolution of the
neutron star by suppressing neutrino (and possibly exotics
such as axions) emission.

@ Charge symmetry: interactions between two protons and
two neutrons are very similar.

@ Isospin symmetry: proton-neutron interaction is also very
similar.

@ There is very little experimental information about np
pairing in heavier nuclei. Radiative beam facilities will
change this picture.

@ Theory of pairing in nuclear physics has many parallels
with the theory of ultrasmall metallic grains in condensed
matter physics.
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@ First microscopic theory of pairing: Bardeen, Cooper,
Schriffer (BCS) theory, 1957

@ Applications of BCS theory to nuclear structure: Bohr,
Belyaev, Migdal 1958-1959.

@ Application of the BCS theory to nuclear structure has
main drawback: BCS wave function is NOT an eigenstate
of the number operator. Several solutions were offered:

@ Random-Phase Approximation (RPA)

@ Projection of the particle number after variation

@ Projection of the particle number before variation,
Lipkin-Nogami technique
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Quasi-Spin Algebra
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m>0
§ = Y (Mg _nain
m>0
o 1
0 _ t o a t R
§=3 > (ajma,eraj_ma,_m 1,)

m>0

Mutually commuting SU(2) algebras:

157.871=26;80,  [80. 5] = +4;5]
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Qi =j+ % = the maximum number of pairs that can occupy the
level j

Y t t
N/ ) Z (ajma/m+aj—ma/—m) :
m>0

0 < N; < Q; — 1Q; representation

A.B. Balantekin Solutions of the Nuclear Pairing Problem



NN
@ Nucleons interacting with a pairing force:
/:/ = Z eja}
jm

majm—|Gl> ¢SS,
Vi
@ When the pairing strength is separable (cj: = ¢ ¢j):
A=Y qal am—|GI> ccSS;.
jm /i
@ If we assume that the NN interaction is determined by a

single parameter (scattering length) and the single-particle
energies are discrete we then get

jm

H=> ¢al am—|Gl Z §'S,.

i’
This case was solved by Richardson.
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A=>¢al am— |Gl Z 55,

i
If we assume that the energy levels are degenerate the first

term is a constant for a given number of pairs. This can be
solved by using quasispin algebra since H o« STS~. (Kerman)
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Exactly solvable cases:
® Quasi-spin limit (Kerman)

A=-1G6>"5S;.
Vi
@ Richardson’s solution:

f i A

H=> ¢ga ,am—1Gl)_ S5S;.
jm i

@ Gaudin’s model - closely related to Richardson’s.

@ The limit in which the energy levels are degenerate (the
first term is a constant for a given number of pairs):

- PSP
H=—lely o5 S
i

and Pehlivan).

(Draayer, Pan, Balantekin, Pehlivan, de Jesus)
@ Most general separable case with two shells (Balantekin
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Gaudin Algebra
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H\) = (NP + %J*(A)J‘()\) - %J‘(A)J*(A)
Not the Casimir operator of the Gaudin algebra!

[H(A), H(1)] =0
Lowest weight vector

J=(N)[0) =0, and J°(A)|0) = W())|0)

HI0) = [W()? = W'(\)] [0)
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How do we find other eigenstates? Consider the state
|€) = JT(€)|0) for an arbitrary complex number . Since
+ + 0 _Jt+ 0
[HO), 7 (€] = 5= 2 (FPE - L)

Hence if W(¢) = 0, then J*(£)|0) is an eigenstate of H(\) with
the eigenvalue

B = W2 — wiy)] - 22

A=¢&
Gaudin showed that this can be generalized
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A state of the form

|§17§27' 75!7 >= J+(£1)J+(£2)J+(£n)|o >

is an eigenvector of H(\) if the numbers 1, &2,
satisfy the so-called Bethe Ansatz equations:

. &éheC
W(ga)_

-y !
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‘R-operators:

im (A = ex)H(A)

= Ry
Ry = —2 Z Sk-S;
— €k — €
J#k
[HA),H(u)] =0 = [H(\),R«] =0
[Rj,R«] =0
One can also show that

d Ri=0
i

and

D EiRi=-2)8;-S;
, i#
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Recall the Gaudin Algebra

