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O(a) improvement and twisted mass QCD

Recent interest in tmQCD mostly triggered by the observation of
automatic O(a) improvement at maximal twist o = /2 [Frezzotti & Rossi
'03].

The argument only relies on Symanziks effective continuum theory:

@ assume that we have tuned mpcac = 0 i.e. the renormalized
standard mass vanishes (up to O(a) effects)

@ Symanziks effective continuum action is then given by

Set = So + aS1 + 0(a?), So = /d4x D(x) (P+ ipgys7?) ¥(x)

where Sp is supposed to be regularised e.g. with Ginsparg-Wilson
quarks on a much finer lattice, and S; is given by (afer using
equations of motion)

S = / A5 { B0 Futh + by iP5}
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o Cutoff dependence of lattice correlation function:
<O> — <O>cont o a<510>cont + a<50>cont + 0(82)_

Here 0O are the O(a) counterterms to the composite fields in O.
Example:

0=VI)P(y) = 60={c it TL(x)+ by uA3(x)} P*(y)

e Introduce a y57!-transformation:

Y — st P — iyt
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o Under this y571-transformation one has

S — S 51— -5
O - 0 = 60— F60

@ Hence for y57'-even O one finds

<051>cont — _<051>cont =0
<5O>cont — _<5O>cont =0
= (0) = (0)*" +0(a)

o while for y571-odd O one gets

= ~s71-even observables are automatically O(a) improved, while

<O>cont — _<O>cont:0

<Osl>cont — <051>cont

<5o>cont — <5o>cont:0
= (0) = —a(0S)" + a(50)°™ + O(a?)

y57!-0odd observables vanish up to O(a) terms.
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Some Observations & Remarks:
@ The v57l-symmetry corresponds to the physical flavour symmetry:

W — —it? @, — @/ ir2.
A similar argument based on parity has been given by Shindler
e A7 and P? have opposite y571-parity!
= OuAL(x) Oeven) = 2m P(x) Oeven) = O(a*
(OuAL(X) ) pcac (P (x) ) (a%)
O(a) O(a)

i.e. the critical mass is only defined up to O(a)

e in the O(a) improved theory one can determine m, up to an O(a?)
ambiguity but this requires a mixed source, and it depends on ca.

e The O(a) ambiguity in mc, does not spoil O(a) improvement: a shift
in mer by al\? corresponds to an insertion of the v57'-odd operator
) = O(a?) effect in y571-even correlators

@ finite space time volume: there is no phase transition, no spontaneous
symmetry breaking and analyticity in the quark mass parameters

= massless Wilson quarks in a finite volume are automatically O(a)
improved!
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O(a) improvement in infinite volume

infinite volume:

@ The twisted mass 1 drives spontaneous chiral symmetry breaking. If
it becomes too small, this may not be true any more and the system
realigns the vacuum state = use xPT to analyse the dynamics (cf.
e.g. S. Sharpe's Nara lectures '06).

o At small p cutoff effects may formally still be O(a?) but can be large
("bending phenomenon™), depending on the chosen definition of m,:
(Aoki & Bar, Sharpe & Wu, Sharpe, Frezzotti et al.)

@ Use xPT and a “good” definition of m., (from pion physics) to
control chiral extrapolations (Aoki & Bar, Sharpe & Wu, Sharpe)
O(a) improvement of the action may also help
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Test of O(a) improvement [Shindler, Lattice 2005 |

Continuum extrapolation of F; in quenched tmQCD:
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Possible strategy for non-perturbative renormalisation

Premise: need non-perturbative renormalisation to obtain reliable error
estimates; RI-MOM schemes & continuum perturbation theory from scales

= O(1)GeV is difficult to control and may fail completely in some cases
Strategy:

@ use SF scheme to determine the scale evolution non-perturbatively in

the continuum limit; use "cheap” regularisation (Wilson or staggered
quarks) for this part
@ At a low energy scale: renormalise in the SF scheme, either
o directly, by implementing the SF for the given regularisation; (requires
extra simulations on relatively small lattices, e.g L = 0.8fm, L/a = 10)
e indirectly via some other physical quantity computable with periodic
b.c.’s (see e.g. Hernandez et al. 2000 ZSF for overlap quarks);
problems: insufficient precision, potentially sacrifice an observable for
the matching procedure
© Implementation of the SF for Ginsparg-Wilson quarks [Liischer,
Taniguchi '04, Lischer '06, S. '06 ]

© O(a) cutoff effects in the SF need to be adressed!
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Sources for O(a) effects in the SF

@ Renormalisability: boundary counterterms are local polynomials in the
fields and their derivatives of dimension < 3.

