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O(a) improvement and twisted mass QCD

Recent interest in tmQCD mostly triggered by the observation of
automatic O(a) improvement at maximal twist α = π/2 [Frezzotti & Rossi
’03 ].
The argument only relies on Symanziks effective continuum theory:

assume that we have tuned mPCAC = 0 i.e. the renormalized
standard mass vanishes (up to O(a) effects)

Symanziks effective continuum action is then given by

Seff = S0 + aS1 + O(a2), S0 =

∫
d4x ψ(x)

(
D/+ iµqγ5τ

3
)
ψ(x)

where S0 is supposed to be regularised e.g. with Ginsparg-Wilson
quarks on a much finer lattice, and S1 is given by (afer using
equations of motion)

S1 =

∫
d4x

{
c ψσµνFµνψ + bµ µ

2ψψ
}
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Cutoff dependence of lattice correlation function:

〈O〉 = 〈O〉cont − a〈S1O〉cont + a〈δO〉cont + O(a2).

Here δO are the O(a) counterterms to the composite fields in O.
Example:

O = V 1
µ (x)P2(y) ⇒ δO =

{
cv i∂νT

1
µν(x) + bv µA2

µ(x)
}

P2(y)

Introduce a γ5τ
1-transformation:

ψ → iγ5τ
1ψ, ψ → ψ iγ5τ

1
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Under this γ5τ
1-transformation one has

S0 → S0 S1 → −S1

O → ±O ⇒ δO → ∓δO

Hence for γ5τ
1-even O one finds

〈OS1〉cont = −〈OS1〉cont = 0

〈δO〉cont = −〈δO〉cont = 0

⇒ 〈O〉 = 〈O〉cont + O(a2)

while for γ5τ
1-odd O one gets

〈O〉cont = −〈O〉cont = 0

〈OS1〉cont = 〈OS1〉cont

〈δO〉cont = 〈δO〉cont = 0

⇒ 〈O〉 = −a〈OS1〉cont + a〈δO〉cont + O(a2)

⇒ γ5τ
1-even observables are automatically O(a) improved, while

γ5τ
1-odd observables vanish up to O(a) terms.
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Some Observations & Remarks:

The γ5τ
1-symmetry corresponds to the physical flavour symmetry:

ψ′ → −iτ2 ψ′, ψ
′ → ψ

′
iτ2.

A similar argument based on parity has been given by Shindler
Aa
µ and Pa have opposite γ5τ

1-parity!

⇒ 〈∂µA1
µ(x)Oeven〉 = 2mPCAC︸ ︷︷ ︸

O(a)

〈P1(x)Oeven〉︸ ︷︷ ︸
O(a)

= O(a2)

i.e. the critical mass is only defined up to O(a)
in the O(a) improved theory one can determine mcr up to an O(a2)
ambiguity but this requires a mixed source, and it depends on cA.
The O(a) ambiguity in mcr does not spoil O(a) improvement: a shift
in mc r by aΛ2 corresponds to an insertion of the γ5τ

1-odd operator
ψψ ⇒ O(a2) effect in γ5τ

1-even correlators
finite space time volume: there is no phase transition, no spontaneous
symmetry breaking and analyticity in the quark mass parameters

⇒ massless Wilson quarks in a finite volume are automatically O(a)
improved!
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O(a) improvement in infinite volume

infinite volume:

The twisted mass µq drives spontaneous chiral symmetry breaking. If
it becomes too small, this may not be true any more and the system
realigns the vacuum state ⇒ use χPT to analyse the dynamics (cf.
e.g. S. Sharpe’s Nara lectures ’06).

At small µ cutoff effects may formally still be O(a2) but can be large
(“bending phenomenon”), depending on the chosen definition of mcr:
(Aoki & Bär, Sharpe & Wu, Sharpe, Frezzotti et al.)

