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Non-perturbative definition of QCD (1)

To define QCD as a QFT it is not enough to write down its classical
Lagrangian:

LQCD(x) =
1

2g2
tr {Fµν(x)Fµν(x)}+

Nf∑
i=1

ψi (x) (D/+ mi )ψi (x)

One needs to define the functional integral:

Introduce a Euclidean space-time lattice and discretise the continuum
action such that the doubling problem is solved

Consider a finite space-time volume ⇒ the functional integral
becomes a finite dimensional ordinary or Grassmann integral, i.e.
mathematically well defined!

Take the infinite volume limit L →∞
Take the continuum limit a → 0
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Non-perturbative definition of QCD (2)

The infinite volume limit is reached with exponential corrections ⇒
no major problem.

Continuum limit: existence only established order by order in
perturbation theory; only for selected lattice regularisations:

lattice QCD with Wilson quarks [Reisz ’89 ]
lattice QCD with overlap/Neuberger quarks [Reisz, Rothe ’99 ]
not (yet ?) for lattice QCD with staggered quarks [cf. Giedt ’06 ]

From asymptotic freedom expect

g2
0 = g2

0 (a)
a→0∼ −1

2b0 ln a
, b0 = 11N

3 − 2
3Nf
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Non-perturbative definition of QCD (3)

Working hypothesis: the perturbative picture is essentially correct:

The continuum limit of lattice QCD exists and is obtained by taking
g0 → 0

Hence, QCD is asymptotically free, naive dimensional analysis applies:
Non-perturbative renormalisation of QCD is based on the very same
counterterm structure as in perturbation theory!

Absence of analytical methods: try to take the continuum limit
numerically, i.e. by numerical simulations of lattice QCD at
decreasing values of g0.

WARNING:

Perturbation Theory might be misleading (cp. triviality of φ4
4-theory)

Stefan Sint Non-perturbative Renormalisation of Lattice QCD 6 / 31



Renormalisation of QCD

The basic parameters of QCD are g0 and mi , i = u, d , s, c , b, t.

To renormalise QCD one must impose a corresponding number of
renormalisation conditions

We only consider gauge invariant observables ⇒ no need to consider
field renormalisations for quark, gluon or ghost fields or the
renormalisation of the gauge parameter.

All physical information (particle masses and energies, particle
interactions) is contained in the (Euclidean) correlation functions of
gauge invariant composite, local fields φi (x)

〈φ1(x1) · · ·φn(xn)〉

a priori each φi requires renormalisation, and thus further
renormalisation conditions.
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Example: lattice QCD with Wilson quarks

The action S = Sf + Sg is given by

Sf = a4
∑
x

ψ(x) (DW + m0)ψ(x), Sg = 1
g2

0

∑
µ,ν

tr {1− Pµν(x)}

DW = 1
2

{(
∇µ +∇∗µ

)
γµ − a∇∗µ∇µ

}
Symmetries: U(Nf)V (mass degenerate quarks), P,C ,T and O(4,ZZ)

⇒ Renormalized parameters:

g2
R = Zgg2

0 , mR = Zm (m0 −mcr) , amcr = amcr(g0).

In general: Z = Z (g0, aµ, am0);

Quark mass independent renormalisation schemes: Z = Z (g0, aµ)

Simple non-singlet composite fields, e.g. Pa = ψγ5τ
aψ renormalise

multiplicatively, Pa
R = ZP(g0, aµ, am0)P

a
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Approach to the continuum limit (1)

Suppose we have succeded to renormalise the theory non-perturbatively;
for a numerical approach it is crucial to know how the continuum limit is
reached. An essential tool is Symanzik’s effective continuum theory
[Symanzik ’79 ]:

purpose: render the a-dependence of lattice correlation functions
explicit. ⇒ structural insight into the nature of cutoff effects

at scales far below the cutoff a−1, the lattice theory is effectively
continuum like; the influence of cutoff effects is expanded in powers
of a:

