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Summary lecture 2

-

Showed how to twist SUSY theories in 2D: Q% = 0 and
S = QA.

Appearance of KD fermions and relation to staggered.
WZ model.

Today. Gauge symmetry. 2D

Twisting in 4D. N/ = 4 SYM.

Connection to orbifolding

|
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O =4 twisted SYM 1n 2D
-

The twisting argumnent applies to any 2D SUSY with 4
supersymmetries. eg.

-

Sym = PQTr / d*z (iﬁ[ﬁb@] + 2x12F12 + x12B12 + %ﬂp@)

where
QAM — %
QY = —Duo
Qp = 1
Qn = [, ¢
QB2 = [¢,x12]

L @x12 = D12 J

Q ¢ O Introduction to Lattice Supersymmetry —p. 2



SYM in 2D
fNote T

» Allfields in adjoint X = >N ~! xa79 for SU(N) with
antihermitian 7%,

® Covariantderiv D, f =0,f + [A,, f]
® ()° =¢,— SUSY generally accompanied by gauge
transformation.

# Other SUSY'’s read off by transforming the ¥ matrix

¥ — ¥I'*, i =1...4 and then inserting new fermions in
above expression.

o |

Introduction to Lattice Supersymmetry — p. 3



Carryingon ...
-

fHomework problem 5. Do @-variation. Integrate out B field.
Find usual SYM action:

Sy= [ daTr~ F}, — DoDG + 1163

1

Sr = SKD — ZU[Cb, nl + Yule, vy

Map KD-fields to spinors — equivalent conventional
formulation.
Twisted form good for discretization.

o |
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(No) tuning in Q-exact SYM In 2d
[ -

Effective action I" will pick up counterterms of form

[' = @ (something)

[' = Z OP b (g
where

0
ch = aP /2 Z al(ga)Ql
[=1

(Kaplan et al.) and p is (mass) dimension of operator and [

IS no. loops.
Relevant operator requires:l < 7/4 — p/2 Divergences occur

at 1-loop and for p = 0
These constraints prohibit any new terms except for a
Cosm(:)loglcal Constant ! Introduction to Lattice Supersymmetry —p. 5



Discretization |

-

At least two possibilities (Sugino, Catterall)
Retaining geometrical character leads to G.T rules:

fz) — G()f(x)G'(z)
ful@) — G(@)ful@)GY(x + p)
f,LW(x) — G(x)f,uu(x)GT(:C—i-,u—l—V)

Compatible with differences:

D:f(a:) — Uu(x)f(x + ) — f(x)Uu(x)
DZfV(x) = Uu(x)fu(x+p) — fu(z)Uu(z +v)



Discretization ||

Keep ()-symmetry same except for
QUy=v, Qiy=-D"¢
Point split commutators for G.| eg

9, %] — ¢(37)¢u(37) — wu(x)gb(w + 1)
Fu, = DI,

Necessary to complexify fields. Allows us to construct
G.l ops. and well-defined SUSY.

[ Tr(A,B,) — > Tr(ALBM + h.c
AT # A requires complex A%(z).

|
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Gauge action

- N

Fu = Up(2)Up(z + p) = Up(2)Up(z +v)
_ oW | oL
Fl Fuw=58) +85
S
S,  Wilson plaquette term.
ST — Ty (Uj(a; + WU (@)U (2) U, (x + 1) — 1)

U,(x) complex U,(x) = R(x)u,(x) with R hermitian and
unitary.
Z Tr(Rx)*R*(x + p) — 1)

LConsider # — oo. R driven to 1 and action is Wilson J
p I aq u ette aCtI O n ! Introduction to Lattice Supersymmetry — p. 8



Simulations |

-

Integrate twisted fermions — det(M (U, ¢)). Target theory has
real fields. G.I of scalar and gauge sector preserved if we
do path integral “along real line”

Fermions: replace det(M) by Pf(M) = det%(M) up to sign.
G.I

But what happens to SUSY Ward identities ?

Any @-invariant observable can be computed as § — oo
exactly.

In this limit complex theory coincides with truncated theory
Prohibits fine tuning of truncated theory at large £.
Numerical simulations back this up

-

o |
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Simulations ||

Boson action=Wilson + scalar kinetic and [¢, ¢]? term.
Realize Pf(M) via pseudofermions with action

Spr = FI(MIM)~iF
RHMC alg. to handle fractional power (HMC with
rational approx to power plus multimass CG solver)
Measure phase and reweight ?

Monitor < Sg > and < QO >.

Measure distribution of eigenvalues of scalars, phase of
Pfaffian ...

|
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Simulations |||

: N

Continuum limit L — oo where 5 = %

SU(3)
0.05— : —
0.04 — o—eo mu=0.25| _I
=—a mu=5.0
0.03—
0.02 —
0.01+—

-0.01—

E/E

-0.02 -
-0.03—

< S b >: %L2(N2 o 1) e (‘glsqcr]i%riu))‘a 63 0% o4

. N
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Simulations |V
N -

oduli space:

3 T T T T I T I T I T I T I T I T

i — Scalar eigenvalues Q=16 SU(2) matrix model
25— —

P(lambda)
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SimulationsV

o N

Pfaffian phase:

20 T T T T T | T | T | T | T | T
| — Pfaffian phase SU(2) Q=16 matrix model
15— —
&
<
T
s 10—
S
jang
5_
0 - — .
-1 -0.8 -0.6 -04 -0.2 0 0.2 0.4 0.6 0.8 1
cos(alpha)
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Q=16 SYM in 4D
-

fTheory has 4 Majorana spinors with SO(4) symmetry. Twist
with rotational.