Use χPT and a “good” definition of mcr (from pion physics) to
control chiral extrapolations (Aoki & Bär, Sharpe & Wu, Sharpe)
O(a) improvement of the action may also help
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Test of O(a) improvement [Shindler, Lattice 2005 ]

Continuum extrapolation of Fπ in quenched tmQCD:
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Possible strategy for non-perturbative renormalisation

Premise: need non-perturbative renormalisation to obtain reliable error
estimates; RI-MOM schemes & continuum perturbation theory from scales
µ = O(1)GeV is difficult to control and may fail completely in some cases
Strategy:

1 use SF scheme to determine the scale evolution non-perturbatively in
the continuum limit; use ”cheap” regularisation (Wilson or staggered
quarks) for this part

2 At a low energy scale: renormalise in the SF scheme, either
directly, by implementing the SF for the given regularisation; (requires
extra simulations on relatively small lattices, e.g L = 0.8 fm, L/a = 10)
indirectly via some other physical quantity computable with periodic
b.c.’s (see e.g. Hernandez et al. 2000 ZSF

P for overlap quarks);
problems: insufficient precision, potentially sacrifice an observable for
the matching procedure

3 Implementation of the SF for Ginsparg-Wilson quarks [Lüscher,
Taniguchi ’04, Lüscher ’06, S. ’06 ]

4 O(a) cutoff effects in the SF need to be adressed!
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Sources for O(a) effects in the SF

Renormalisability: boundary counterterms are local polynomials in the
fields and their derivatives of dimension ≤ 3.

At O(a) the same reasoning applies with terms of dimension 4;

Possible boundary counterterms in the pure gauge theory:

tr {F0kF0k}, tr {FklFkl},

In QCD one expects fermionic terms ψγ0D0ψ or ψγkDkψ with any
regularisation,

Which counterterms contribute depends on gauge field b.c.’s and on
the observable; example: tr {FklFkl} = 0 in SF coupling calculation

Equations of motions may be used to reduce the counterterm basis

Typically 2-3 boundary O(a) counterterms need to be
monitored/controlled

In practice: evaluate coefficients in perturbation theory and vary them
in the simulation to assess their effect numerically

Stefan Sint O(a) improvement & Schrödinger functional schemes (lecture V) 10 / 31



The SF with Wilson quarks & O(a) improvement

Apparent contradiction:

1 Previous discussion: γ5τ
1-even observables computed with Wilson

quarks in a finite volume (with some type of periodic boundary
conditions) are automatically O(a) improved at zero quark mass ⇒
improvement coefficients like csw are irrelevant!

2 The Schrödinger functional in finite volume at zero mass was used to
determine csw, cA and other O(a) improvement coefficients.

Distinguish 3 sources for O(a) effects in the SF:

1 O(a) boundary effects (expected in any case!); can be cancelled by
inclusion of boundary O(a) counterterms

2 from the bulk action; are cancelled by including the SW/clover term

3 from the composite operators; can be cancelled by including O(a)
counterterms determined from chiral Ward identities; difficult for
4-quark operators!
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Example: relative cutoff effects in the one-loop coefficient of the SSF for
BK (Palombi, Pena, S. ’05)

Question: Why do the bulk O(a) counterterms not vanish in the chiral
limit?
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SSF for BK operator (quenched) [ALPHA ’05 ]
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Scale evolution of BK (SF scheme) [ALPHA ’05 ]

,

,
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Problem: the γ5τ
1 field transformation switches the projectors of the

quark b.c.’s:
P±γ5τ

1 = γ5τ
1P∓

The boundary conditions, like mass terms, break chiral symmetry and
define a direction in chiral flavour space.

⇒ the γ5τ
1 transformation yields inequivalent correlation functions even

in the chiral limit,

〈O〉(m,µq ,P±) → 〈O ′〉(−m,µq ,P∓)

Possible solution: change quark boundary projectors, such that they
commute with γ5τ

1, e.g.

