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Fermion Pairing
A salient property of multi-fermion systems.
Already in 1950 Meyer suggested that short-range
attractive N-N interaction yields J=0 nuclear ground states.
Mean field calculations with effective interactions describe
many nuclear properties, however they cannot provide a
complete solution.
After many years of investigations we now that the
structure of low-lying collective states in medium heavy to
heavy nuclei are determined by pairing correlations. This
was exploited by many successful models of nuclear
structure.
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Pairing in Nuclear Matter: Neutron superfluidity is present
in the crust and the inner part of a neutron star. Pairing
could significantly effect the thermal evolution of the
neutron star by suppressing neutrino (and possibly exotics
such as axions) emission.
Charge symmetry: interactions between two protons and
two neutrons are very similar.
Isospin symmetry: proton-neutron interaction is also very
similar.
There is very little experimental information about np
pairing in heavier nuclei. Radiative beam facilities will
change this picture.
Theory of pairing in nuclear physics has many parallels
with the theory of ultrasmall metallic grains in condensed
matter physics.
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First microscopic theory of pairing: Bardeen, Cooper,
Schriffer (BCS) theory, 1957
Applications of BCS theory to nuclear structure: Bohr,
Belyaev, Migdal 1958-1959.
Application of the BCS theory to nuclear structure has
main drawback: BCS wave function is NOT an eigenstate
of the number operator. Several solutions were offered:

Random-Phase Approximation (RPA)
Projection of the particle number after variation
Projection of the particle number before variation,
Lipkin-Nogami technique
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Quasi-Spin Algebra

Ŝ+
j =

∑

m>0
(−1)(j−m)a†

j ma†
j −m,

Ŝ−
j =

∑

m>0
(−1)(j−m)aj −maj m

Ŝ0
j =

1
2
∑

m>0

(

a†
j maj m + a†

j −maj −m − 1,
)

Mutually commuting SU(2) algebras:

[Ŝ+
i , Ŝ−

j ] = 2δijŜ0
j , [Ŝ0

i , Ŝ±
j ] = ±δijŜ±

j
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Ŝ0
j = N̂j −

1
2Ωj .

Ωj = j + 1
2 = the maximum number of pairs that can occupy the

level j
N̂j =

1
2
∑

m>0

(

a†
j maj m + a†

j −maj −m
)

.

0 < N̂j < Ωj −→
1
2Ωj representation
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Nucleons interacting with a pairing force:

Ĥ =
∑

jm
εja†

j maj m − |G|
∑

jj ′
cjj ′Ŝ+

j Ŝ−
j ′ .

When the pairing strength is separable (cjj ′ = c∗
j cj ′):

Ĥ =
∑

jm
εja†

j maj m − |G|
∑

jj ′
c∗

j cj ′Ŝ+
j Ŝ−

j ′ .

If we assume that the NN interaction is determined by a
single parameter (scattering length) and the single-particle
energies are discrete we then get

Ĥ =
∑

jm
εja†

j maj m − |G|
∑

jj ′
Ŝ+

j Ŝ−
j ′ .

This case was solved by Richardson.
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Ĥ =
∑

jm
εja†

j maj m − |G|
∑

jj ′
Ŝ+

j Ŝ−
j ′ .

If we assume that the energy levels are degenerate the first
term is a constant for a given number of pairs. This can be
solved by using quasispin algebra since H ∝ S+S−. (Kerman)
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Exactly solvable cases:
Quasi-spin limit (Kerman)

Ĥ = −|G|
∑

jj ′
Ŝ+

j Ŝ−
j ′ .

Richardson’s solution:
Ĥ =

∑

jm
εja†

j maj m − |G|
∑

jj ′
Ŝ+

j Ŝ−
j ′ .

Gaudin’s model - closely related to Richardson’s.
The limit in which the energy levels are degenerate (the
first term is a constant for a given number of pairs):

Ĥ = −|G|
∑

jj ′
c∗

j cj ′Ŝ+
j Ŝ−

j ′ .

(Draayer, Pan, Balantekin, Pehlivan, de Jesus)
Most general separable case with two shells (Balantekin
and Pehlivan).
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Gaudin Algebra

[J+(λ), J−(µ)] = 2J0(λ) − J0(µ)

λ − µ
,

[J0(λ), J±(µ)] = ±
J±(λ) − J±(µ)

λ − µ
,

[J0(λ), J0(µ)] = [J±(λ), J±(µ)] = 0

A possible realization:

J0(λ) =

N
∑

i=1

Ŝ0
i

εi − λ
and J±(λ) =

N
∑

i=1

Ŝ±
i

εi − λ
.
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H(λ) = J0(λ)J0(λ) +
1
2J+(λ)J−(λ) +

1
2J−(λ)J+(λ)

Not the Casimir operator of the Gaudin algebra!