@ At O(a) the same reasoning applies with terms of dimension 4;
@ Possible boundary counterterms in the pure gauge theory:

tr { Fox Fok }» tr {FiiFu},

@ In QCD one expects fermionic terms 1)y9Dg1) or 1y, Db with any
regularisation,

@ Which counterterms contribute depends on gauge field b.c.'s and on
the observable; example: tr{F Fix} = 0 in SF coupling calculation

@ Equations of motions may be used to reduce the counterterm basis

e Typically 2-3 boundary O(a) counterterms need to be
monitored /controlled

@ In practice: evaluate coefficients in perturbation theory and vary them
in the simulation to assess their effect numerically
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The SF with Wilson quarks & O(a) improvement

Apparent contradiction:

@ Previous discussion: v57!-even observables computed with Wilson
quarks in a finite volume (with some type of periodic boundary
conditions) are automatically O(a) improved at zero quark mass =
improvement coefficients like ¢y are irrelevant!

@ The Schrodinger functional in finite volume at zero mass was used to
determine ¢y, ca and other O(a) improvement coefficients.

Distinguish 3 sources for O(a) effects in the SF:

@ O(a) boundary effects (expected in any case!); can be cancelled by
inclusion of boundary O(a) counterterms

@ from the bulk action; are cancelled by including the SW/clover term

@ from the composite operators; can be cancelled by including O(a)
counterterms determined from chiral Ward identities; difficult for
4-quark operators!
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Example: relative cutoff effects in the one-loop coefficient of the SSF for
Bk (Palombi, Pena, S. '05)
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Question: Why do the bulk O(a) counterterms not vanish in the chiral
limit?
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SSF for Bk operator (quenched) [ALPHA 05 ]
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Scale evolution of Bk (SF scheme) [ALPHA "05 ]
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@ Problem: the v571! field transformation switches the projectors of the
quark b.c.’s:
Piyst! =757 P

The boundary conditions, like mass terms, break chiral symmetry and
define a direction in chiral flavour space.

= the 457! transformation yields inequivalent correlation functions even
in the chiral limit,

(O) (g Ps) = (O) (“mpug.Ps)

@ Possible solution: change quark boundary projectors, such that they
commute with v571, e.g.

Pi = 3(1£77°), Qs = 1(1 £ i),

@ Practical problem: not obvious how to implement such boundary
conditions on the lattice; solution so far only for Q..
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SF boundary conditions and chiral rotations

Consider isospin doublets x’ and X’ satisfying homogeneous SF boundary
conditions (Py = 3(1 £ ),
P—i—X,(X)’Xo:O =0, ’D—X/(X)‘X0=T =0,
X (x)P-lx=0 =0, X (X)Pils=T = 0.
perform a chiral field rotation,
X' =expliarst®/2)x, X = Xexp(iansT®/2),
the rotated fields satisfy chirally rotated boundary conditions
Pi(a)x(x)lx=0 = 0, P_(a)x(x)lx=1 =0,
Y(X)ryopf(a”m:o = 07 Y(X)WOPJr(a)’Xo:T = O,
with the projectors
Pi(a) = % [1 + 7 exp(iory57-3)] :
Special cases of o = 0,7/2:
PL(0) = Pyq, Pi(m/2) = Qs = %(1 + ivovs7°),
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Mapping of SF correlation functions

The chiral rotation thus introduces a mapping between correlation
functions:

<O[X7 )2]>(m,uq,Pi) = <O[X7 >_<]>(r71,ﬂq,Pi(a))

with
é[x,)_d = 0 [exp(ia’y5r3/2)x,)'(exp(iafy57'3/2]
m = mcosa — [igSina
figy, = msina+ [igCcos

boundary quark fields are included by replacing

C(x) = %(0,x)P ¢(x) < P-x(0,x)
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Chirally rotating the SF

Chirally rotated SF boundary conditions would be interesting:

