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Non-perturbative definition of QCD (1)

To define QCD as a QFT it is not enough to write down its classical
Lagrangian:

N
Lacp(x) = 2;2 tr{ Fuw (%) s ()} + D 0;(x) (B + mj) 1i(x)
i=1

One needs to define the functional integral:

@ Introduce a Euclidean space-time lattice and discretise the continuum
action such that the doubling problem is solved

@ Consider a finite space-time volume = the functional integral
becomes a finite dimensional ordinary or Grassmann integral, i.e.
mathematically well defined!

@ Take the infinite volume limit L — oo

@ Take the continuum limit a — 0
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Non-perturbative definition of QCD (2)

@ The infinite volume limit is reached with exponential corrections =
no major problem.

@ Continuum limit: existence only established order by order in
perturbation theory; only for selected lattice regularisations:
o lattice QCD with Wilson quarks [Reisz '89 ]
o lattice QCD with overlap/Neuberger quarks [Reisz, Rothe '99 ]
o not (yet ?) for lattice QCD with staggered quarks [cf. Giedt '06 ]

@ From asymptotic freedom expect
-1
by =
2bgIna’ °

—0
g =g5(a) °~ -

11N
3

wWIN

N;

Non-perturbative Renormalisation of Lattice QCD 5/31



Non-perturbative definition of QCD (3)

Working hypothesis: the perturbative picture is essentially correct:

@ The continuum limit of lattice QCD exists and is obtained by taking
g — 0

@ Hence, QCD is asymptotically free, naive dimensional analysis applies:
Non-perturbative renormalisation of QCD is based on the very same
counterterm structure as in perturbation theory!

@ Absence of analytical methods: try to take the continuum limit
numerically, i.e. by numerical simulations of lattice QCD at
decreasing values of gp.

WARNING:
Perturbation Theory might be misleading (cp. triviality of ¢3-theory)
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Renormalisation of QCD

@ The basic parameters of QCD are gop and m;, i = u,d, s, c, b, t.

@ To renormalise QCD one must impose a corresponding number of
renormalisation conditions

@ We only consider gauge invariant observables = no need to consider
field renormalisations for quark, gluon or ghost fields or the
renormalisation of the gauge parameter.

@ All physical information (particle masses and energies, particle
interactions) is contained in the (Euclidean) correlation functions of
gauge invariant composite, local fields ¢;(x)

<¢1(Xl) e ¢n(Xn)>

@ a priori each ¢; requires renormalisation, and thus further
renormalisation conditions.
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Example: lattice QCD with Wilson quarks

The action S = 5S¢ + S, is given by

S o= @Y P)Ow+m)ex). S =5t {l- Pulx)}

ll‘7y

Dw = 5{(V,+Vi)—aV,V,}

e Symmetries: U(N;)y (mass degenerate quarks), P, C, T and O(4,7Z)
= Renormalized parameters:

gf2{ = Zgggv MR = Zm (mO - mcr) , aMey = amcr(gO)-

e In general: Z = Z(go, ap, amo);
@ Quark mass independent renormalisation schemes: Z = Z(go, au)
@ Simple non-singlet composite fields, e.g. P? = 15771 renormalise
multiplicatively, P} = Zp(go, ap, amg) P?
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Approach to the continuum limit (1)

Suppose we have succeded to renormalise the theory non-perturbatively;
for a numerical approach it is crucial to know how the continuum limit is
reached. An essential tool is Symanzik's effective continuum theory
[Symanzik '79 |]:
@ purpose: render the a-dependence of lattice correlation functions
explicit. = structural insight into the nature of cutoff effects
@ at scales far below the cutoff a=!, the lattice theory is effectively
continuum like; the influence of cutoff effects is expanded in powers
of a:

St = So+aSi+aS+..., So = 82%11%

Ly (x): linear combination of fields
e with canonical dimension 4 + k
e which share all the symmetries with the lattice action
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Approach to the continuum limit (2)

A complete set of fields for £ is given by:

iguuFuuwa @DMDW, m;bw, m2@¢’ mtr {F;wF;w}

The same procedure applies to composite fields:
ber(X) = do + ap1 + 3% ...
for instance: ¢(x) = P?(x), basis for ¢1:
mirysiTy, @575%7% — 537 DY

Consider renormalised, connected lattice n-point functions of a
multiplicatively renormalisable field ¢

Gn(Xla ce aXn) = Zg<¢(Xl) e ¢(Xn)>con
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Approach to the continuum limit (3)
Effective field theory description:
Gn(x1,---,xn) = (¢o(x1) .. P0(xn))con
a / d*y (60(x0) - b0()L1(Y o

+ az QZ)O Xl . P1 Xk) ¢0(Xn)>con + 0(32)

@ (---) is defined w.r.t. continuum theory with Sy

@ the a-dependence is now explicit, up to logarithms, which are hidden
in the coefficients.