[H(λ), H(µ)] = 0
Lowest weight vector

J−(λ)|0〉 = 0, and J0(λ)|0〉 = W (λ)|0〉

H(λ)|0〉 =
[

W (λ)2 − W ′(λ)
]

|0〉
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How do we find other eigenstates? Consider the state
|ξ〉 ≡ J+(ξ)|0〉 for an arbitrary complex number ξ. Since

[H(λ), J+(ξ)] =
2

λ − ξ

(

J+(λ)J0(ξ) − J+(ξ)J0(λ)
)

.

Hence if W (ξ) = 0, then J+(ξ)|0〉 is an eigenstate of H(λ) with
the eigenvalue

E1(λ) =
[

W (λ)2 − W ′(λ)
]

− 2W (λ)

λ − ξ
.

Gaudin showed that this can be generalized.
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A state of the form

|ξ1, ξ2, . . . , ξn >≡ J+(ξ1)J+(ξ2) . . . J+(ξn)|0 >

is an eigenvector of H(λ) if the numbers ξ1, ξ2, . . . , ξn ∈ C

satisfy the so-called Bethe Ansatz equations:

W (ξα) =

n
∑

β=1
(β 6=α)

1
ξα − ξβ

for α = 1, 2, . . . , n.

Corresponding eigenvalue is

En(λ) =
[

W (λ)2 − W ′(λ)
]

− 2
n
∑

α=1

W (λ) − W (ξα)

λ − ξα
.
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R-operators:
lim

λ→εk
(λ − εk )H(λ) = Rk

Rk = −2
∑

j 6=k

Sk · Sj
εk − εj

[H(λ), H(µ)] = 0 ⇒ [H(λ),Rk ] = 0
[Rj ,Rk ] = 0

One can also show that
∑

i
Ri = 0

and
∑

i
εiRi = −2

∑

i 6=j
Si · Sj
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Recall the Gaudin Algebra

[J+(λ), J−(µ)] = 2J0(λ) − J0(µ)

λ − µ
,

[J0(λ), J±(µ)] = ±
J±(λ) − J±(µ)

λ − µ
,

[J0(λ), J0(µ)] = [J±(λ), J±(µ)] = 0

Not only the operators J(λ), but also the operators J(λ) + c
satisfy this algebra for a constant c. In this case

H(λ) = J(λ) · J(λ) ⇒ H(λ) + 2c · J(λ) + c2

which has the same eigenstates.
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Richardson operators:

lim
λ→εk

(λ − εk ) (H(λ) + 2c · S) = Rk

Rk = −2c · Sk − 2
∑

j 6=k

Sk · Sj
εk − εj

[H(λ) + 2c · S, Rk ] = 0 [Rj , Rk ] = 0
and

∑

i
Ri = −2c ·

∑

k
Sk

∑

i
εiRi = −2

∑

i
εic · Si − 2

∑

i 6=j
Si · Sj
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Ĥ =
∑

jm
εja†

j maj m − |G|
∑

jj ′
Ŝ+

j Ŝ−
j ′ .

⇒ H =
∑

j
εjS0

j − |G|

(

(
∑

i
Si) · (

∑

i
Si) − (

∑

i
S0

i )2 + (
∑

i
S0

i )

)

+ constant terms

Choose
c = (0, 0,−1/2|G|)

then
H
|G|

=
∑

i
εiRi + |G|2(

∑

i
Ri)

2 − |G|
∑

i
Ri + · · ·
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Degenerate Solution
Define

Ŝ+(0) =
∑

j
c∗

j Ŝ+
j and Ŝ−(0) =

∑

j
cj Ŝ−

j ,

Ĥ = −|G|Ŝ+(0)Ŝ−(0).