SO(4) = diag(SO(4) x SO(4)y0r)

Supercharges/spinors matrices

M 1
Vo= -1+ %’m T EXMV'Y/KYV -+

2
1 1
+ §9Wwwuw + A W IN Y
Superpartners

(ga A,ua B,Lu/a W,uu)\a C,Lw)\p)

o |
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Q supersymmetry
-

Analog of 2D case:

Qp = n Qn=I0,9]
QAM — % Q%Z—Dmb

QBMV = [¢a X/w] QXAW = By
QW/W)\ — Q/W)\ QQ,LLI/)\ — [¢7 W,uu)\]
QO,LW)\p — [¢7 /f,uy)\p] Q/Q,uy)\p — Luvp
Qe = 0
Again, Q* = 4,

Action S = QA with ...

o



Q-exact action

- N

1 1 1
4

1 — — 1 _ _
+ DLV, + iﬁc + YuDyo + ZUW o] + %%&[VW Cb]]

where
W,uy)\ — E,uy)\pvp
Q/W)\ — E,uu)\pwp
Ruv = E/LV)\pﬁ
O,LW)\ = E,uy)\pc

o |
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Orbifold constructions
=

Another way to derive lattice actions with exact SUSY T
(Kaplan et al.)

Intimate connections to the twisted approach (Damgaard et
al., Unsal)

Here, show equivalence for Q@ = 4 SYM model.
Starting point:AY =1 SYM in 4D.
Reduce to zero dimensions (preserves Q, mother theory)

1 1 -
S = ?Tr (—Z[va,vﬁ]z + i\IfFa[va, \IJ]) a,3=0...3

with U = v1'C and C—1T,C = —T1 Take

L F((Toa U@“) with oo = (I, i0;) J

Introduction to Lattice Supersymmetry — p. 17



Change variables

- N

vo = A1, wv3=-—-Ay v +ivg =10, v —1vg = —1iQ,

o) — —1X12 — %77 g2 — —1X12 + %77
1 — i Y1 + i)

where () ¥(2) chiral components. Action is:

1 1 — 1. —
S = T (Bl Bl A - 54 6l[47] + 50,5

— inf A, ] = X (A 0] = [Av, 03]

(

— in[¢a 77] + Zwlu [aa w,UJ} B QXMV [Q§, X'LW]>

o |
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Q-exact mother

- N

S = giQTrQ{_X'uV (B,uy — i[A,ua AV]) + ZIDM[AWE] T in[¢7$]}7

()-variations fields are those given earlier (now hermitian
basis for T%)

Note: just dimensional reduction of continuum 2D twisted
theory (as should be!)

Symmetries of mother:

® Gr=50(4) x U(1) Dimensional reduction + chiral
symmetry

® Global U(kN?) eg ® — UDUT for any field ®

o |
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Basic idea
N -

Imagine matrices are composed of k& x k blocks.

Imagine zeroing out most blocks leaving only blocks whose
block indices can be thought of as labeling endpoints of
links on a 2D lattice

U=Ua,8=1. .k

and m, n are vectors having components (m;,n;) =1... N
Accomplished by assigning 2 charges r;,7 = 1,2 to each
field and requiring that the field be invariant under the
orbifold action

LSCIearIy, the field lies on link between m — n. Breaks ¢ J
ymmetry down to U (k)N .
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r-charges
N

# integer components r;

eed

® > =0 where A labels fields. Needed for lattice
Interpretation (and G.I of target)

# Depend only on symmetries of mother.

Use linear combinations of 3 U(1) charges associated with
GR.
Need to consider complexified theory to assign charges
consistently.
Introduce both ® and &,
Possible r-charges are:r() = (0,1),7(2) = (0,1) and

r(3) = (-1, —1) plus negatives —note similarity to lattice

Ltensors J
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Preserved SUSY
-

No. (SUSY'’s surviving projection) = No. (r = 0 fermions)
Term like:

-

(Arl Br2 )

m,n—in,im

(suppress U(k) indices) becomes

rl
(Am m—i—rlAm—l—rl m—|—r1—|—r2)

since r1 +r2 = 0 we find

Z A" (m)B™(m +r1)

Projected fields transform like bifundamentals

B ¢"(m) — g(m)®'g(m +r)f o
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Deconstruction

-

Substituting projected fields back into the mother action and
replacing A, by the (complex) matrix U,,. Find twisted
action with the discretization prescription given earlier !

S = —TI‘QZ

(
— %E(n) (Uu(n)g(n + ) — E(H)Uu(n))

b Lm0, 5]+ g0 ()d(w) + he)
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°

What | didn’t get to ...
-

(Twisted) sigma models

Gauge-gravity duality (AdSCFT like). Thermal gauge
theories in D < 4 as probes of black hole physics ...
SYMQM simple ex.

Approaches attempting to preserve full supersymmetry
(d’Adda et al.)

Supersymmetry breaking.

Introduction to Lattice Supersymmetry — p. 24



Summary

-

Lattice SUSY is a fascinating field with potential to play
a role both in LHC physics and string theory.

In low dimensions fine tuning is manageable (maybe
also N =1SYMin D = 4 using eg. DWF).

Gauge-string dualities make strong coupling Yang-Mills
systems useful tools to investigate eg black hole
entropy.

New algorithms eg RHMC make simulation feasible.

In some cases a fraction of SUSY can be preserved on
lattice — twisting, orbifold approaches.

|
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