Seff = S0 + aS1 + a2S2 + . . . , S0 = Scont
QCD

Sk =

∫
d4x Lk(x)

Lk(x): linear combination of fields
with canonical dimension 4 + k
which share all the symmetries with the lattice action
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Approach to the continuum limit (2)

A complete set of fields for L1 is given by:

ψσµνFµνψ, ψDµDµψ, mψD/ψ, m2ψψ, m tr {FµνFµν}

The same procedure applies to composite fields:

φeff(x) = φ0 + aφ1 + a2φ2 . . .

for instance: φ(x) = Pa(x), basis for φ1:

mψγ5
1
2τ

aψ, ψD/
←
γ5

1
2τ

aψ − ψγ5
1
2τ

aD/ψ

Consider renormalised, connected lattice n-point functions of a
multiplicatively renormalisable field φ

Gn(x1, . . . , xn) = Zn
φ 〈φ(x1) · · ·φ(xn)〉con
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Approach to the continuum limit (3)

Effective field theory description:

Gn(x1, . . . , xn) = 〈φ0(x1) . . . φ0(xn)〉con

+ a

∫
d4y 〈φ0(x1) . . . φ0(xn)L1(y)〉con

+ a
n∑

k=1

〈φ0(x1) . . . φ1(xk) . . . φ0(xn)〉con + O(a2)

〈· · · 〉 is defined w.r.t. continuum theory with S0

the a-dependence is now explicit, up to logarithms, which are hidden
in the coefficients.

In perturbation theory one expects at l-loop order:

P(a) ∼ P(0) +
∞∑

n=1

l∑
k=1

cnkan(ln a)k

where e.g. P(a) = Gn at fixed arguments.
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Approach to the continuum limit (4)

Conclusions from Symanzik’s analysis:

Asymptotically, cutoff effects are powers in a, modified by logarithms;

In contrast to Wilson quarks, only even powers of a are expected for

bosonic theories (e.g. pure gauge theories, scalar field theories)
fermionic theories which retain a remnant axial symmetry (overlap,
Domain Wall Quarks, staggered quarks, Wilson quarks with a twisted
mass term, etc.)

In QCD simulations a is typically varied by a factor 2

⇒ logarithms vary too slowly to be resolved; linear or quadratic fits (in a
resp. a2) are used in practice.
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Example 1: quenched hadron spectrum

Linear continuum extrapolation of the quenched hadron spectrum;
standard Wilson quarks with Wilson’s plaquette action:[CP-PACS coll.,
Aoki et al. ’02 ] a = 0.05− 0.1 fm, experimental input: mK , mπ, mρ
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Example 2: O(a) improved charm quark mass (quenched)

[ALPHA coll. J. Rolf et al ’02 ]

Stefan Sint Non-perturbative Renormalisation of Lattice QCD 14 / 31



Example 3: Step Scaling Function for SF coupling (Nf = 2)

[ALPHA coll., Della Morte et al. 2005 ]
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The 2d O(N) sigma model: a test laboratory for QCD?

S = N
2γ

∑
x ,µ

(∂µs)
2, s = (s1, . . . , sN) s2 = 1

like QCD the model has a mass gap and is asymptotically free

many analytical tools: large N expansion, Bethe ansatz, form factor
bootstrap, etc.

efficient numerical simulations due to cluster algorithms.

⇒ very precise data over a wide range of lattice spacing (a can be varied
by 1-2 orders of magnitude).

Symanzik: expect O(a2) effects, up to logarithms

Large N, at leading [Caracciolo, Pelissetto ’98 ] and next-to-leading
[Knechtli, Leder, Wolff ’05 ]:

P(a) ∼ P(0) +
a2

L2
(c1 + c2 ln(a/L))
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A sobering result:

Numerical study of renormalised finite volume coupling to high precision
(N = 3) [Hasenfratz, Niedermayer ’00, Hasenbusch et al. ’01 ]

Cutoff effects (blue points) seem to be almost linear in a!