P± = 1
2(1± γ0τ

3), Q± = 1
2(1± iγ0γ5τ

3),

Practical problem: not obvious how to implement such boundary
conditions on the lattice; solution so far only for Q±.
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SF boundary conditions and chiral rotations

Consider isospin doublets χ′ and χ′ satisfying homogeneous SF boundary
conditions (P± = 1

2(1± γ0),

P+χ
′(x)|x0=0 = 0, P−χ

′(x)|x0=T = 0,

χ′(x)P−|x0=0 = 0, χ′(x)P+|x0=T = 0.

perform a chiral field rotation,

χ′ = exp(iαγ5τ
3/2)χ, χ′ = χ exp(iαγ5τ

3/2),

the rotated fields satisfy chirally rotated boundary conditions

P+(α)χ(x)|x0=0 = 0, P−(α)χ(x)|x0=T = 0,

χ(x)γ0P−(α)|x0=0 = 0, χ(x)γ0P+(α)|x0=T = 0,

with the projectors

P±(α) = 1
2

[
1± γ0 exp(iαγ5τ

3)
]
.

Special cases of α = 0, π/2:

P±(0) = P±, P±(π/2) ≡ Q± = 1
2(1± iγ0γ5τ

3),
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Mapping of SF correlation functions

The chiral rotation thus introduces a mapping between correlation
functions:

〈O[χ, χ̄]〉(m,µq,P±) = 〈Õ[χ, χ̄]〉(m̃,µ̃q,P±(α))

with

Õ[χ, χ̄] = O
[
exp(iαγ5τ

3/2)χ, χ̄ exp(iαγ5τ
3/2

]
m̃ = m cosα− µq sinα

µ̃q = m sinα+ µq cosα

boundary quark fields are included by replacing

ζ̄(x) ↔ χ̄(0, x)P+ ζ(x) ↔ P−χ(0, x)
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Chirally rotating the SF

Chirally rotated SF boundary conditions would be interesting:

bulk O(a) improvement could be automatic; remaining O(a) effects
arise from a couple of boundary operators and can be
monitored/eliminated; consequences:

O(a) improved step-scaling functions
Less sensitivity to the precision of the zero mass limit (determination of
mcr could be less precise)

Decoupling of heavy quarks using the standard mass term (rather
than standard SF with twisted mass term)

devise checks of universality:
1 between massless SF correlation functions (e.g. SF coupling)
2 between tmQCD and standard QCD using SF correlation functions;
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Technical difficulties

Standard SF b.c.’s natural for Wilson quarks due to projector structure of
the Wilson-Dirac operator

DW = 1
2

{(
∇µ +∇∗

µ

)
γµ − a∇∗

µ∇µ

}
= 1

2(1− γµ)∇µ − 1
2(1 + γµ)∇∗

µ

but Dirichlet boundary conditions are not always easy to implement:

what happens with Wilson quarks and Wilson parameter r 6= 1 ?

how does one implement SF boundary conditions for other lattice
regularisations (Ginsparg-Wilson, domain-wall fermions)? (→
Taniguchi ’04)

here: how do we implement the chirally rotated b.c.’s?

in a few cases orbifold techniques can be applied (→ Taniguchi ’04,
S. ’05)
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Orbifold technique

Orbifold techniques have previously been used to implemement the
standard SF conditions for Ginsparg-Wilson quarks (Taniguchi ’04). Here:

start with standard lattice action for a single quark flavour

Sf [ψ, ψ̄,U] = a4
∑
x

ψ̄(x) (DW + m0)ψ(x)

where

ψ(x0 + 2T , x) = −ψ(x), ψ̄(x0 + 2T , x) = −ψ̄(x)

introduce a reflection (R2 = id)

R : ψ(x) → iγ0γ5ψ(−x0, x), ψ̄(x) → ψ̄(−x0, x)iγ0γ5

the gauge field is extended to [−T ,T ] and then periodically
continued (cp. Taniguchi ’04):

Uk(−x0, x) = Uk(x0, x), U0(−x0 − a, x)† = U0(x)
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Orbifold (2)

