Summary lecture 1

- Examined toy QM model with SUSY.
- Showed how naive discretization fails lattice theory picks up new U.V contributions fine tuning problem.
- Avoid by correcting action with counterterm computed at 1-loop.
- Subscript Generic way to deal with D < 4 theories (and maybe even $\mathcal{N} = 1$ in 4d with eg DWF)
- Better. Find modified action which is invariant under linear combination of SUSYs.
- New symmetry $Q^2 = 0$ and action Q-exact $S = Q\Lambda$. Twisted formulation

Two dimensions

- How can we generalize previous construction to field theory ?
- In QM needed 2 SUSYs. Also single scalar field and two real fermions. Try simplest 2D with these features: $\mathcal{N} = 2$ Wess-Zumino model ...

$$S_{WZ} = \int d^2 x \,\partial_\mu \phi \partial_\mu \overline{\phi} + W'(\phi) W'(\overline{\phi}) + \overline{\psi} \gamma_\mu \partial_\mu \psi + + \overline{\psi} \left(\frac{1}{2} \left(1 + \gamma_5 \right) W''(\phi) + \frac{1}{2} \left(1 - \gamma_5 \right) W''(\overline{\phi}) \right) \psi$$

Nicolai Map

Fermion operator can be rewritten (chiral basis):

$$M_{\rm F} = \left(\begin{array}{cc} W''(\phi) & \partial_{\overline{z}} \\ \partial_z & W''(\overline{\phi}) \end{array} \right)$$

Associated Nicolai Map is

$$\mathcal{N} = \partial_{\overline{z}}\overline{\phi} + W'(\phi)$$

Action $\mathcal{N} \not \mathcal{N}$ again differs by cross term from continuum (total derivative)

Lattice action

$$S_L = \sum_x \mathcal{N}\overline{\mathcal{N}} + \overline{\omega} \left(\Delta_{\overline{z}}^s \lambda + W_L''(\phi) \omega \right) + \overline{\lambda} \left(\Delta_z^s \omega + W_L''(\overline{\phi}) \lambda \right)$$

where
$$\psi = \begin{pmatrix} \omega \\ \lambda \end{pmatrix}$$
, $\overline{\psi} = \begin{pmatrix} \overline{\omega} \\ \overline{\lambda} \end{pmatrix}$.
Symmetric difference $\Delta_z^s = \Delta_1^s + i\Delta_2^s$.
Doublers removed via:

$$W'_L(\phi) = W'(\phi) + \frac{1}{2}D^+_\mu D^-_\mu \phi$$

Equivalent in 1D

Supersymmetries

The single exact SUSY follows by analogy to QM:

$$Q\phi = \omega$$
$$Q\overline{\phi} = \lambda$$
$$Q\lambda = 0$$
$$Q\omega = 0$$
$$Q\overline{\omega} = \overline{\mathcal{N}}$$
$$Q\overline{\lambda} = \mathcal{N}$$

Note that $Q^2 = 0$ with E.O.M Homework Problem. Check this invariance.

Additional SUSYs

In continuum this model has 3 additional SUSYs. Go back to QM:

Continuum bosonic action same if ${\mathcal N}$ replaced by

 $\hat{N} = \Delta^- \phi - P'.$

Equal to transpose of original fermion op.

Fermion action invariant if intercharge $\psi \rightarrow \overline{\psi}$ – Gives 2nd SUSY!

Similar for WZ model: 3 other ways of writing \mathcal{N} –

corresponding to $\phi \rightarrow \overline{\phi}$ and flipping sign.

Three new fermion ops. Make fermion act invariant by exchanging $\omega \to \lambda$ and $\overline{\omega} \to \overline{\lambda}$ etc.

Twisted/topological form

Not hard to verify that action can be rewritten (see QM) as

$$S_L = Q \sum_x \overline{\omega} \left(\mathcal{N} + \frac{1}{2}B \right) + \overline{\lambda} \left(\overline{\mathcal{N}} + \frac{1}{2}\overline{B} \right)$$

with additional B, \overline{B}

$$Q\overline{\omega} = \overline{B}$$
$$Q\overline{\lambda} = B$$
$$QB = 0$$
$$Q\overline{B} = 0$$

Ward identities

Again, existence of exact SUSY leads to Ward identities:

$$\langle S_B \rangle = \frac{1}{2} N_{\text{d.o.f}}$$

L	$\langle S_B \rangle$	$\frac{1}{2}N_{dof}$
4	31.93(6)	32
8	127.97(7)	128
16	512.0(3)	512
32	2046(3)	2048