Is this just an unfortunate case?
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A closer look:

[Knechtli, Leder, Wolff ’05 ], plot of cutoff effects vs. a2/L2:
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Asymptotic behaviour seems to set in close to the continuum limit!
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Tentative Conclusion

Symanzik’s analysis seems to be applicable beyond perturbation
theory

In quenched QCD numerical results seem to confirm expectations;
still very few results in full QCD (expect more in the near future)

However, The Symanzik expansion is only asymptotic, and powers of
a are accompanied by (powers of) logarithms,

Lesson from σ model: asymptotic behaviour may set in very late!

It helps to combine results from different regularisations:
renormalised quantities must agree in the continuum limit (assuming
universality)
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What would we like to achieve?
Natural question to ask:

What are the values of the fundamental parameters of QCD (and thus of
the Standard Model!),

αs , mu ≈ md , ms , mc , mb

if we renormalise QCD by using experimental low energy data as input.
For instance, choose the same number of experimentally well-measured
hadron properties:

Fπ, mπ,mK , mD , mB .

QCD is regarded as a low energy approximation to the Standard
Model: weak interactions are weak (mW , mZ � mp) and
electromagnetic effects are small (αe.m. = 1/137)
conceptually clean, natural question for lattice QCD
alternative: combination of perturbation theory + additional
assumptions (”quark hadron duality”, sum rules, hadronisation
Monte-Carlo, . . .).
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From bare to renormalised parameters

At fixed g0:

Fπ,mπ,mK ,mD ⇒ a(g0), am0,l(g0), am0,s(g0), am0,c(g0)

These are bare quantities, the continuum limit cannot be taken!

N.B.: due to quark confinement there is no natural definition of
“physical” quark masses or the coupling constant from particle
masses or interactions

At high energy scales, µ� mp, one may use perturbative schemes to
define renormalised parameters (e.g. dimensional regularisation and
minimal subtraction)

How can we relate the bare lattice parameters to the renormalised
ones in, say, the MS scheme?

basic idea: introduce an intermediate renormalisation scheme which
can be evaluated both perturbatively and non-perturbively
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Non-perturbative renormalisation schemes
Example for a renormalised coupling

Consider the force F (r) between static quarks at a distance r , and define

αqq(r) = r2F (r)|mq,i=0

at short distances:

αqq(r) = αMS(µ) + c1(rµ)α2
MS

(µ) + . . .

at large distances:

lim
r→∞

αqq(r) =

{
∞ for Nf = 0

0 for Nf > 0

NB: renormalization condition is imposed in the chiral limit ⇒ αqq(r)
and its β-function are quark mass independent.
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Example for a renormalised quark mass

Use PCAC relation as starting point:

∂µ(AR)aµ = 2mR(PR)a

Aa
µ, Pa: isotriplet axial current & density

The normalization of the axial current is fixed by current algebra
(i.e. axial Ward identities) and scale independent!

⇒ Quark mass renormalization is inverse to the renormalization of the
axial density:

(PR)a = ZPPa, mR = Z−1
P mq.

⇒ Impose renormalization condition for the axial density rather than for
the quark mass
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Renormalization condition for axial density

Define 〈Pa
R(x)Pb

R(y)〉 = δabGPP(x − y), and impose the condition

GPP(x)
∣∣∣
µ2x2=1, mq,i=0

= − 1

2π4(x2)3

GPP(x) is defined at all distances:

GPP(x)
x2→0∼ − 1

2π4(x2)3
+ O(g2), GPP(x)

x2→∞∼ − 1

4π2x2
G 2

π + . . .