Decompose fields into even and odd with respect to R,

Rψ± = ±ψ±, Rψ̄± = ±ψ̄±

even/odd fields satisfy the boundary conditions at x0 = 0

(1∓ iγ0γ5)ψ±(0, x) = 0 ψ̄±(0, x)(1∓ iγ0γ5) = 0

and with complementary projectors at x0 = T , due to antiperiodicity:

(1± iγ0γ5)ψ±(T , x) = 0 ψ̄±(T , x)(1± iγ0γ5) = 0

consistency condition for R:

Sf [ψ, ψ̄,U] = Sf [ψ++ψ−, ψ̄++ψ̄−,U] = Sf [ψ+, ψ̄+,U]+Sf [ψ−, ψ̄−,U]

is indeed verified; (i.e. R commutes with DW !)

⇒ the functional integral factorises!
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Orbifold (3)

interpret even and odd fields as quark flavours

χ =
√

2

(
ψ−
ψ+

)
, χ̄ =

√
2

(
ψ̄− ψ̄+

)
functional integral:∫ ∏
−T≤x0<T

dψ(x)dψ̄(x)e−Sf [ψ,ψ̄,U] ∝
∫ ∏

0≤x0≤T

dχ(x)dχ̄(x)e−
1
2Sf [χ,χ̄,U]

equivalent to theory in the interval [0,T ] with boundary conditions

Q+χ(x)|x0=0 = 0, Q−χ(x)|x0=T = 0,

χ̄(x)Q+|x0=0 = 0, χ̄(x)Q−|x0=T = 0

with
Q± = P±(π/2) = P∓(−π/2) = 1

2

(
1± iγ0γ5τ

3
)
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Orbifold (4)

The dynamical field variables are

Q−χ(0, x), χ(x)|0<x0<T , Q+χ(T , x)

and
χ̄(0, x)Q−, χ̄(x)|0<x0<T , χ̄(T , x)Q+

The Wilson-Dirac operator in the interval is obtained by re-writing

Sf [χ, χ̄,U] = a4
∑

−T<x0≤T

χ̄(x) (DW + m0)χ(x) = 2a4
∑

0≤x0≤T

χ̄(x)Dχ(x).

Properties of D:

up to modifications near the time boundaries it is just DW + m0

hermiticity:
γ5τ

1Dγ5τ
1 = D†

however: not by simple “syntactic extension” of DW + m0, need to
take into account b.c.’s for χ̄.
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Orbifold (5)

Alternative set-up (possibly simpler due to explicit reduction to the time
interval):

Start with 2(T + a) anti-periodic fields ψ, ψ̄

ψ(x0 + 2(T + a), x) = −ψ(x), ψ̄(x0 + 2(T + a), x) = −ψ̄(x),

introduce a reflection (R2 = id)

R : ψ(x) → iγ0γ5ψ(−a− x0, x), ψ̄(x) → ψ̄(−a− x0, x)iγ0γ5

the gauge field is extended to [−T − a,T + a] and then periodically
continued

Uk(−a− x0, x) = Uk(x0, x), U0(−2a− x0, x)
† = U0(x)

this implies that the boundary layer is doubled!

Stefan Sint O(a) improvement & Schrödinger functional schemes (lecture V) 24 / 31



Orbifold (6): explicit reduction to the interval [0,T]

decompose in even/odd fields and define doublets χ, χ̄ as before

DW becomes block diagonal and

det
−T≤x0≤T+a

[DW (Nf = 1)] = det
0≤x0≤T

[2DW (Nf = 2)]

Defining again D it is now obtained directly by “syntactic extension”
and γ5τ

1 hermitian

aDχ(x) = −U(x , 0)P−χ(x +a0̂)+(Kψ)(x)−U(x−a0̂)†P+χ(x−a0̂),

where we have set χ(x) = 0 for x0 < 0 and x0 > T , and

K = 1+1
2

3∑
k=1

{
a(∇k +∇∗

k)γk − a2∇∗
k∇k

}
+δx0,0iγ5τ

3P−+δx0,T iγ5τ
3P+
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Symmetries and Counterterms

Symmetries (C ,P × τ1 etc.) ⇒ possible dimension 3 counterterms at
the boundaries:

K1 = χiγ5τ
3χ, K2 = χχ, K3 = χiγ0γ5τ

3χ

K1: multiplicative renormalization of ζ,ζ ′ and ζ,ζ
′
.

