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Monte Carlo measurements of correlation functions

The mass (for example) of a QCD state can be computed from the
Euclidean matrix element (t ′ > t)

〈Φ(t ′)|Φ†(t)〉 = 〈Φ|e−(t′−t)Ĥ |Φ†〉 =
∑
n

〈Φ|n〉〈n|e−(t′−t)Ĥ |n〉〈n|Φ†〉

CΦ(t ′ − t) = 〈Φ(t ′)|Φ†(t)〉 =
∑
n

|〈Φ|n〉|2e−(t′−t)Ên

Recall the Euclidean path integral representation of QCD on a lattice
relates a matrix element to an integral on a finite lattice:

〈Φ(t ′)|Φ†(t)〉 =
1

Z

∫
Dφ Φ[φ](t ′)Φ†[φ](t) e−S(φ)

And the ergodic theorem related this integral to the expected value of
our Markov chain ensemble average:

CΦ(t ′ − t) = E [Φ(t ′)Φ†(t)]S(φ)

A reweighting function might be needed, for example with Nf = 1
light quarks.
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Monte Carlo measurements of correlation functions (2)

A useful means of visualising this data is via the “effective mass”

ameff(t) = − log
CΦ(t + 1)

CΦ(t)

lim
t→∞

CΦ(t + 1) = |Z |2e−E0t so lim
t→∞

meff(t) = E0

We look for a “plateau” in the effective mass, which indicates when
the correlation function is dominated by the lowest state with
significant overlap with Φ.
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Bosonic fields
For the bosons, we have direct access to the fields in the ensemble,
and can make direct measurements of operators.
Examples from QCD: The potential between static colour sources, the
glueball spectrum.
A static colour source Q has a propagator defined as the Wilson line
at a site x . Two static sources can be combined into a colour singlet
by adding a path-ordered product of gauge fields and so the energy of
this system (with gluonic excitations too) can be extracted from the
time-like decay of Wilson loops:
For glueballs, an operator can be formed from a linear combination of
Wilson loops on a time-slice. The correlator that must be measured is
then the product of two of these operators.

The static potential T T The glueball
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Bosonic fields

Excitations of the static potential
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Bosonic fields
An effective mass - the scalar glueball
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Quark propagators

Consider a computation of a two-point correlation function suitable to
measure the rho meson energy

Ci (t
′ − t) =

∑
x ,y

〈Tr M−1(x , t; y , t ′)γiM
−1(y , t ′; x , t)γi 〉

Computing all elements of the quark propagator would require full
knowledge of the inverse - prohibitively expensive

One solution is to rely on translational invariance of the QCD vacuum
and restrict the computation to a few columns of the inverse.

Ci (t) = V
∑
y

〈Tr M−1(0, 0; y , t)γiM
−1(y , t; 0, 0)γi 〉

Then γ5-hermiticity gives us M−1(y , t; 0, 0) = γ5M
†−1(0, 0; y , t)γ5 so

Ci (t) = V
∑
y

〈Tr M−1(0, 0; y , t)γiγ5M
†−1(0, 0; y , t)γ5γi 〉
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Quark propagators (2)

Now computing this requires just a small subset of elements of M−1

These elements can be computed using sparse matrix solvers

M−1
ij (y , t ′; 0, 0) = M−1

ik (y , t ′; x , t)δkj(x , t; 0, 0)

acting on 12 appropriate Kronecker delta function sources, so 12
matrix inversions are required for all spin and colour components at a
site.

Simple baryon operators (with three quark fields at a common point)
can be constructed in the same way.

If more complicated diagrams are required, then more sources must
be included and more inversions performed.
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Smearing

Point-like operators have overlap with a broad spectrum of states, not
just the ground-state. Different operators will have a different pattern
of overlaps. Empirically, it is seen that using a smeared operator
helps to improve ground-state overlap dramatically.

Gauge-invariant smearing is performed by the repeated application of
a covariant, 3d laplace operator to the quark fields in operators, so an
operator to create a rho meson at rest would become

ρi (t) =
∑
x

ū(x , t)γi�
n(x , y ; t)d(y , t)

with

�(x , y) = δx ,y + α
∑

µ

Uµ(x)δx+µ̂,y + U†µ(x − µ̂)δx−µ̂,y

The smeared field inherits the same transformation properties under
rotations on the lattice so the quantum numbers of the state created
are unchanged. {α, n} are free parameters that can be tuned to
optimise overlap.
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Smearing (2)

Alternatively, smearing can be performed by first fixing to a smooth
gauge and convolving the fields with a well-chosen wave-function.