In the 1970’s Talmi showed that under certain assumptions, a
state of the form

Ŝ+(0)|0〉 =
∑

j
c∗

j Ŝ+
j |0〉, |0〉: particle vacuum

is an eigenstate of a class of Hamiltonians including the one
above. Indeed

ĤŜ+(0)|0〉 =



−|G|
∑

j
Ωj |cj |

2



 Ŝ+(0)|0〉
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What about other one-pair states?
For example for two levels j1 and j2, the orthogonal state

( cj2
Ωj1

Ŝ+
j1 −

cj1
Ωj2

Ŝ+
j2

)

|0〉,

is also an eigenstate with E=0.
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Energy/(−|G|) State

0
(

−
cj2
Ωj1

Ŝ+
j1 +

cj1
Ωj2

Ŝ+
j2

)

|0〉

Ωj1 |cj1 |
2 + Ωj2|cj2 |

2
(

c∗
j1Ŝ+

j1 + c∗
j2Ŝ+

j2

)

|0〉

States with N=1 for two shells
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What about other one-pair states?
For example for two levels j1 and j2, the orthogonal state

( cj2
Ωj1

Ŝ+
j1 −

cj1
Ωj2

Ŝ+
j2

)

|0〉,

is also an eigenstate with E=0.
Is there a systematic way to derive these states?
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Yes, as showed by Pan, et al. for particle pair states.
Define

Ŝ+(x) =
∑

j

c∗
j

1 − |cj |2x Ŝ+
j and Ŝ−(x) =

∑

j

cj
1 − |cj |2x Ŝ−

j .

Then eigenstates are of the form

Ŝ+(x)Ŝ+(y) · · · Ŝ+(z)|0〉

F. Pan, J.P. Draayer, W.E. Ormand, Phys. Lett. B 422, 1 (1998)

A.B. Balantekin Solutions of the Nuclear Pairing Problem



Ŝ+(x) =
∑

j

c∗
j

1 − |cj |2x Ŝ+
j and Ŝ−(x) =

∑

j

cj
1 − |cj |2x Ŝ−

j

Introduce the operator

K̂ 0(x) =
∑

j

1
1/|cj |2 − x Ŝ0

j

[Ŝ+(x), Ŝ−(0)] = [Ŝ+(0), Ŝ−(x)] = 2K 0(x)

[K̂ 0(x), Ŝ±(y)] = ±
Ŝ±(x) − Ŝ±(y)

x − y

This is very similar to Gaudin algebra!
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Ŝ+(0)Ŝ+(z(N)
1 ) . . . Ŝ+(z(N)

N−1)|0〉
is an eigenstate if the following Bethe ansatz equations are
satisfied:

∑

j

−Ωj/2
1/|cj |2 − z(N)

m
=

1
z(N)

m
+

N−1
∑

k=1(k 6=m)

1
z(N)

m − z(N)
k

m = 1, 2, . . . N−1.

EN = −|G|





∑

j
Ωj |cj |

2 −
N−1
∑

k=1

2
z(N)

k





Pan et al did not note but this is an eigenstate if the shell is at
most half full.
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Similarly
Ŝ+(x (N)

1 )Ŝ+(x (N)
2 ) . . . Ŝ+(x (N)

N )|0〉
is an eigenstate with zero energy if the following Bethe ansatz
equations are satisfied:

∑

j

−Ωj/2
1/|cj |2 − x (N)

m
=

N
∑

k=1(k 6=m)

1
x (N)

m − x (N)
k

for every m = 1, 2, . . . , N

Again this is a state if the shell is at most half full.
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What if the available states are more than half full? There are
degeneracies:

No. of Pairs Energy/(−|G|) State

1
∑

j Ωj |cj |
2 Ŝ+(0)|0〉

Nmax
∑

j Ωj |cj |
2 |0̄〉

|0〉: particle vacuum
|0̄〉: state where all levels are completely filled
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If the shells are more than half full then the state

Ŝ−(z(N)
1 )Ŝ−(z(N)

2 ) . . . Ŝ−(z(N)
N−1)|0̄〉

is an eigenstate with energy

E = −G





∑

j
Ωj |cj |

2 −
N−1
∑

k=1

2
z(N)

k





if the following Bethe ansatz equations are satisfied

∑

j

−Ωj/2
1/|cj |2 − z(N)

m
=

1
z(N)

m
+

N−1
∑

k=1(k 6=m)

1
z(N)

m − z(N)
k

Here Nmax + 1 − N = number of particle pairs
A.B. Balantekin, J. de Jesus, and Y. Pehlivan, Phys. Rev. C 75,
064304 (2007)
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Particle-hole degeneracy:

No. of Pairs State

N Ŝ+(0)Ŝ+(z(N)
1 ) . . . Ŝ+(z(N)

N−1)|0〉

Nmax + 1 − N Ŝ−(z(N)
1 )Ŝ−(z(N)