K+ = 1
2(K2 + K3) = χQ+χ only refers to Dirichlet components (at

x0 = 0)
⇒ irrelevant for correlation functions used in practice

K− = 1
2(K2 − K3) = χQ−χ only contains non-Dirichlet components

(at x0 = 0);
if chirally rotated back to the standard SF K− is proportional to
χ′iγ5τ

3P−χ
′ i.e. it violates parity and flavour symmetries!

conclude: K− is a finite counterterm which can be fixed by requiring
parity restauration!
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Mapping of SF correlation functions

In the continuum we have:

〈O[χ, χ̄]〉(m,µq,P±) = 〈Õ[χ, χ̄]〉(m̃,µ̃q,P±(α))

with

Õ[χ, χ̄] = O
[
exp(iαγ5τ

3/2)χ, χ̄ exp(iαγ5τ
3/2

]
m̃ = m cosα− µq sinα

µ̃q = m sinα+ µq cosα

boundary quark fields are included by replacing

ζ̄(x) ↔ χ̄(0, x)P+ ζ(x) ↔ P−χ(0, x)

parity/flavour symmetry restoration e.g. by imposing

f 11
V (x0) = 0, f 12

P (x0) = 0

simple example for mapping: SF coupling

ḡ−2(L) = 〈O[U]〉(0,0,P±) = 〈O[U]〉(0,0,Q±)
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A tree-level check

At tree-level the quark propagator is an observable:
define γ5τ

1-even observables from tree level propagator, e.g.

I1 = a3
∑

x

〈χ(x)γ0Q+χ(y)〉(0,0,Q+)

In the continuum limit this should be equal to

I ′1 = a3
∑

x

〈
χ′(x)P+χ

′(y)
〉
(0,0,P+)

Setting x0 = T/4, y0 = T/2, θ = 0.5, T = L, and with a color electric
background field, we expect:

I1 reaches the continuum limit ∝ (a/L)2

I ′1 reaches the same continuum limit ∝ (c
(0)
sw − 1)(a/L)

Stefan Sint O(a) improvement & Schrödinger functional schemes (lecture V) 28 / 31



A tree-level check
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The SF coupling to one-loop order

In perturbation the SF coupling can be related to the MS-coupling

ḡ2(L) = g2
MS

(µ) + k1(µL)g4
MS

+ O(g6)

here: consider fermionic contribution ∝ Nf [Sommer, S. ’95]

k1 = k1,0 + Nfk1,1, k1,1 = −0.039863(2)/(4π)

in practice one computes for a sequence of lattices
f (L/a) ∼ r0 + (a/L) [r1 + s1 ln(a/L)] + O(a2)

the correct continuum limit r0 = k1,1 is reproduced

r1 is to be cancelled by boundary O(a) counterterm ∝ ct tr {F0kF0k}
observation: s1 vanishes independently of csw; (in standard SF

s1 ∝ (c
(0)
sw − 1))
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Conclusions and Outlook

Successful implementation of chirally rotated SF boundary conditions
for Wilson quarks; compatibility with automatic O(a) improvement
has been checked in perturbative examples

A finite dimension 3 counterterm needs to be fixed by parity

Achievement:
O(a) improvement in the bulk of massless standard or partially
improved Wilson quarks
⇒ Z -factors can be O(a) improved by tuning a couple of boundary
O(a) counterterms;

Expect improved control over continuum extrapolation of SSF’s with
Wilson-type quarks (will benefit anybody using the continuum RG
evolution to connect to RGI quantities)

The chirally rotated SF Wilson-Dirac operator can be used in the
Neuberger relation ⇒ the overlap operator inherits the b.c.’s ⇒ easy
implementation of the SF for overlap and Domain wall quarks (so far:
even number of flavours)
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