The new, smeared operator ρ̃ now couples fields at more than one
point. How can the correlation function be computed with point
propagators?

For the sink operator, this is straightforward; the smearing can be
applied to the result vectors coming from the inversion. This leads to
a “smeared-local” correlator;

C̃i (t) = V
∑
y ,z

〈Tr M−1(0, 0; z , t)
←
� (z , y ; t)γiγ5M

†−1(0, 0; y , t)γ5γi 〉

Smearing at the source will require applying the operator to the
Kronecker delta source before applying the matrix inverse. For each
different smearing, a new inversion is required.
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Smearing (3)

Often, better operators can be constructed by also applying a
smearing to the gauge fields in the operator too. Operators will
include gauge fields once invariant smearing is applied, or if
displacements are included.

APE smearing is the most used. Here, a link is added to a weighted
average of the four (no time) staples. The resulting variable is
projected back into SU(3) in a way that maintains its transformation
properties.

There are a number of ways of applying this projection. The
projection improves the effectivness of the smearing.

Mike Peardon (Trinity College Dublin) Numerical methods for lattice field theory August 16, 2007 11 / 31



An illustration: the nucleon
The effective mass of a nucleon created by operators with different quark
and gauge smearings (Top - quark smearing, middle - gauge smearing,
bottom - both) Basak et. al. hep-lat/0601034
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Variational techniques
Suppose we can construct a (small) set of operators, φi , i = 1 . . .m
with the quantum numbers of interest. Any linear combination of
these operators has the same transformation properties; Φ = diφi

Can we determine the linear combination that maximises the
contribution to the correlation function from the ground-state?
The correlation function of Φ is (assuming φ are real operators)

CΦ(t) = diCij(t)dj with Cij(t) = 〈φi (t)|φj(t)〉
IF the action has a positive-definite transfer matrix, then the energies
of all states are real and positive and so

Cij = 〈φi |n〉〈n|e−tH |n〉〈n|φj〉
is a positive-definite symmetric matrix and the lowest eigenstate of
the generalised eigenvalue problem

C (t1)~v = e−λ(t1−t0)C (t0)~v

has λ > E0. This eigenvector then gives the linear combination of
operators with the lowest energy and thus the “best” ground-state
overlap.Mike Peardon (Trinity College Dublin) Numerical methods for lattice field theory August 16, 2007 13 / 31



All-to-all quark propagators

Computing all elements of the quark propagator would require full
knowledge of the inverse - prohibitively expensive

If we are satisfied with an unbiased estimator of all elements then
sparse matrix methods can be used. Quark propagation is being
measured on a random ensemble of gauge field backgrounds.

Variance reduction will be crucial
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All-to-all quark propagators (2)

Start with a spectral representation of Q = γ5M (choose Q here
because it is hermitian so eigenvalues are easier to compute).

If we can compute all the eigenvectors and eigenvalues, {λ(i), v (i)} of

Q =
N∑

i=1

λ(i)v (i) ⊗ v∗(i) and Q−1 =
N∑

i=1

1

λ(i)
v (i) ⊗ v∗(i)

Unfortunately, finding even a small sub-set of eigenvectors is
computationally expensive, so we are forced to truncate this
representation at Nev � N
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All-to-all quark propagators (3)

Start again with a stochastic representation of Q. Fill a vector, η
with random noise, such as Z4 = {1, i ,−1,−i}. Then

E [ηiη
∗
j ] = δij

and ZN noise has the useful property that

ηiη
∗
i = 1 (no sum)

Now applying the fermion solver gives ψ = Q−1η and

E [ψiη
∗
j ] = Q−1

ij

and we have an estimator for all elements of Q−1.

Unfortunately, the variance of this estimator is large and any signal
will be swamped by noise.
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All-to-all quark propagators (4)

The variance can be reduced by recalculating this estimator for m
different random sources but errors fall like 1/

√
m. Can we do better?

The exact propagator can be computed with a finite (but large!)
amount of effort; use point-propagator methods with Kronecker delta
sources put everywhere.