WZ Ward identity

Twisting in 2D

Process of exposing this nilpotent supercharge can be made systematic Fields transform as spinors under $SO(2)_R$ and $SO(2)_{rot}$ Choose to decompose fields under twisted symmetry

$$SO(2)' = \text{Diag}\left(SO(2)_R \times SO(2)_{\text{rot}}\right)$$

Regard spinors/supercharges as matrices Decompose on products of gamma matrices

$$q = QI + Q_{\mu}\gamma_{\mu} + Q_{12}\gamma_{1}\gamma_{2}$$

Scalars, vectors, tensors Note $Tr(\Gamma^i\Gamma^j) = 2\delta^{ij}$ where $\Gamma^i = (I, \gamma_\mu, \gamma_5)$

Algebra

Original supersymmetry algebra $\{q,q\} = \gamma_{\mu}p_{\mu}$

$$\{Q,Q\} = \{Q_{12},Q_{12}\} = \{Q,Q_{12}\} = \{Q_{\mu},Q_{\nu}\} = 0$$

$$\{Q,Q_{\mu}\} = p_{\mu} \quad \{Q_{12},Q_{\mu}\} = \epsilon_{\mu\nu}p_{\nu}$$

Note that p_{μ} is Q-variation of something. Makes it plausible that entire $T_{\mu\nu}$ is Q-exact. (why?: $p_{\mu}p_{\nu} = Q\Lambda_{\mu}Q\Lambda_{\nu} = Q(\Lambda_{\mu}Q_{\nu})$)

Hence twisted theories have Q-exact actions! (remember

$$T_{\mu\nu} = \frac{\delta S}{\delta g_{\mu\nu}})$$

Kähler-Dirac fermions

Typical Dirac action can be rewritten as:

$$S_{\rm F} = {\rm Tr} \left[\overline{\Psi} \gamma_{\mu} \partial_{\mu} \Psi \right]$$

where

$$\Psi = \frac{\eta}{2}I + \psi_{\mu}\gamma_{\mu} + \chi_{12}\gamma_5$$

Components $(\eta/2, \psi_{\mu}, \chi_{12})$ consitute a Kähler-Dirac field In real (why real?) components:

$$S_{\rm F} = \frac{1}{2} \eta \partial_{\mu} \psi_{\mu} + \chi_{12} \left(\partial_1 \psi_2 - \partial_2 \psi_1 \right)$$

Kähler-Dirac action. Basis indep. Geometrical treatment of fermions.

KD treatment equivalent to twisting

Discretize KD equations

Can discretize such geometrical actions without introducing doubles (Rabin, Joos)

■ Replace $\partial_{\mu} \rightarrow \Delta^{+}_{\mu}$ in curl

■ Replace
$$\partial_{\mu} \rightarrow \Delta_{\mu}^{-}$$
 in div.

Prohibits doubles!

$$S_F = \begin{pmatrix} \eta/2 & \chi_{12} \end{pmatrix} \begin{pmatrix} \Delta_1^- & \Delta_2^- \\ -\Delta_2^+ & \Delta_1^+ \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$$

Relation to staggered fermions

Natural to place scalars on sites, vectors on links and tensors on diagonal links.

Introduce a lattice with half spacing – all fields now site fields.

Free KD action reduces to staggered action – fermion phases now arise from alternate use of Δ^- , Δ^+ . Usual U(1) symmetry: rotate $\psi_{1,2} \rightarrow e^{\alpha} \psi_{1,2}$ and

 $\eta, \chi_{12} \rightarrow e^{-\alpha} \eta, \chi_{12}$. Homework problem 4. Check this

Wess-Zumino using KD fermions

If we choose

$$\omega = \frac{1}{2}\eta + i\chi_{12}$$
$$\lambda = \psi_1 + i\psi_2$$

Find KD action

 $\omega^{\dagger} D_{\overline{z}} \lambda + \text{h.c}$

Technically uses self-dual parts of KD field Duality $f_p \xrightarrow{*} f_{d-p}$ with

$$*f_{\mu_1...\mu_{d-p}} = \epsilon_{\mu_1...\mu_d} f_{\mu_{d-p+1}...\mu_d}$$

 $P^+ = \frac{1}{2}(I+i*)$