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Chiral symmetry breaking
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In the QCD vacuum, chiral symmetry is broken. 

Flavor SU(3)LxSU(3)R → SU(3)V

Non-zero chiral condensate 
Nambu-Goldstone bosons (pion, kaon, η) nearly massless; in 
practice massive due to non-zero mq.

Flavor-singlet axial U(1) is special, due to anomaly. η’ is substantially 
heavier.

Other hadrons have a mass of O(ΛQCD)

Low energy effective theory for pions (and K, η) can be 
constructed = chiral perturbation theory (ChPT, χPT).

qq



PCAC relation
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Partially Conserved Axial 
Current (PCAC)

From the QCD Lagrangian,

The axial current may annihilate 
pion to the vacuum; Lorentz 
invariance restricts its form.

fπ is called the pion decay 
constant.
Can be measured from 
the leptonic decay π→μν.

fπ = 131 MeV
Its analog for kaon is fK.

fK = 160 MeV
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Consider two-point functions

Taking derivatives of T-products, we obtain

In the limit of qμ→0, it leads to
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Gell-Mann-Oakes-Renner (GMOR) relation (1968)

Chiral symmetry is broken = Non-zero chiral condensate
Pion mass squared proportional to quark mass

Also for kaons,

Quark mass ratios can be predicted up to O(mq
2).

{ })(1)( 222
πππ mOmfdduumm du +−=++

)()(
2

)()(

2
2

2
0

2

qdu

qdu

mOmm
f

qq

mOmmBm

++
−

=

++=

π

π

qq

),()4(
3
1

),()(),()(

2
0

2

2
0

22
0

2
0

qsdu

qsdKqsuK

mOmmmBm

mOmmBmmOmmBm

+++=

++=++=+

η



Chiral Lagrangian
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Low energy effective lagrangian is developed assuming
Spontaneous breaking of chiral symmetry
Pion (and kaon, eta) to be the Nambu-Goldston boson

In the low energy regime, pions are only relevant 
dynamical degrees of freedom.

Given by a non-linear sigma model.
Provides a systematic expansion in terms of mπ

2, p2; the leading 
order is given above.
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Expansion in the pion field gives

Pion mass is obtained as mπ
2=2B0m

A chain of interaction terms: 4π, 6π, etc.
Loop corrections are calculable. 

Pick up a factor of (mπ /4πf)2 or (p/4πf)2

Counter terms must also be added at order (mπ /4πf)2 or 
(p/4πf)2 

introduce the low energy constants (LECs): L1~L10 at the one-loop 
level
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One-loop example
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Pion self-energy

Log dependence m2ln(m2): called the chiral logarithm.
Comes from the infrared end of the integral = long distance 
effect of (nearly massless) pion loop.
Counter terms are necessary in order to renormalize the UV 
divergence.
After subtracting the UV divergences
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Counter terms
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At the order (mπ /4πf)2 or (p/4πf)2, there are 10 possible 
counter terms

10 new parameters, L1~L10 = low energy constant at NLO
c.f. 2 parameters at LO: Σ and f.
Depends on how one renormalize the UV divergence, just as in 
the small coupling perturbation. L1~L10 depends on the 
renormalization scale μ.
Once these parameters are determined (e.g. from pion
scattering data), one can predict other quantities.

Lattice QCD may be used to calculate these parameters.



Quark mass ratio
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At NLO, the quark mass ratio is given as

Assumes that the isospin breaking mu≠md is negligible.
Requires the knowledge of the NLO LEC 2L8-L5.
Results in ms/mud=25~30 (PDG 2006); large uncertainty due to 
the unknown LEC.

Comparison with the exp number gives LECs. But the 
predictive power is lost.
Instead, lattice calculation can be used to fix LECs.
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Isospin breaking
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In the real world, π± and π0 have different masses; two 
sources

Small mass difference between up and down quarks.
Electromagnetic effect: Qu=+2/3, Qd=-1/3.

Quark mass difference 
When mu≠md, π0 and η can mix

Then,  from 2
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Electromagnetic effect
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Self-energy with a photon propagator
Using the PCAC relation, related to a current two point 
function (VV-AA).  

Das-Guralnick-Low-Mathur-Young sum rule (1967), a close 
relative of the Weinberg sum rules (1967)

Sum rule estimate gives ΔMπ~5 MeV, comparative to the exp 
value 4.59 MeV. Lattice calculation is also possible.
At the leading order, the same effect for kaon (Dashen’s
theorem)
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Estimate of mu/md
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At the leading order,  Weinberg (1977)

Using the GMOR relation and the EM correction,

Combine them to obtain
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Further estimate of mu/md
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At NLO, those simple relations are lost.
NLO formula (Gasser-Leutwyler (1985))

A double ratio is free from the NLO 
correction

which can be written in a simple form

A slight ambiguity comes from a violation 
of the Dashen’s theorem.
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NLO constraints
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The NLO formula makes an 
ellipse.

