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Hybrid Monte Carlo

Hybrid Monte Carlo
@ Draw new conjugate momenta, 7w from the normal distribution
@ Store the current field, ¢ and compute H(7, ¢)
© Integrate the equations of motion using a reversible, symplectic
integrator with step-size h (such as leap-frog) so (¢, ) 2Pl (¢',7")
© Compute H(7', ¢) and the change, AH

@ Accept ¢’ as the new entry in the Markov chain with probability

Pace = Min [1, efmq

if the new configuration is rejected, then make ¢ the new entry.

@ Ash—0,AH — 0, s0 Pacc — 1
o E[e”A"] =1 and E[AH] = FE[(AH)?] for small AH
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Metropolis-Hastings Acceptance probabilities

@ The algorithm needs some tuning; make h small and the computer
cost rises, make h too big and all proposals are rejected as AH is

large.

0 P, x erfc(h2/hg). Example below from the Ny = 2 Schwinger
model (2d QED)
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Molecular dynamics (4)

@ For gauge theories, our degrees of freedom are constrained, so we
need to define hamiltonian dynamics on curved manifolds.

@ A Lie group G (all continuous gauge groups) has particularly helpful
properties. At all points, there is a well-defined, tangent space (the
Lie algebra at the identity element) in which conjugate momenta
naturally live.

o A useful definition for a momentum variable p conjugate to a group
element U is

p=paTasopeE L(G)
with T, the (hermitian) generators of the group and define the
equation of motion for U to be

U=ipU

@ The extra appearance of U shows we need to rotate the Lie algebra
(where p lives) to be tangent to U. The left multiplication is a
convention (right works just as well).
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Molecular dynamics (5)

@ The (group invariant) kinetic term is
1
— 2 _ 2
T="Trp = 5 ga Ps

and so the co-ordinates p, are still normally distributed.
o A toy example:

S[U] = ReTr UL so H[U, p] = Tr p> + ReTr UL

with U € SU(N) and ¥ € GL(N) a constant background.
@ A simple way to find the equations of motion is to demand the
hamiltonian is conserved and use the definition of p, so:

H =2Tr pp + ReTr UL =0
substitute U = ipU and we get

1 ostyt L _ sty
p_4{uz £huf - ST (Uz zu)}
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Molecular dynamics (6)
e Now QCD:

S = ﬂz ReTr (1 — Ug(x)) + ¢* [MTM] - o)

the ¢ fields are (usually) held fixed in the integration stage, and are
drawn at the start of the trajectory from a heat-bath (since they are
normally distributed).

@ The force term from the gauge action is the staple sum - the same
object found in the Gibbs sampler methods. For the pseudofermions

i o v o} = <o w ] G () orw]
o Define X = [MTM] "¢ and Y = MX, we get

d -1 dM dmMm’t
— ¢ MM - YV* X - XY
dt {¢ { ] ¢} dt dt
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Molecular dynamics (7)

@ The sparse structure of M generates a few terms, bilinear in the
derived fields, X, Y; an example (for the Wilson fermion matrix)
would yield a similar expression for ¥ in

pux) o (U (I Z(x) — T UJ() — S HmTr Uu()Z()

Tu(x) = (1= 3" X 0+ )Y () + ...
(cv, 8 spin components)

@ The computationally intensive part is computing X and Y/; this
requires sparse matrix inversion.

e Fortunately, for each (pair of) inverses computed, all links are
updated.
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Symplectic integrators
o Classical dynamics is a smooth flow in a phase space, A = (¢, 7).
Phase space has a geometric structure.

Symplectic integrators

@ An integrator is a function A: A — A so (¢, 7) A (¢',7")

ol o 0 1
o Define the block Jacobian K4 = gj;' (,?(1’, and J = ( )
& 8% -1 0

@ Then integrator A is called symplectic if

Kl JKp=J

o This structure means symplectic integrators behave like a Lie group
with the Poisson bracket acting as the Lie bracket.

B of 0g B of 0g
tf.e} = Z 0¢; om; 0w 09
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The Seattle Phase Space Needle

o Integrating a simple one-dimensional system illustrates the difference
between symplectic and non-symplectic (the Euler integrator)
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Symplectic integrators (3)

o A useful linear operator on the space of functions on A is
Ax = {-, X} with X another operator on A then time-evolution for
any function, f becomes

f
& = df = {F,H) s0 () = eB%F(0)

o e is hard (impossible) to construct in practise. Is there a recipe
for constructing useful symplectic integrators?

@ H =T + S so consider the action of A7 and Ags. For example,
Arf={f T}—Zﬁn- so At =mi, Arm =0
TH =1, _ia¢i’ TP — N, /TN —

this then leads to

e"ATF(p(t), m(t)) = F(H(t) + hr(t), (t))
and so "7 is just the symplectic operator that adds hr to ¢
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Symplectic integrators (4)
o It is easy to apply the symplectic operators "7 and e"2s; they are

just adding momenta and the force to 7 and ¢ respectively.
@ The two simplest symmetric symplectic integrator are then

3BT ghBs o3AT jnd 385 ghAT o3 A5
@ and applying these n times forms the n-step leap-frog integrator.

