
Summary lecture 2

Showed how to twist SUSY theories in 2D: Q2 = 0 and
S = QΛ.

Appearance of KD fermions and relation to staggered.

WZ model.

Today. Gauge symmetry. 2D

Twisting in 4D. N = 4 SYM.

Connection to orbifolding
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Q = 4 twisted SYM in 2D

The twisting argumnent applies to any 2D SUSY with 4
supersymmetries. eg.

SYM = βQTr

∫

d2x

(

1

4
η[φ, φ] + 2χ12F12 + χ12B12 + ψµDµφ

)

where

QAµ = ψµ

Qψµ = −Dµφ

Qφ = η

Qη = [φ, φ]

QB12 = [φ, χ12]

Qχ12 = B12

Qφ = 0 Introduction to Lattice Supersymmetry – p. 2



SYM in 2D

Note

All fields in adjoint X =
∑N2−1

a XaT a for SU(N) with
antihermitian T a.

Covariant deriv Dµf = ∂µf + [Aµ, f ]

Q2 = δφ – SUSY generally accompanied by gauge
transformation.

Other SUSY’s read off by transforming the Ψ matrix
Ψ → ΨΓi, i = 1 . . . 4 and then inserting new fermions in
above expression.
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Carrying on ...

Homework problem 5. Do Q-variation. Integrate out B field.
Find usual SYM action:

Sb =

∫

d2xTr − F 2
12 −DφDφ+

1

4
[φ, φ]2

SF = SKD − 1

4
η[φ, η] + ψµ[φ, ψµ]

Map KD-fields to spinors – equivalent conventional
formulation.
Twisted form good for discretization.
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(No) tuning in Q-exact SYM in 2d

Effective action Γ will pick up counterterms of form

Γ = Q (something)

Γ =
∑

α

Op
αc

p
α(ga)

where

cpα = ap−7/2
∞
∑

l=1

al(ga)
2l

(Kaplan et al.) and p is (mass) dimension of operator and l
is no. loops.
Relevant operator requires:l < 7/4 − p/2 Divergences occur
at 1-loop and for p = 0
These constraints prohibit any new terms except for a
cosmological constant ! Introduction to Lattice Supersymmetry – p. 5



Discretization I

At least two possibilities (Sugino, Catterall)
Retaining geometrical character leads to G.T rules:

f(x) → G(x)f(x)G†(x)

fµ(x) → G(x)fµ(x)G†(x+ µ)

fµν(x) → G(x)fµν(x)G
†(x+ µ+ ν)

Compatible with differences:

D+
µ f(x) = Uµ(x)f(x+ µ) − f(x)Uµ(x)

D+
µ fν(x) = Uµ(x)fν(x+ µ) − fν(x)Uµ(x+ ν)
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Discretization II

Keep Q-symmetry same except for
QUµ = ψµ Qψµ = −D+φ

Point split commutators for G.I eg
[φ, ψµ] → φ(x)ψµ(x) − ψµ(x)φ(x+ µ)

Fµν = D+
µ Uν

Necessary to complexify fields. Allows us to construct
G.I ops. and well-defined SUSY.
∫

Tr(AµBµ) →∑

Tr(A†
µBµ + h.c

A† 6= A requires complex Aa(x).
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Gauge action

Fµν = Uµ(x)Uν(x+ µ) − Uν(x)Uµ(x+ ν)

F †
µνFµν = SW

p + SL

SW
p Wilson plaquette term.

SL = Tr
(

U †
ν(x+ µ)U †

µ(x)Uµ(x)Uν(x+ µ) − I
)

Uµ(x) complex Uµ(x) = R(x)uµ(x) with R hermitian and uµ

unitary.