Other constraints:
ΔM>0, from large Nc.
Another constraint on

from a charmonium decay
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III. Chiral dynamics
2. Lattice calculation of light 

quark masses
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Inputs
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In general, lattice QCD simulation requires inputs for
Lattice scale 1/a ⇒ determines αs(1/a)

Inputs discussed in Part I.
Quark masses for each flavor

up and down quarks mud (often assumed to be degenerate)
from pseudo-scalar meson mass mπ, good sensitivity because mπ

2~mud.
Strange quark ms

from mK, for the same reason.
Charm quark mc

either from D (heavy-light) or J/ψ (heavy-heavy) mass
Bottom quark mb

either from B (heavy-light) or Υ (heavy-heavy) mass



Chiral extrapolation
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Lattice simulation is harder for lighter sea quarks.
Computational cost grows as mq

-n (n~2).
Finite volume effect becomes more important ~exp(-mπL)

Practical calculation involves the chiral extrapolation.  At 
the leading order, it is very simple:
1. Fit the pseudo-scalar mass with
2. Input the physical pion mass mπ0=135 MeV to get 

mud=(mu+md)/2. (Forget about the isospin breaking for the 
moment.)

3. Renormalize it to the continuum scheme.

Including higher orders is non-trivial…

2 2
0 ( ) ( )u d qm B m m O mπ = + +



NLO example
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Chiral expansion

LO (linearity) looks very good, but if 
you look more carefully NLO is visible.

mπ
2/mq not constant.

Chiral log term has a definite 
coefficient = curvature fixed.
Analytic term has an unknown 
constant, to be fitted with lattice data 
= linear slope
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Strange quark
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Must consider 2+1-flavor theory.
If your simulation contains only 2-flavors (up and down quarks), 
then a possible choice is to use the Partially Quenched ChPT. 
Although it is not the correct theory after all, it will provide a 
consistent description of the lattice data.

NLO effect is less pronounced for strange.

No singularity in the chiral limit. (This may not be the case for 
other quantities like fK.)
Numerical analysis will be more stable.
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A case study: MILC+HPQCD 2+1
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Bare quark masses taken from 
the MILC 2+1 asqtad simulations.

Two lattice spacings “coarse” 
(a=0.125 fm) and “fine” (a=0.090 
fm).
Complicated fit including the taste-
breaking effects of staggered 
fermion, vanishing at a=0.
NNLO analytic terms are included. 
Non-analytic (chiral log) terms are 
discarded.

MILC+HPQCD, PRD70, 031504(R) (2004), 
MILC, PRD70, 114501 (2004).



Renormalization
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Once the bare quark mass is fixed on the lattice, it must 
be converted to the continuum definition, because the 
pole mass is not adequate.

Just like the conversion of the coupling constant.
May use the perturbation theory (Use the renormalized 
coupling!). But, in most cases, known only at the one-loop level. 
(Exceptions are HQET,  Asqtad,  stochastic PT(?).)

Non-perturbative renormalization is desirable.

convert:
mMS(μ)=Zm(μa)mlat(a-1)

)(...]05.21[)( 11 −− ++== amam lat
s

MS αμ
Ex). O(a)-improved Wilson fermion



MILC+HPQCD 2+1
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Conversion is done perturbatively.
Calculated to two-loop. HPQCD 
(Mason et al.), PRD73, 114501 (2006).

with q*=1.88/a.
With αV(q*)=0.27, this series is
Zm = 1 + 0.03 + 0.16 + …
The uncertainty from higher orders 
is estimated as 2αV

3(q*)~5%.
After the continuum extrapolation 
with αVa2, they quote

* 2( 1) 1 0.119 ( ) (2.22 0.02 )m V f VZ a q nμ α α= = + + −

(2GeV) 87(0)(4)(4)(0) MeVMS
sm =



A case study: QCDSF-UKQCD Nf=2 
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Another work by QCDSF-UKQCD 
with the O(a)-improved Wilson 
fermion,  PRD73, 054508 (2006).

One may doubt about the 
convergence of the perturbative
expansion. Non-perturbative
renormalization is desirable if possible.  
Non-perturbative renormalization is 
done using the RI/MOM scheme. It 
has its own subtlety: the 
renormalization constant is not really 
constant, due to SχSB.
NP results are about 20% larger than 
the one-loop calculation.

2
1 2 2( ) ( )

( )mZ a c a c
a

ψψ
μ μ

μ
+ +

For more details,  see 
the lectures by S. Sint.



QCDSF-UKQCD Nf=2
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Lattice data fit to the one-loop 
PQχPT formula (but the magnitude 
of the χlog is a free parameter).

Conversion to MSbar is (partially) 
non-perturbative.

Continuum extrapolation is carried 
out with 4 data points. Substantial 
rise in the continuum limit.

(2GeV) 111(6)(4)(6) MeVMS
sm =



Present status
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A recent compilation by 
Knechtli, hep-ph/0511033.

Non-perturbative
renormalization yields higher ms?

or
Nf=3 gives lower ms?

Including other determinations 
(Plot from Davier, Hocker, Zhang, 
Rev. Mod. Phys.78,1043 (2006)).

Consistent within large errors.