@ In perturbation theory one expects at /-loop order:

where e.g. P(a) = G, at fixed arguments.
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Approach to the continuum limit (4)

Conclusions from Symanzik's analysis:
@ Asymptotically, cutoff effects are powers in a, modified by logarithms;

@ In contrast to Wilson quarks, only even powers of a are expected for

o bosonic theories (e.g. pure gauge theories, scalar field theories)

e fermionic theories which retain a remnant axial symmetry (overlap,
Domain Wall Quarks, staggered quarks, Wilson quarks with a twisted
mass term, etc.)

In QCD simulations a is typically varied by a factor 2

= logarithms vary too slowly to be resolved; linear or quadratic fits (in a
resp. a®) are used in practice.
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Example 1: quenched hadron spectrum

Linear continuum extrapolation of the quenched hadron spectrum;
standard Wilson quarks with Wilson's plaquette action:[CP-PACS coll.,
Aoki et al. '02 ] a=0.05— 0.1fm, experimental input: my, my, m,
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Example 2: O(a) improved charm quark mass (quenched)

[ALPHA coll. J. Rolf et al '02 ]
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Example 3: Step Scaling Function for SF coupling (N = 2)

[ALPHA coll., Della Morte et al. 2005 ]
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The 2d O(N) sigma model: a test laboratory for QCD?

S:% (8HS)27 52(517"'75N) 52:1

X, [b

o like QCD the model has a mass gap and is asymptotically free
@ many analytical tools: large N expansion, Bethe ansatz, form factor
bootstrap, etc.
o efficient numerical simulations due to cluster algorithms.
= very precise data over a wide range of lattice spacing (a can be varied
by 1-2 orders of magnitude).
e Symanzik: expect O(a?) effects, up to logarithms
e Large N, at leading [Caracciolo, Pelissetto '98 ] and next-to-leading
[Knechtli, Leder, Wolff '05 ]:

P(a) ~ P(0) + Lz (c1 + c2In(a/L))
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A sobering result:

Numerical study of renormalised finite volume coupling to high precision
(N = 3) [Hasenfratz, Niedermayer '00, Hasenbusch et al. '01 ]
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o Cutoff effects (blue points) seem to be almost linear in a!

@ Is this just an unfortunate case?
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A closer look:

[Knechtli, Leder, Wolff '05 ], plot of cutoff effects vs. a2/L2:
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Asymptotic behaviour seems to set in close to the continuum limit!
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Tentative Conclusion

@ Symanzik's analysis seems to be applicable beyond perturbation
theory

@ In quenched QCD numerical results seem to confirm expectations;
still very few results in full QCD (expect more in the near future)

@ However, The Symanzik expansion is only asymptotic, and powers of
a are accompanied by (powers of) logarithms,

@ Lesson from o model: asymptotic behaviour may set in very late!

@ It helps to combine results from different regularisations:
renormalised quantities must agree in the continuum limit (assuming
universality)
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What would we like to achieve?

Natural question to ask:

What are the values of the fundamental parameters of QCD (and thus of
the Standard Model!),

Os, My = My, Ms, Mc, Mp

if we renormalise QCD by using experimental low energy data as input.
For instance, choose the same number of experimentally well-measured
hadron properties:

Fry mz,mg, mp, mg.

@ QCD is regarded as a low energy approximation to the Standard
Model: weak interactions are weak (my/, mz > mp) and
electromagnetic effects are small (e, = 1/137)

@ conceptually clean, natural question for lattice QCD

@ alternative: combination of perturbation theory + additional
assumptions (" quark hadron duality”, sum rules, hadronisation

Monte-Carlo, ...).
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From bare to renormalised parameters

o At fixed go:

Fr,mz,mg,mp = a(go),amo (&o), amo s(8o), amo c(&o)

@ These are bare quantities, the continuum limit cannot be taken!

@ N.B.: due to quark confinement there is no natural definition of
“physical” quark masses or the coupling constant from particle
masses or interactions

o At high energy scales, 1 > mj, one may use perturbative schemes to
define renormalised parameters (e.g. dimensional regularisation and
minimal subtraction)

@ How can we relate the bare lattice parameters to the renormalised
ones in, say, the MS scheme?