2 ) . . . Ŝ−(z(N)
N−1)|0̄〉

E = −G





∑

j
Ωj |cj |

2 −
N−1
∑

k=1

2
z(N)

k





∑

j

−Ωj/2
1/|cj |2 − z(N)

m
=

1
z(N)

m
+

N−1
∑

k=1(k 6=m)

1
z(N)

m − z(N)
k
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Exact solutions with two shells
Consider the most general pairing Hamiltonian with only two
shells:

Ĥ
|G|

=
∑

j
2εjŜ0

j −
∑

jj ′
c∗

j cj ′Ŝ+
j Ŝ−

j ′ +
∑

j
εjΩj ,

with εj = εj/|G|.
States can be written using the step operators

J+(x) =
∑

j

c∗
j

2εj − |cj |2x S+
j

as
J+(x1)J+(x2) . . . J+(xN)|0〉.

Balantekin and Pehlivan, submitted for publication.
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J+(x1)J+(x2) . . . J+(xN)|0〉.
Defining

β = 2 εj1 − εj2
|cj1 |

2 − |cj2 |
2 δ = 2εj2|cj1 |

2 − εj1 |cj2 |
2

|cj1 |
2 − |cj2 |

2 .

we obtain

EN = −

N
∑

n=1

δxn
β − xn

.

If the parameters xk satisfy the Bethe ansatz equations

∑

j

Ωj |cj |
2

2εj − |cj |2xk
=

β

β − xk
+

N
∑

n=1(6=k)

2
xn − xk

.
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Solutions of Bethe Ansatz equations

x (N)
i =

1
|cj2 |

2 + η
(N)
i

( 1
|cj1 |

2 −
1

|cj2 |
2

)

N
∑

k=1(k 6=i)

1
η

(N)
i − η

(N)
k

−
Ωj2/2
η

(N)
i

+
Ωj1/2

1 − η
(N)
i

= 0

In 1914 Stieltjes showed that the polynomial

pN(z) =

N
∏

i=1
(z − η

(N)
i )

satisfies the hypergeometric equation

z(1−z)p′′
N+
[

−Ωj2 +
(

Ωj1Ωj2
)

z
]

p′
N+N

(

N − Ωj1 − Ωj2 − 1
)

pN = 0
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Supersymmetric Quantum Mechanics
Consider two Hamiltonians

H1 = G†G, H2 = GG†,

where G is an arbitrary operator. The eigenvalues of these two
Hamiltonians

G†G|1, n〉 = E (1)
n |1, n〉

GG†|2, n〉 = E (2)
n |2, n〉

are the same:
E (1)

n = E (2)
n = En

and that the eigenvectors are related:

|2, n〉 = G
[

G†G
]−1/2

|1, n〉.

This works for all cases except when G|1, n〉 = 0, which should
be the ground state energy of the positive-definite Hamiltonian
H1.
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Why is this called supersymmetry? Define

Q† =

(

0 0
G† 0

)

, Q =

(

0 G
0 0

)

,

Then
H =

{

Q, Q†
}

=

(

H2 0
0 H1

)

.

with
[H, Q] = 0 = [H, Q†].
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An Applications of SUSY QM to Nuclear Structure Physics
Separable pairing with degenerate single-particle spectra:

ĤSC ∼ −|G|Ŝ+(0)Ŝ−(0),

Ŝ+(0) =
∑

j
c∗

j Ŝ+
j and Ŝ−(0) =

∑

j
cj Ŝ−

j .

Introduce the operator

T̂ = exp
(

−i π2
∑

i
(Ŝ+

i + Ŝ−
i )

)

This operator transforms the empty shell, |0〉, to the fully
occupied shell, |0̄〉:

T̂ |0〉 = |0̄〉
Next define

B̂− = T̂ †Ŝ−(0), B̂+ = Ŝ+(0)T̂ .
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Supersymmetric quantum mechanics tells us that the
partner Hamiltonians Ĥ1 = B̂+B̂− and Ĥ2 = B̂−B̂+ have
identical spectra except for the ground state of Ĥ1
Here two Hamiltonians Ĥ1 and Ĥ2 are actually identical
and equal to the pairing Hamiltonian. Hence the role of the
supersymmetry is to connect the states |Ψ2〉 and |Ψ1〉.
This supersymmetry connects particle and hole states.

A.B. Balantekin and Y. Pehlivan, J. Phys. G 34, 1783 (2007).
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max  N    −N+1 Pairs   N Pairs

0

E

Spectra of Nuclear pairing exhibiting supersymmetry
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