Up and down quarks

Aug 17, 2007S Hashimoto (KEK)29

Ratio to strange
Basically obtained by the ChPT formula.
At NLO, equivalent to the calculation of the 
LEC. 

MILC obtained ms/mud=27.4(1)(4)(1) from 
the SχPT fit. Much more delicate.
mu/md can also be obtained (up to the EM 
uncertainty) from the relation
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III. Chiral dynamics
3. Pion loop effects
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Chiral log effects
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We learned that the chiral extrapolation is non-trivial.
Especially so, if pions are involved as external states

pion mass,  decay constant
form factors,  ππ-scattering...

Even when pion does not appear as external states, it could be 
there in the loop. May lead to the chiral log.

Kaon decay constant
Nucleon (masses, matrix elements)
Heavy-light meson (masses, decay constants, form factors)

Thus, could always be a delicate problem when one aims at 
good precision.



An example
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Pion decay constant
At NNLO, it has the form

with ξ=mπ
2/(4πfπ)2 .

Leading-log terms have known 
coefficients.
Free parameters in the analytic term 
(NLO, NNLO) and NLL term 
(NNLO).
Turns out that the chiral log effect is 
not substantial, but non-negligible.

JLQCD (2007)
dynamical overlap (Nf=2)
(talk by Noaki at lat07)

~ms/6 ~ms



Pion form factor
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The simplest form factor

Momentum transfer qμ by a virtual photon. 
Space-like (q2<0) in the πe→πe process.
Vector form factor FV(q2) normalized as 
FV(0)=1, because the vector current is 
conserved.

Vector (or EM) charge radius 〈r2〉Vπ is 
defined through the slope at q2=0.

2( ') ( ) ( ') ( ), 'Vp V p i p p F q q p pμ μ μ μ μ μπ π = + ≡ −

2 2 2 41( ) 1 ( ),
6V V

F q r q O q
π

= + +



Lattice calculation of 3pt function
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π(p)→π(p’)
An interpolating operator for the initial 
state π(p) at t=t0

Another interpolating operator for the 
final state π(p’) at t=t1

Current insertion Vμ in the middle t.
Spatial momentum inserted at two 
operators.

(sequential) source method
Calculate a quark propagator starting 
from a previous quark propagator at t.

t0 t1
t

c.f. 2pt func

.
2 1 0( ) ( ) ( ) ( )iD m S x e S x x tδ/ + = Γ −q x



Ground state?
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Working on the Euclidean lattice
On-shell particle will never appear 
(except for the massless pion in the 
chiral limit).
Instead, one calculates two-point 
function 

This is a Fourier transform of the two-
point function in the space-like regime.

All the information encoded in the 
space-like two-point function Π(q2).
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Lattice calculation of 3pt function
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At large enough time separations Δt=t-t0, Δt’=t1-t, the ground 
state pions dominate.

Extra factors can be taken off with 2pt functions.



A recent calculation
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Lattice signal
Look for a plateau, where the 
ground state pion dominates. 
Noisier for larger pion
momentum.

Note:
The actual data were obtained 
using the all-to-all technique, so 
that the data points at different 
t0,t,t1 and different momentum 
combinations can all be averaged.

JLQCD (2007)
dynamical overlap (Nf=2)
(talk by Kaneko at lat07)



A recent calculation
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Many points corresponds to many 
momentum combinations (p, p’). 

(1,0,0) → (0,1,0), … etc.
in units of 2π/L.
Too large p’s are contaminated by 
discretization effects (ap)2.

q2 dependence well approximated by 
a vector meson pole

with the independently calculated mV at 
the same quark mass.

mq~ms/2

2 2
12 2

1( ) ...
1 / V

F q c q
q mπ = + +

−

mq~ms/6



Analyticity
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Vector meson dominance is 
understood using analyticity.

written in terms of the form factor in 
the time-like region t>0.

In the heavier quark mass region,  ρ
meson is a nearest isolated pole.  ππ is 
subleading.
For the physical quark mass, ππ is nearest. 
ρ is a part of ππ (broad resonance).

0

2
2 2

1 ( ) 1 Im ( )( )
2 t

F t F tF q dt dt
i t q t qπ π

∞

= =
− −∫ ∫

t

ππ

ρ

( ) ( ') 0p p Vμπ π t

ππ

ρ



Chiral extrapolation
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Charge radius has a chiral log 
contribution.

Must diverge in the chiral limit: 
pion cloud gets larger.
Valid only in the region where 
2mπ<mρ.
Lattice data actually increases 
towards the chiral limit. Chiral log 
further enhance its value.
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General problem
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Chiral extrapolation is a serious issue in current lattice 
QCD studies. Questions arise…

How closely one must approach the chiral limit?
One-loop enough? Two-loop needed?
Finite volume effect might become significant.

How big is the effect of chiral symmetry violation of Wilson, 
twisted-mass, staggered and domain-wall fermions? 
Modified χPTs for these lattice actions contain many 
parameters. Possible to determine all of them to necessary 
precision?

Answer depends on the process, action, …
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