@ bulk O(a) improvement could be automatic; remaining O(a) effects
arise from a couple of boundary operators and can be
monitored /eliminated; consequences:

e O(a) improved step-scaling functions
o Less sensitivity to the precision of the zero mass limit (determination of
me; could be less precise)
@ Decoupling of heavy quarks using the standard mass term (rather
than standard SF with twisted mass term)
@ devise checks of universality:

@ between massless SF correlation functions (e.g. SF coupling)
@ between tmQCD and standard QCD using SF correlation functions;

O(a) improvement & Schrédinger functional schemes (lecture V) 18 / 31



Technical difficulties

Standard SF b.c.'s natural for Wilson quarks due to projector structure of
the Wilson-Dirac operator

Dw = % {(v,u + VD T — avzvu} = %(1 - 'Vu)vu - %(1 + ’Yu)v;

but Dirichlet boundary conditions are not always easy to implement:
@ what happens with Wilson quarks and Wilson parameter r 21 7

@ how does one implement SF boundary conditions for other lattice
regularisations (Ginsparg-Wilson, domain-wall fermions)? (—
Taniguchi '04)

@ here: how do we implement the chirally rotated b.c.’s?

@ in a few cases orbifold techniques can be applied (— Taniguchi '04,
S.'05)
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Orbifold technique

Orbifold techniques have previously been used to implemement the
standard SF conditions for Ginsparg-Wilson quarks (Taniguchi '04). Here:
@ start with standard lattice action for a single quark flavour

Sl 9, U] = a* >~ d(x) (Dw + mo) v(x)

where

xo +2T,x) = =(x),  P(x0 +2T,x) = —9(x)
e introduce a reflection (R? = id)

R:(x) = inovs(—x0,x),  (x) = P(—x0,X)iv0Vs
o the gauge field is extended to [T, T| and then periodically
continued (cp. Taniguchi '04):

Uk(*Xo,X) = Uk(Xo,X), U()(*Xo — 4, X)Jr = Uo(X)
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Orbifold (2)

@ Decompose fields into even and odd with respect to R,

R+ = £y, Ry = £y

@ even/odd fields satisfy the boundary conditions at xp = 0

(LF ivovs)¥+(0,x) =0 94(0,x)(1 F ivovs) = 0

@ and with complementary projectors at xg = T, due to antiperiodicity:

(1+i075)Y+(T,x) =0 (T, x)(1£iv075) =0

@ consistency condition for R:

Sf[d}a 157 U] = 5f[¢++1/)—71/_}++1;—7 U] = Sf[d}-‘ra @E-H U]+5f[7/]—71/_}—7 U]

is indeed verified; (i.e. R commutes with Dy!)
= the functional integral factorises!
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Orbifold (3)
@ interpret even and odd fields as quark flavours
xz\@(i_r), X=V2(- )

e functional integral:

/ H d¢(X)d1Z(X)e—5f[¢ﬂZ,U]O(/ H dX(X)d)_((X)e_%Sf[X’X’U]

—T<x<T 0<x<T

@ equivalent to theory in the interval [0, T] with boundary conditions

Q+X(X)‘Xo:0 =0, Q—X(X)|X0:T =0,
X(¥)Q+[x=0 =0, X(X)Q_|x=7 =0

with
Q+ = P+(m/2) = Px(—7/2) = % (1 + "70757—3)
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Orbifold (4)
The dynamical field variables are

Q—X(va)v X(X)|0<X0<T7 Q—‘:—X( T,X)

and
)Z(va)Q*¢ X(X)|0<X0<T7 )_((Ta X)Q+

The Wilson-Dirac operator in the interval is obtained by re-writing

Stho Ul =4a* Y %) (Dw + mo) x(x) =2a* Y ¥
—T<x<T 0<xo<T
Properties of D:
@ up to modifications near the time boundaries it is just Dy, + mg
@ hermiticity:
757 DysT = D!
however: not by simple “syntactic extension” of Dy 4+ mg, need to
take into account b.c.'s for ¥.
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Orbifold (5)

Alternative set-up (possibly simpler due to explicit reduction to the time
interval):

o Start with 2( T 4 a) anti-periodic fields 1), 1

Y(xo+2(T + a),x) = —1(x), Y(xo+2(T + a),x) = —(x),

e introduce a reflection (R? = id)