@ Since the poisson bracket behaves like a Lie algebra, we can use the
h h .
Baker-Campbell-Hausdorff, so: e227ehAse2AT — ehBrARA" itk

1 1
A= —[Ac. [Ac. A —[AT,[Ac, A
12[ s, [As, T]]+24[ 7. [As, AT]]

@ The Lie-algebraic properties also imply any compound of symplectic
integrators can be written as "+’ with H’ some Hamiltonian. This
implies there is a different energy function that is exactly conserved
by every symplectic integrator. For leap-frog,

h? 0%S 10S 0S
H=H+ - (mie—m— =
12 ( "Dty 200 3¢i>
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Symplectic integrators (5)

o Better integrators can be constructed, by building longer (symmetric)
compounds. The Omelyan integrator is

ehH+h3Ao _ eAhATegAs e(1—2A)hATegA5 AT

and this gives
Ao = a(N)[AT,[As, AT]] + B(N)[As, [As, Ar]]

Minimising a? + 32 gives A ~ 0.193. This integrator works well,
giving a speed-up of about 1.5-2.

o Getting rid of O(h?) errors altogether using a compound of e"7 and
ehfs requires seven terms, and is not useful in practice, since the
integrators go unstable at smaller step-size.
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Symplectic integrators (6)

@ The action, S can often be split into a sum of terms,
S5 =351+ 5+ ... each with its own force, g—?ﬁ, ggﬁ, ... and
his, ghbs,

symplectic integrator e

o If the forces have very different sizes, then this splitting can be used
to build better integrators; write

m
hA h h h
H — I | eHATeEAsl e%AT

then a modified leapfrog integrator is

ea s, ghH, GBS

J.Sexton and D.Weingarten, Nucl. Phys. B380 (1992), 665

@ This integrator has two time-scales, h and % and tuning these scales
leads to a faster algorithm, provided the force that is computationally
cheap dominates.
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Extensions to HMC (1)

o Odd-flavour simulations can be performed in HMC. Now the required
importance sampling measure is | det M| and this is converted (using
v5-hermiticity) to det vV MTM. This is then bosonised as before.

o Computationally efficient ways of representing v MTM needed.

o Polynomial approximations: PHMC
K. Jansen and R. Frezzotti, Phys. Lett. B402 (1997) 328
If P(x)~ % then the action on the pseudofermions becomes

N

Sy = ¢*73(/\/ITM)¢ = ¢* (H(I\/ITM - z,-)) ¢, with z; the roots of P

i=1
N 1
= ¢" (H(%M —Vz)(3sM — ﬁf“)) ¢
i=1
o Differentiating with respect to molecular dynamics time gives

. L dMT
ZY —X + X; TY
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Extensions to HMC (2)

o Rational approximations: RHMC
M.Clark and A.Kennedy, Nucl.Phys.B (Proc. Suppl.) 129 (2004) 850
If R(x) = % ~ % then the action on the pseudofermions becomes

Sp = ¢"R(M'M)g
@ A rational approximation (with A, B suitably chosen) can be written

Cj

R(x):co+zx+d'
i=1 !

For example, an optimised rational approximation (A. Kennedy,

hep-1lat/0504038) to % with x € [0.003,1] is 1//x ~

(x + 2.3475661045)(x 4 0.1058344600)(x + 0.0073063814)
(x 4 0.4105999719)(x + 0.0286165446)(x + 0.0012779193)

0.0511093775 n 0.1408286237 0.5964845033
x 4 0.0012779193  x 4 0.0286165446 x + 0.4105999719

0.390460391

= 0.3904603901+
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Extensions to HMC (3)

@ The matrix approximation is then

n
(MTM) 2 = RIMIM) = o+ > ci(MTM + d;) !
i=1

o Now evaluating R requires matrix inversion again, but the advantage
is that machine precision can be reached for fairly low orders of
polynomials, A, B in contrast to polynomial approximation.

o For rational approximations to x /2 the coefficients are +ve.

o The solution of (MTM + d;)x; = ¢ for many different values of d; can
be achieved with “multi-mass” solver. Convergence determined by
the least-well-conditioned problem (i.e. smallest d}).

o Further modifications to the way the fermion determinant is
represented are possible. Two of the most popular current methods
are the Hasenbusch mass preconditioner and Liischer’s Schur
alternating approach.

M.Hasenbusch - Phys.Lett.B519 (2001) 177
M.Luscher - Comput.Phys.Commun 165 (2005) 199.
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Krylov Space methods (1)

o For almost all these methods, we need an efficient way of solving
A[U]Y = n for a sparse matrix A.

@ The most common way to solve these problems is to use a Krylov
space method. The n-dimensional Krylov space, K, (A, v) is the
vector space

2
span {vo, Avg, A%v, . .. }

o When n = N, the rank of A the solution must lie in 1C(A, vo)
(Cayley-Hamilton). N is large, these methods are considered as
iterative, with “good” convergence properties (usually exponential).

o New methods are emerging that are not Krylov space methods (such
as deflation methods).
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Krylov Space methods (2)

o For A positive-definite hermitian, then the best method is (usually)

conjugate gradient:
The conjugate gradient algorithm

ro =1 — Ao, po = ro

Until convergence (|rx| small), repeat for k =0,1,2,...
N rg - rk
k= % a1
Pk - APk
Vi1 = Yi + P

rk+1 = Yr — o Apk

o Moyt " Tkl
6/( - % .
re = Tk
Pk+1 = k41 + BiPx

@ Simple iterations and low storage requirements
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Krylov Space methods (3)

@ For A non-hermitian, the method is generalised to the BiCG
algorithm, which has some improved versions, BiCGStab,

@ Convergence of these methods is accelerated through
preconditioning. In lattice QCD with Wilson-like quarks, the most
commonly used form is even-odd (or red-black) preconditioning.
Write My =n as

Mee Meo we _ Ne
<Moe Moo)(¢o>_<770>

and then solve the equivalent problem:
< Mee 0 ) < e + Me_elMeo'(/Jo > _ ( e )
0 Moo — MoeMet Meo Yo No — Moe Mz ne

o Recently, interest has been in methods that use “deflation”. Here, as
the Krylov space is constructed, an set of approximate low
eigenvectors for A is built and stored. These can be used in to
accelerate inversion. See e.g.

W. Wilcox, presentation at Lattice 2007.
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