This suggests a trick; break the vector space of the quark fields, V
into d smaller sub-spaces V = V1 ⊕ V2 ⊕ . . . spanned by sub-sets of
the basis vectors. For example, even-odd partitioning:

V1 =
{

e(1) = (1, 0, 0, 0, . . . ), e(3) = (0, 0, 1, 0 . . . )
}

V2 =
{

e(2) = (0, 1, 0, 0, . . . ), e(4) = (0, 0, 0, 1, . . . )
}

This partitioning (“dilution”) is arbitrary. A useful example is “time
dilution”, where NT sub-spaces are defined, with support on one
time-slice only.
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All-to-all quark propagators (5)

The basis is complete, so if Si is a projector into space Vi and
η(i) = Siη then η =

∑d
i=1 η

(i). Since S2
i = Si , we can write an

identity

1 =
d∑

i=1

Si =
d∑

i=1

S2
i =

d∑
i=1

SiE [η ⊗ η∗]Si =
d∑

i=1

E [η(i) ⊗ η∗(i)]

and another representation of the propagator can be written as

Q−1 =
d∑

i=1

E [ψ(i) ⊗ η∗(i)] where ψ(i) = Q−1η(i)

The variance in this estimator is reduced by explicit cancellation of
terms that vanished before only as m →∞. If d = N, the exact
propagator is recoved.

A good choice of dilution should beat statistics.
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All-to-all quark propagators (6)

Most of the physics is contained in the lowest few eigenvectors of Q.
A hybrid method can be constructed that uses an exact
representation of the lowest few eigenvectors and corrects for the
truncation using a stochastic estimator. Break V into two subspaces,
VL and VH , with VL the space spanned by the lowest Nev

eigenvectors. Since Q leaves this space invariant, we have

Q−1 = Q̄L + Q̄H = Q−1PL + Q−1PH

Q̄L is the truncated eigenvector representation, and Q̄H can be
estimated with the dilution method. The action of Q̄H is

Q̄H = Q−1PH = Q−1(1− PL)

which is a Gram-schmidt orthogonalisation against the known
eigenvectors followed by application of the inverse.
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All-to-all quark propagators (7)

The Hybrid all-to-all method

Compute Nev eigenvectors and eigenvalues, {λ(i), v (i)}
Generate one noise vector, and dilute {η(1), η(2), . . . }
For each dilute vector, compute ψ(i) = Q−1(1− PL)η

(i)

Now Q−1 is estimated as

Q−1 =
Nev∑
i=1

1

λ(i)
v (i) ⊗ v∗(i) +

Nd∑
j=1

ψ(j) ⊗ η∗(j)

Since both terms are sums of outer products, they can be packed into
a single sum over j = 1 . . .Nev + Nd . The “hybrid list” representation
becomes Q−1 =

∑Nev+Nd
j=1 u(j) ⊗ w∗(j)
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All-to-all quark propagators (8)

We don’t directly want the quark propagator; we are using it in
correlation functions. Take the simplest case (one quark line) of a
static-light meson

Cstat(t) = Tr ΓM−1(x , t; x , t ′)Ut(x ; t ′, t)

with Ut(x ; t ′, t) the Wilson line at site x from time-slice t to t ′ (the
colour structure of a propagator of an infinitely heavy quark).

This becomes

Cstat(t) =

NH∑
j=1

w∗(j)(x , t ′)Ut(x ; t ′, t)γ5Γu(j)(x , t)

Measurements resemble their original form in terms of quark fields.
Operator construction is simplified and more complicated operators
can be built.
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Results from all-to-all quark propagators (1)
Static-light S-wave - variational calculation
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Results from all-to-all quark propagators (2)
Isovector mesons
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Data analysis

Since the measurements are just a stochastic estimator of the “true”
answer, careful interpretation is required.

Statistical analysis is not the end of the story. There are errors from
using a finite lattice spacing, finite volume, incorrect physical
parameters (such as quark mass), . . .

Often a physical model of the expected behaviour is known (perhaps
with unknown parameters) and a test of the validity of the model
(with a determination of the “best-fit” model parameters) is needed.
The χ2 statistic provides the usual discriminant between good and
bad models (and parameter choices).

For our Markov chain Monte Carlo data, the problem of testing and
fitting the model to our data is compounded by the fact that many
different measurements to be compared have been made on the
same ensemble of field configurations. We need information on the
data covariance.
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Data analysis

For correlated data, the measured mis-match between the model ỹ
and the data yi is

χ2(α) =
m∑

i ,j=1

(ỹi (α)− yi )C
−1
ij (ỹj(α)− yj)

where Cij is a positive-definite covariance matrix

Cij =
N

N − 1

∑
k

(y
(k)
i − ȳi )(y

(k)
j − ȳj)

and y
(k)
i is the measurement of observable i on configuration k.