SO — S (u)
A— U

JEAN) — I ()
A—p

[JT (), J™ ()] =2

[N, S5 ()] = +

9

[N, L ()] =[5, I ()] = 0

Not only the operators J()), but also the operators J(\) + ¢
satisfy this algebra for a constant ¢. In this case
H\) =Jd(\) -J(\) = H(\) +2¢-J(\) +¢?

which has the same eigenstates.
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Richardson operators:

A—€k

lim (A — ex) (H(\) +2¢-S) = R

F,’k:_2c.sk_2§ (ﬁ
— €k — €
J#k
[H(A\)+2c-S,R(] =0
and

[R;, R] =0
Z R =—-2c- ZSK
i K

ZE,‘R/:—ZZE/C'S/—ZZS,"SJ'
i i

i#]
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H=> qamain=IGI>_5'S;
jm i

+ constant terms

S 68 - |Gl ((Z S)-(2_8)- QSN+ (> S?))
j i i i '

Choose

¢ =(0,0,-1/2|G)
then
|G| ZE,R+|G| Zﬁ)z |G|ZR+
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Degenerate Solution
Define

§7(0)=>¢'&" and 5(0)=> ¢5,
j j
H = —|G|5*(0)5(0).

In the 1970’s Talmi showed that under certain assumptions, a
state of the form

57(0)/0) = " ¢'5710), |0): particle vacuum
J

is an eigenstate of a class of Hamiltonians including the one
above. Indeed

HE*(0)(0) = (G Zﬂjcﬁ) 5 (0)[o)

)
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What about other one-pair states?

For example for two levels j; and j», the orthogonal state

Cp + C/1 o+
< S Q/z sz) ‘0>,

/1

is also an eigenstate with E=0.
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Energy/(—|G|)

0

State

_% gt
( Q,

Il

% &+
+a-55)(0)

Qf1 |C/1 |2 + sz|cfz|2

* O+ * o+
<cj1 & +c 8

255)10)

States with N=1 for two shells
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What about other one-pair states?

For example for two levels j; and jo, the orthogonal state

<C/2 S+ C/1 é-l—

, Q, j2)
is also an eigenstate with E=0

Is there a systematic way to derive these states?
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Yes, as showed by Pan, et al. for particle pair states.
Define

A C* A 2 Cj 2

t(x) = 1 _ gt —(x) = S B o o

St(x) = ? — |cj|2xS/ and S (x) ? — |Cj|2xs/

Then eigenstates are of the form
§t(x)8*(y)--- 8 (2)/0)

F. Pan, J.P. Draayer, W.E. Ormand, Phys. Lett. B 422, 1 (1998)
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57(0)5H(ZMy... &1 (zM)0)

is an eigenstate if the following Bethe ansatz equations are
satisfied:

- /2 1
Z i =t Z o m=1.2.. N1,

1/]¢? - zy" k=1(k#m) Zm = — Zk

_ g (ZQ RS - )

k=1 “k

Pan et al did not note but this is an eigenstate if the shell is at
most half full.
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Similarly
& (xM&+ (M) .. &+ (x\) o)

is an eigenstate with zero energy if the following Bethe ansatz
equations are satisfied:

—Q,/2 N 1
' [ ———— forevery m=1,2,....N
EZ WS D W W 2
1/]612 — x3) k=1 (ko£m) X — XV

Again this is a state if the shell is at most half full.
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What if the available states are more than half full? There are
degeneracies:

No. of Pairs

Energy/(—|G|) | State
1 >l | §7(0))0)
Npmax zj Qj|cj|'2 |0>

|0): particle vacuum

|0): state where all levels are completely filled
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NN
If the shells are more than half full then the state

5 (2"M& (M)

.5 (zN 1)]O>
is an eigenstate with energy

G(Zﬂqz NZ1 2)

if the following Bethe ansatz equations are satisfied

—Q;/2
Z j/

1 1
.S
(N N N
1/|C/|2—Zm) r(n) k=1(k#m) Zr(n)
Here Npmax + 1

zZM
064304 (2007)

N = number of particle pairs
A.B. Balantekin, J. de Jesus, and Y. Pehlivan, Phys. Rev. C 75
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Particle-hole degeneracy:

No. of Pairs State
N 51(0)51(zMy... &+ (2N )0)
Noax +1-N | § ("5 (4")... & (zy2)0)

A.B. Balantekin Solutions of the Nuclear Pairing Problem



Energy (MeV)

A.B. Balantekin

Solutions of the Nuclear

Energy (MeV)




Energy (MeV)
~

)

5.76 (4.63)

5.30(4.23) 5.30 (=)
4.73 (3.59)

4.16 (3.85) 4.16 (=)

3.16 (2.89) 3.16 (=)

3.00 (3.32) - 3.00 (2.97)
2.11(2.29) 2.11 (2.45)
1.64 (2.05) 1.64 (2.87)

60, . 62, 64 66, .
Ni Ni Ni Ni

theory (experiment)
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NN
Exact solutions with two shells
shells:

Consider the most general pairing Hamiltonian with only two

|G] ZZE/SO ZCC/S S +ZE/ i,

with £; = ¢;/|Gl.

States can be written using the step operators

N T gt
zj: 25/ — ‘C/‘ZX 1
as

JT(x1)J T (x2)

-.JT(xn)|0).
Balantekin and Pehlivan, submitted for publication
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I $ @
JT(x)JT (%) ...
Defining

JT(xn)[0).
o e 12 )
5:2 i €jp 5:2512|Cj1| 5/1|Cjz|
i, 2 = |c;, |2 i, 2 = |c;, |2
we obtain
En =

If the parameters x, satisfy the Bethe ansatz equations
Z Q; |C/ B N

2
RCET _Z
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Ey.

EN:242(£]‘+£&)

EN:Z‘Z(E,,*'EU)

A=0
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E‘:[Z(shﬂh)
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Exey

Exact Energy eigenvalues for j; = 3/2 and j, = 5/2. cos ¥ = ¢4

andsim?:ch:ﬁ—eg. 5 = _ -
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Solutions of Bethe Ansatz equations
x™ = ]

N (1
] ‘Cj2|2 1
N

7)

Ci > lcpl?
Z 1 _Q/2/2+ Q/1/2 —0

(N (N) (N~ g _ (N
k=1 (ki) i Tk Nj Nj
In 1914 Stieltjes showed that the polynomial

N
pn(2) = [](z— 2™
i=1

satisfies the hypergeometric equation
z

(1 Z)pN+[ Q + (Qthz) ]pN+N (N

Qh
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Supersymmetric Quantum Mechanics
Consider two Hamiltonians

H, = G'G, H, = GG,

where G is an arbitrary operator. The eigenvalues of these two
Hamiltonians

GtGi1,ny = EV,n)
GG'12,n) = EP|2,n)

are the same:
EV=EP —E,
and that the eigenvectors are related:

2,n) =G [GTG]_W 1, n).

This works for all cases except when G|1, n) = 0, which should

be the ground state energy of the positive-definite Hamiltonian
H;.

o F z = E DA
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Why is this called supersymmetry? Define
0 O 0 G
T _
@=(ao) 2=(57),
Then u
_ il _ > 0
i=fea)= (% 5)
with

[H,Q] =0=[H, Q.
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An Applications of SUSY QM to Nuclear Structure Physics
Separable pairing with degenerate single-particle spectra:

Hsc ~ —|G|S§*(0)57(0),

St(0) = Z ¢S and 57(0)= Z S .
j j
Introduce the operator

T=exp <—ig (S +S8)

i

This operator transforms the empty shell, |0), to the fully
occupied shell, |0):

T|0) =10)
Next define

BT = 5t (0)T.
A.B. Balantekin
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@ Supersymmetric quantum mechanics tells us that the
partner Hamiltonians H; = BB~ and H, = B~ B* have
identical spectra except for the ground state of A,

@ Here two Hamiltonians H; and H» are actually identical
and equal to the pairing Hamiltonian. Hence the role of the
supersymmetry is to connect the states |V,) and |Vy).

@ This supersymmetry connects particle and hole states.

A.B. Balantekin and Y. Pehlivan, J. Phys. G 34, 1783 (2007).
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NS
E A N Pairs

N,...—N+1 Pairs
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