SL =
∑

µ

Tr(R(x)
2R2(x+ µ) − I)

Consider β → ∞. R driven to 1 and action is Wilson
plaquette action! Introduction to Lattice Supersymmetry – p. 8



Simulations I

Integrate twisted fermions – det(M(U, φ)). Target theory has
real fields. G.I of scalar and gauge sector preserved if we
do path integral “along real line”
Fermions: replace det(M) by Pf(M) = det

1

2 (M) up to sign.
G.I
But what happens to SUSY Ward identities ?
Any Q-invariant observable can be computed as β → ∞
exactly.
In this limit complex theory coincides with truncated theory
Prohibits fine tuning of truncated theory at large β.
Numerical simulations back this up
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Simulations II

Boson action=Wilson + scalar kinetic and [φ, φ]2 term.

Realize Pf(M) via pseudofermions with action

SPF = F †(M †M)−
1

4F

RHMC alg. to handle fractional power (HMC with
rational approx to power plus multimass CG solver)

Measure phase and reweight ?

Monitor < SB > and < QO >.

Measure distribution of eigenvalues of scalars, phase of
Pfaffian ...
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Simulations III

Continuum limit L→ ∞ where β = L2

µ

< Sb >= 3
2L
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Simulations IV

Moduli space:
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Scalar eigenvalues Q=16  SU(2) matrix model
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Simulations V

Pfaffian phase:
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Pfaffian phase SU(2) Q=16 matrix model

Introduction to Lattice Supersymmetry – p. 13



Q=16 SYM in 4D

Theory has 4 Majorana spinors with SO(4) symmetry. Twist
with rotational.

SO(4)′ = diag(SO(4) × SO(4)rot)

Supercharges/spinors matrices

Ψ =
η

2
I + ψµγµ +

1

2!
χµνγµγν +

+
1

3!
θµνλγµγνγλ +

1

4!
κµνλργµγνγλγρ

Superpartners

(φ,Aµ, Bµν ,Wµνλ, Cµνλρ)
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Q supersymmetry

Analog of 2D case:

Qφ = η Qη = [φ, φ]

QAµ = ψµ Qψµ = −Dµφ

QBµν = [φ, χµν ] Qχµν = Bµν

QWµνλ = θµνλ Qθµνλ = [φ,Wµνλ]

QCµνλρ = [φ, κµνλρ] Qκµνλρ = Cµνλρ

Qφ = 0

Again, Q2 = δφ
Action S = βQΛ with ...
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Q-exact action

Λ =

∫

d4xTr

[

χµν

(

Fµν − 1

2
[Vµ, Vν ] +

1√
2
ǫµνρλDρVλ +

1

2
Bµν

)

+ ηDµVµ +
1

2
ηC + ψµDµφ+

1

4
η[φ, φ] +

1

2
ψµ[Vµ, φ]

]

where

Wµνλ = ǫµνλρVρ

θµνλ = ǫµνλρψρ

κµνλ = ǫµνλρη

Cµνλ = ǫµνλρC
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Orbifold constructions

Another way to derive lattice actions with exact SUSY
(Kaplan et al.)
Intimate connections to the twisted approach (Damgaard et
al., Unsal)
Here, show equivalence for Q = 4 SYM model.
Starting point:N = 1 SYM in 4D.
Reduce to zero dimensions (preserves Q, mother theory)

S =
1

g2
Tr

(

−1

4
[vα, vβ ]2 +

i

2
ΨΓα[vα,Ψ]

)

α, β = 0 . . . 3

with Ψ ≡ ΨTC and C−1ΓαC = −ΓT Take

Γ =

(

0 σα

σ̄α 0

)

with σα = (I, iσi)
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Change variables

v0 = A1, v3 = −A2 v1 + iv2 = iφ, v1 − iv2 = −iφ,

Ψ(1) =

(

−iχ12 − 1
2η

ψ1 − iψ2

)

Ψ(2) =

(

−iχ12 + 1
2η

ψ1 + iψ2

)

where Ψ(1),Ψ(2) chiral components. Action is:

S =
1

g2
Tr

(

−B2
µν + iBµν [Aµ, Aν ] −

1

2
[Aµ, φ][Aµ, φ] +

1

8
[φ, φ]2−

− iη[Aµ, ψµ] − χµν ([Aµ, ψν ] − [Aν , ψµ])

− i

4
η[φ, η] + iψµ

[

φ, ψµ

]

− i

2
χµν [φ, χµν ]

)
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Q-exact mother

S =
1

g2
TrQ{−χµν (Bµν − i[Aµ, Aν ]) + iψµ[Aµ, φ] +

i

4
η[φ, φ]},

Q-variations fields are those given earlier (now hermitian
basis for T a)
Note: just dimensional reduction of continuum 2D twisted
theory (as should be!)
Symmetries of mother:

GR = SO(4) × U(1) Dimensional reduction + chiral
symmetry

Global U(kN2) eg Φ → UΦU † for any field Φ
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Basic idea

Imagine matrices are composed of k × k blocks.
Imagine zeroing out most blocks leaving only blocks whose
block indices can be thought of as labeling endpoints of
links on a 2D lattice

U = Uαβ
m,n, α, β = 1 . . . k;

and m,n are vectors having components (mi, ni) = 1 . . . N
Accomplished by assigning 2 charges ri, i = 1, 2 to each
field and requiring that the field be invariant under the
orbifold action

Φr
m,n → e

2πi

N
(ri+mi−ni)Φm,n i = 1, 2

Clearly, the field lies on link between m → n. Breaks G
symmetry down to U(k)N

2

.
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r-charges

Need

integer components ri
∑

A r
A
i = 0 where A labels fields. Needed for lattice

interpretation (and G.I of target)

Depend only on symmetries of mother.

Use linear combinations of 3 U(1) charges associated with
GR.
Need to consider complexified theory to assign charges
consistently.
Introduce both Φ and Φ†.
Possible r-charges are:r(1) = (0, 1),r(2) = (0, 1) and
r(3) = (−1,−1) plus negatives –note similarity to lattice
tensors
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Preserved SUSY

No. (SUSY’s surviving projection) = No. (r = 0 fermions)
Term like:

(Ar1
m,nB

r2
n,m)

(suppress U(k) indices) becomes

(Ar1
m,m+r1

Ar2
m+r1,m+r1+r2

)

since r1 + r2 = 0 we find
∑

m

Ar1(m)Br2(m + r1)

Projected fields transform like bifundamentals

Φr(m) → g(m)Φrg(m + r)†
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Deconstruction

Substituting projected fields back into the mother action and
replacing Aµ by the (complex) matrix Uµ. Find twisted
action with the discretization prescription given earlier !

S =
1

2g2
TrQ

∑

n

(

χ†µν(n) [−Bµν(n) − i (Uµ(n)Uν(n + µ) − Uν(n)Uµ(n + ν))]

− ψ†
µ(n)

(

Uµ(n)φ(n + µ) − φ(n)Uµ(n)
)

+
i

4
η+(n)[φ(n), φ(n)] +

1

2
η−(n)d(n) + h.c

)

,

Introduction to Lattice Supersymmetry – p. 23



What I didn’t get to ...

(Twisted) sigma models

Gauge-gravity duality (AdSCFT like). Thermal gauge
theories in D < 4 as probes of black hole physics ...
SYMQM simple ex.

Approaches attempting to preserve full supersymmetry
(d’Adda et al.)

Supersymmetry breaking.

...
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Summary

Lattice SUSY is a fascinating field with potential to play
a role both in LHC physics and string theory.

In low dimensions fine tuning is manageable (maybe
also N = 1 SYM in D = 4 using eg. DWF).

Gauge-string dualities make strong coupling Yang-Mills
systems useful tools to investigate eg black hole
entropy.

New algorithms eg RHMC make simulation feasible.

In some cases a fraction of SUSY can be preserved on
lattice – twisting, orbifold approaches.
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