Here we have assumed the model is being compared to simple
averages of of observables (for example, a fit to a correlation function
for mass extraction).

In more complicated cases, the covariance matrix must be computed
through a jack-knife resampling.
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Data analysis (3)

This estimate of the data covariance matrix is often unreliable. It
contains many (highly correlated) entries and can be close to being
singular. Techniques to improve estimators and control singularities
have been developed. See for example C.Michael and A.McKerrell
(hep-lat/9412087) for a discussion.

A “small” value of χ2 indicates a model that can not be ruled out by
the data. The “best-fit” parameters, α∗ define the model that
minimises χ2(α).

The model would not be ruled out by the data if χ2 ≈ m when the
model parameters are fixed or χ2 ≈ Ndf = m − nα if they are
determined

The “goodness of fit” provides an estimate of the probability a
correct model would have χ2 as large as that measured. It is

Q(χ2,Ndf ) =
1

Γ(Ndf /2)

∫ χ2/2

0
e−ttNdf /2−1dt
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Data analysis (4)

For a linear model;

ỹi =
nα∑
a=1

αafi ,a

with fi ,a constants then the best-fit model is unique and finding this
model is just linear algebra.

For non-linear models (such as a fit to an exponential fall-off;
ỹk = α1e

−kα2), finding the global minimum can be difficult. A
commonly used algorithm is the Levenberg-Markhardt algorithm (see
eg. Numerical Recipes).
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Jack-knife resampling

Suppose we want to compute a (non-linear) function of some
observables;

Q = q(E [y1],E [y2], . . . )

a (biased) estimate of Q is just given by applying the function to the
sample averages of y . The bias falls like 1/N. Remember it is
incorrect (and possibly ill-defined) to compute

Qbad = E [q(y1, y2, . . . )] 6= Q

and this estimator is always biased.

Similarly, a fit result must be assigned an uncertainty. Often it is a
complicated function of the underlying data; the expected value of
this parameter determined by the fitting procedure - how can an
uncertainty be given?
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Jack-knife resampling (2)

An uncertainty can estimated by resampling the data using either the
jack-knife or boot-strap methods.

Consider the original ensemble of field configurations, E and a set of
N new ensembles, {Ej} each made by removing configuration j from
E . On each ensemble, a new estimate of Q can be made;

Qj = q(E [y1]j ,E [y1]j , . . . )

The uncertainty can be estimated by computing

σ2
Q =

N

N − 1

N∑
j=1

(Q − Qj)
2

The (1/N biased) mean
∑

j Qj can be used to estimate the bias. See
e.g. B. Berg “Markov Chain Monte Carlo Simulations and their
Statistical Analysis”
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Boot-strap resampling (3)

In the jack-knife method, we still assume the sample mean of Q is
normally distributed and estimate its variance to give an uncertainty.

A means of estimating the distribution of Q requires another Monte
Carlo calculation! As with jack-knife, the ensemble of field
configurations is resampled B times where ensemble EB contains N
entries randomly selected with replacement from E .

Now Q is recomputed on each of these resamplings. If Q is a model
parameter determined by a best-fit procedure, this means re-finding
the minimum of χ2 on all ensembles. After this process, we have a
set {Qb} of B estimators for Q. These values are sorted numerically
and then a given confidence interval (95% for example) can be
quoted by reading the (0.05× B)th entry (as a lower limit) and the
(0.95× B)th entry (as an upper limit).
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Summary

The Monte Carlo method can be applied to quantum field theory on a
finite lattice.

Algorithms to define irreducible, positive recurrent Markov chains of
configurations suitable for importance sampling can be constructed.

Fermion fields can be handled by replacing them with auxiliary fields
(the pseudofermions).

This leads to non-local actions on bosonic fields. At present, the best
methods for dealing with these actions is to use methods based on
molecular dynamics or diffusion equations.

Manipulating quarks requires good algorithms for solving sparse linear
systems.

Measurements on these configurations can be related to any function
of the quantum fields. For quarks, this involves computing
propagators.

There is a robust set of statistical methods for analysing Monte Carlo
data and its autocorrelations
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