R :1(x) — inoys¢(—a — xo,X), Y(x) — P(—a — x0,X) V075

o the gauge field is extended to [T — a, T + a] and then periodically
continued

Uk(—a — X(),X) = Uk(Xo,X), Uo(—2a — Xo,X)Jr = Uo(X)

this implies that the boundary layer is doubled!
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Orbifold (6): explicit reduction to the interval [0,T]

e decompose in even/odd fields and define doublets x, X as before
@ Dy, becomes block diagonal and

—Ts(ioeéma [Dw (N = 1)] = og‘ifir [2Dw (N = 2)]

@ Defining again D it is now obtained directly by “syntactic extension”
and 457! hermitian

aDx(x) = —U(x,0)P-x(x+a0) + (Kv)(x) — U(x — a0)" P, x(x — a0),

where we have set x(x) =0 for xp < 0 and xp > T, and

3
K=1+3 Z a(Vi+ Vi) vk — ViV }+0x0,0i75 T P60, 7i7v57° Py
k=1
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Symmetries and Counterterms

e Symmetries (C, P x 71 etc.) = possible dimension 3 counterterms at
the boundaries:

Ki=Xismx, Ka=Xx, Kz=Xinsmx

o Ki: multiplicative renormalization of ¢,¢" and (,C .

o Ky = %(Kg + K3) = XQ+x only refers to Dirichlet components (at
X0 = 0)
= irrelevant for correlation functions used in practice

o K_ = (K> — K3) = YQ_x only contains non-Dirichlet components
(at xp = 0);
if chirally rotated back to the standard SF K_ is proportional to
X' ivsT3P_x' i.e. it violates parity and flavour symmetries!

@ conclude: K_ is a finite counterterm which can be fixed by requiring
parity restauration!
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Mapping of SF correlation functions

In the continuum we have:

<O[X, )2]>(m,,u,q,Pi) = <(~)[X7 >_(]>(ﬁ1,/1q,Pi(oz))

with
Olx.x] = O [exp(iaysT®/2)x, X exp(iaysT /2]
m = mcosa — [igSina
fly = msino+ fiqCoSs

boundary quark fields are included by replacing
C(x) = X(0,x)P+  ¢(x) = P-x(0,x)
parity /flavour symmetry restoration e.g. by imposing
() =0,  f3%(x0) =0
simple example for mapping: SF coupling
g(L) = (O[UD)(0,0,p4) = (O[U])(0,0,04)
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A tree-level check

At tree-level the quark propagator is an observable:
define y57!-even observables from tree level propagator, e.g.

=a Z x)70Q+x(¥))(0,0,0+)
In the continuum limit this should be equal to
I{ =a° Z <Y/(X)P+X/(Y)>(o,o7p+)
X
Setting xo = T/4, yo = T/2,0 =0.5, T = L, and with a color electric

background field, we expect:

@ /1 reaches the continuum limit o< (a/L)?

@ [ reaches the same continuum limit (c§3v) —1)(a/L)
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A tree-level check
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The SF coupling to one-loop order

In perturbation the SF coupling can be related to the MS-coupling

2°(L) = g2s(1) + ka(pl)ggs + O(g°)

here: consider fermionic contribution o< Nf [Sommer, S. '95]
ki = k170 + kal,h k171 = —0.039863(2)/(47‘(’)
in practice one computes for a sequence of lattices
f(L/a) ~ ro+ (a/L) [ + s1In(a/L)] + O(a?)
@ the correct continuum limit rg = k1 is reproduced

@ r is to be cancelled by boundary O(a) counterterm o< ¢ tr { Fox Fox }

@ observation: s; vanishes independently of cgy; (in standard SF

(0)

s1 X (6w — 1))
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Conclusions and Outlook

@ Successful implementation of chirally rotated SF boundary conditions
for Wilson quarks; compatibility with automatic O(a) improvement
has been checked in perturbative examples

@ A finite dimension 3 counterterm needs to be fixed by parity

@ Achievement:

O(a) improvement in the bulk of massless standard or partially
improved Wilson quarks

= Z-factors can be O(a) improved by tuning a couple of boundary
O(a) counterterms;

@ Expect improved control over continuum extrapolation of SSF's with
Wilson-type quarks (will benefit anybody using the continuum RG
evolution to connect to RGI quantities)

@ The chirally rotated SF Wilson-Dirac operator can be used in the
Neuberger relation = the overlap operator inherits the b.c.'s = easy
implementation of the SF for overlap and Domain wall quarks (so far:
even number of flavours)
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