⇒ ZP is defined at all scales µ:

at large µ (but µ� 1/a):

ZP(g0, aµ) = 1 + g2
0 d0 ln(aµ) + . . . ,

at low scales µ:
ZP(g0, aµ) ∝ µ2
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Renormalization group functions

The renormalized coupling and quark mass are defined non-perturbatively
at all scales
⇒ Renormalization group functions are defined non-perturbatively, too:

β-function

β(ḡ) = µ
∂ḡ(µ)

∂µ
, ḡ2(µ) = 4παqq(1/µ)

quark mass anomalous dimension:

τ(ḡ) =
∂ lnm(µ)

∂ lnµ
= − lim

a→0

∂ lnZP(g0, aµ)

∂ ln aµ

∣∣∣∣
ḡ(µ)

Asymptotic expansion for weak couplings:

β(g) ∼ −g3b0 − g5b1 . . . , b0 =
{

11
3 N − 2

3Nf

}
(4π)−2, ...

τ(g) ∼ −g2d0 − g4d1 . . . , d0 = 3(N − N−1)(4π)−2, . . .
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The Callan-Symanzik equation

Physical quantities P are independent of µ, and thus satisfy the
CS-equation: {

µ
∂

∂µ
+ β(ḡ)

∂

∂ḡ
+ τ(ḡ)m

∂

∂m

}
P = 0

Λ and Mi are special solutions:

Λ = µ (b0ḡ
2)−b1/2b2

0 exp

{
− 1

2b0ḡ2

}
× exp

{
−

∫ ḡ

0
dx

[
1

β(x)
+

1

b0x3
− b1

b2
0x

]}

Mi = mi (2b0ḡ
2)−d0/2b0 exp

{
−

∫ ḡ

0
dx

[
τ(x)

β(x)
− d0

b0x

]}
N.B. no approximations involved!
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Λ and Mi as fundamental parameters of QCD

defined beyond perturbation theory

scale independent

scheme dependence? Consider finite renormalization:

g ′R = gRcg (gR), m′R,i = mR,icm(gR)

with asymptotic behaviour c(g) ∼ 1 + c(1)g2 + . . .
⇒ find the exact relations

M ′i = Mi , Λ′ = Λexp(c
(1)
g /b0).

⇒ ΛMS can be defined indirectly beyond PT; to obtain Λ in any
other scheme requires the one-loop matching of the respective
coupling constants.
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Strategy to compute Λ and Mi

At fixed g0 determine the bare parameters corresponding to the
experimental input.

Determine αqq(1/µ) and ZP(g0, aµ) at the same g0 in the chiral limit

use ZP to pass from bare to renormalised quark masses

do this for a range of µ-values

repeat the same for a range of g0-values and take the continuum limit

lim
a→0

Z−1
P (g0, aµ)mi (g0), lim

a→0
αqq(1/µ)

check wether perturbative scales µ have been reached

if this is the case, use the perturbative β- and τ -function to
extrapolate to µ = ∞; extract Λ and Mi (equivalently convert to MS
scheme deep in perturbative region).
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Example: running of the coupling (SF scheme, Nf = 2)

[ALPHA, M. Della Morte et al. 2005 ]
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The problem of large scale differences

Λ and Mi refer to the high energy limit of QCD

The scale µ must reach the perturbative regime: µ� ΛQCD

The lattice cutoff must still be larger: µ� a−1

The volume must be large enough to contain pions: L � 1/mπ

Taken together a naive estimate gives

L/a � µL � mπL � 1 ⇒ L/a ' O(103)

⇒ widely different scales cannot be resolved simultaneously on a finite
lattice!
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In practice ...

This estimate may be a little too pessimistic:

Lmπ ≈ 3− 4 often sufficient

if cutoff effects are quadratic one only needs a2µ2 � 1.

when working in momentum space one may argue that the cutoff
really is π/a;

in any case, one must satisfy the requirement µ� ΛQCD

Heavy quark thresholds

Λ and Mi implicitly depend on Nf the number of active flavours! If
computed for Nf = 2, 3 one needs to perform a matching across the charm
and bottom thresholds to match the real world at high energies.
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