@ basic idea: introduce an intermediate renormalisation scheme which
can be evaluated both perturbatively and non-perturbively
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Non-perturbative renormalisation schemes

Example for a renormalised coupling
Consider the force F(r) between static quarks at a distance r, and define

Qqq(r) = rzF(r)\quzo

@ at short distances:

aq(r) = asgs(i) + culrmag(i) + - .

@ at large distances:

rango agq(r) =

oo for Np =0
0 for Nf >0

e NB: renormalization condition is imposed in the chiral limit = oq(r)
and its B-function are quark mass independent.
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Example for a renormalised quark mass

Use PCAC relation as starting point:

alt(AR)Z = sz(PR)a

o A7, P?: isotriplet axial current & density

@ The normalization of the axial current is fixed by current algebra
(i.e. axial Ward identities) and scale independent!

= Quark mass renormalization is inverse to the renormalization of the
axial density:

(Pr)? = ZpP?, mg = Zp tmq.

= Impose renormalization condition for the axial density rather than for
the quark mass
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Renormalization condition for axial density
Define (PZ(x)PE(y)) = 67 Gpp(x — y), and impose the condition

1
G -
PP(X) u2x?=1,mq ;=0 27T4(X2)3

Gpp(x) is defined at all distances:
x2—00 1

g +OE). G0

= Zp is defined at all scales u:
@ at large u (but p <« 1/a):

Zp(go,ap) = 1+ ggdoIn(ap) + .. .,

G2+ ...

20
Gep(x) "~ a2 O

@ at low scales u:
Zp(go, ap) o< i’
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Renormalization group functions
The renormalized coupling and quark mass are defined non-perturbatively
at all scales

= Renormalization group functions are defined non-perturbatively, too:
@ [-function

Wa gz(ﬂ) = Amagq(1/p)

@ quark mass anomalous dimension:

e W B 7"!’% W g(w)
Asymptotic expansion for weak couplings:
B(g) ~ —g3bo—g°hr..., bo = { LN — 2N;}(4m) 2, ..
T(g) ~ —deo—g4d1..., d0:3(/V—N_1)(47r)_27“_
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The Callan-Symanzik equation

Physical quantities P are independent of i, and thus satisfy the
CS-equation:

{igy 8@ + @ | P =

A and M, are special solutions:

N = u(bog?) /2 eXP{ }
y /é 1 1 by
&P B(x) b0x3 ng

M; = mm;(2bog?)” %/? exp{—/ogdx [;8 - l:(i]}

N.B. no approximations involved!
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A and M; as fundamental parameters of QCD

@ defined beyond perturbation theory
@ scale independent

@ scheme dependence? Consider finite renormalization:
gk = 8rCz(8R), MR = MR iCm(gR)

with asymptotic behaviour c(g) ~ 1+ c(Mg? 4 ...
= find the exact relations

M = M;, N = /\exp(cél)/bo).
= A5 can be defined indirectly beyond PT; to obtain A in any

other scheme requires the one-loop matching of the respective
coupling constants.
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Strategy to compute A and M;

o At fixed go determine the bare parameters corresponding to the
experimental input.

Determine agq(1/p) and Zp(go, ap) at the same go in the chiral limit
use Zp to pass from bare to renormalised quark masses

do this for a range of u-values

repeat the same for a range of gp-values and take the continuum limit

lim Z " (g0, apt) mi(go), lim orqq(1/1)
a—0 a—0

@ check wether perturbative scales i have been reached

o if this is the case, use the perturbative 8- and 7-function to
extrapolate to p = oo; extract A and M; (equivalently convert to MS
scheme deep in perturbative region).
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Example: running of the coupling (SF scheme, N¢ = 2)

[ALPHA, M. Della Morte et al. 2005 ]
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The problem of large scale differences

A and M; refer to the high energy limit of QCD
@ The scale ;r must reach the perturbative regime: 11 > Aqcp
e The lattice cutoff must still be larger: < a=*
@ The volume must be large enough to contain pions: L > 1/m;,

@ Taken together a naive estimate gives

L/ja>pul>mL>1 = L/a~0(10%)

= widely different scales cannot be resolved simultaneously on a finite
lattice!
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In practice ...

This estimate may be a little too pessimistic:
@ Lm, ~ 3 — 4 often sufficient
o if cutoff effects are quadratic one only needs a’u? < 1.
@ when working in momentum space one may argue that the cutoff
really is 7/a;

@ in any case, one must satisfy the requirement ;1 > Aqcp

Heavy quark thresholds

A and M; implicitly depend on N¢ the number of active flavours! If
computed for Ny = 2,3 one needs to perform a matching across the charm
and bottom thresholds to match the real world at high energies.
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