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Motivation

-

Motivation: SUSY theories - cancellations between
fermions/bosons — soft U.V behavior. Higgs light

m3; ~ log(A)

More tractable analytically — toy models for
understanding confinement and chiral symmetry
breaking

Key component of string theory — remove tachyon of
bosonic string.

Generalizations of AASCFT — (p + 1) SYM and type |
strings with Dp-branes.

Usually assume symmetry holds at high energy — must
break nonperturbatively at low energies — lattice.

|
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Problems

Extension of Poincare symmetry: {Q,Q} = v.P. Broken
by lattice.

Equivalently: Leibniz rule does not hold for difference
operators

Fermion doubling - ng # np. Wilson terms break SUSY.

Conseqguence: Naively discretized classical action
breaks SUSY. Effective action picks up (many) SUSY
violating operators. Generically some of relevant.
Couplings must be fine tuned as a — 0.

|
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Solutions
-

® Justdoit.

s Certain simple cases eg. N =1 SYM in 4D single
counterterm with Wilson fermions.

s For D < 4 finite number of divergences occuring at
small numbers of loops.

# For special class of theories can find novel
discretizations which preserve one or more SUSY’s
exactly. Two approaches:

s Orbifold methods. SYM case.
» Twisted formulations. Equivalent ...?
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°

Overview

Motivation/Problems.

Witten’s SUSYQM. Naive discretization. Fine tuning.
Modification to maintain exact SUSY.

Nicolai maps. Topological/twisted field theory
Interpretation.

Generalizations. SYMQM, sigma models.

Lifting to 2D. Wess Zumino models. Twisting in 2D.
Kahler-Dirac fermions. N' = 2 SYM.

Lifting to 4D. N/ = 4 SYM.
Orbifold constructions

|
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Witten’s SUSYQM
B -

S = /dt - (%) + %P’(gb) + %d% + i1 P ()

Invariant under 2 SUSYSs:

049 = P1eq 0Bp = P2ep
0AY1 = %GA épy1 = —iP'ep
datva = iP'eq Opia = Zf €B

Homework Problem 1: verify these invariances

o |
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Continuum variation
fFind: T

. dio  do
_ y 2 O® 5
045 = /dt 1€ (P 7 + dtP ¢2)

Need to integrate by parts and use Leibniz to get zero.
Problem for lattice.
Notice that 6% = 6% = £ acting on any field.

Example of SUSY algebra since H = %.

o |
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Nalve discretization

-

Place fields on sites of (periodic) 1D lattice. Replace
[ dt — >, a and replace % by (doubler free) backward
difference.

Al fo = f(z) — f(z — p)

Now find:

04ST = Z 1€ (P,A_wz + A_gbpﬂwg)
t

1 . . .
where rescaled x by az. Naively invariant as a — 0.
But expect radiative corrections ....

o |
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Boson/fermion masses - naive

- N
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Figure 1;: P/ = mo + go®, m = 10.0, g = 100.0
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Radiative corrections
p

# Any Feynman graph which is convergent in U.V can be
discretized naively (Reisz theorem).

oints to note: T

# Restrict attention to superficially divergent continuum
graphs.

# In previous example only one of these. One loop
fermion contribution to boson mass.

o |
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Radiative corrections I

-

Continuum:

o dp —ip +m

Actually convergent (p — —p symmetry)

1 1
2cont = 0¢ (— tan ! 27T ) ~ 0g (5 + O(m&))

70 ma

Lattice result is

Introduction to Lattice Supersymmetry — p. 11



o o

Radiative corrections Il

-

If take a — 0 after doing sum get twice the result!
Homework Problem 2. Convince yourself of this!

D~ = D* + smy. Would be doublers have mass O(1/a)

and make an additional contribution to integral (don’t
decouple from small loops)

Restore SUSY need to add counterterm

S — SL—I—ZSQ¢2
t

SUSY broken but regained now as a — 0.

|

Introduction to Lattice Supersymmetry — p. 12



Intuitive argument

-

Consider using lattice derivative:

T
DS -+ §mW

Doubler mass M = m + 2r/a. Consider limit where r << 1.
Then ma << Ma << 1. Lattice integral is approx:

/Z dp m /er dp M
) = +
= 21 p? + m? =~ 2mp? 4+ M?

1
= — (tan_1
o

tan ! )
QmajL a 2Ma

o |
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Masses - counterterm corrected
=
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_ Figure 2: P' = m¢ + gé®, m = 10.0, g = 100.0
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Exact SUSY
-

Can do better. Find combination of SUSY’s that can be
preserved on lattice.
Notice that:

daASp = —iég » P'A"¢  6pSp=iday P'A¢

-

Thus

(64 +i65) Sy, = — (64 +i6)O  where O =) P'A™¢

So can find §Seyact Of fOorm

| 1 _,9 _ —
Sexact _(A ¢)2 + _Pl 4 P/A ¢ 4 w(A 4+ P,/)w
B Lt N
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Exact SUSY I
W

here
Y = (Y1 + 19)

Y = \/5(%01—2'102)

and the new supersymmetry acts:

=Sl
(\)

09 = e
0 = 0

0 = (A7¢+ P'(¢))e
Notice: §2 = 0 now. No translations.

S2 =" (A" + P(9)
L ' o
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Masses - exact SUSY

Figure 3. Boson and fermion masses vs lattice
Lspacing for supersymmetric action J
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Nicolal map

-

Partition function:
7 = / Do D Dipe™ = / Dgdet (A~ + P") e™>7

Change variables to ' = A~ ¢ + P'(¢) Jacobian is

ON;
det(a¢j).

Cancels fermionic determinant!
7 = /Hd]\/}e_M’Q
)

Detalls of P(¢) disappeared! 7 is a topological invariant.
Simple argument: < Sg >= £ N4,

o

|
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Ward identities
5

Classical invariance of action replaced by relationships
between correlation functions of form

<00 >=0
Choosing O = 1,6, we find
< @x¢y >+ < (ATo+ P,):c¢y >= 0

Expect other SUSY 6 = %(614 — i0p5) broken.

Restored in continuum limit without fine tuning.

o |
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Ward identities Il

0.006

Ward-Identity 1: m = 10, g = 800
¢ Ward-Identity 2: m = 10, g = 800
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Figure 4: m = 10.0, g = 800.0, from Kaestner et al.
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Topological field theory

Actually 5% = 0 for the field ¢ only by using EOM.
Can render symmetry nilpotent off-shell by introducing
auxiliary field

Qo = ¢
Qv = 0
Q) = B
OB = 0

Note: absorbed ¢ into variation 4 and renamed it (). Also

1
S;=> —B(A ¢+ P) - 532

o |
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TQFT Il
| R

emarkably: T

_ 1
SL:ng(_A )

The action is Q-exact. Like BRST ?

Consider bosonic model with S(¢) = 0. Invariant under
» — ¢ + € —topological symmetry.

Quantize: pick gauge function A/ = 0 and introduce
Fadeev-Popov factor

Z:/ngdet(%/)e—% “(¢)

Llnterpret 1,7 as ghost fields (oo = 1) recover our model! J
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Moral of the story
-

Fine tuning problems can be handled in D < 4 by
perturbative lattice cals.

Even D =4 N = 1 using chirally improved actions.

In some cases can do better — find combinations of the
supersymmetries in (some) SUSY models which are
nilpotent.

(Twisted) reformulations are closely connected to
construction of TQFT. Actions are ()-exact. Easy to
translate to lattice.

Simulation can be done with (R)HMC algs. and good
agreement with theory

|
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