X-ray Spectra from Magnetar Candidates

A Twist in the Field

R Turolla Department of Physics University of Padova, Italy

With L Nobili, S Zane, N. Sartore GL Israel, N Rea

SGRs and AXPs X-ray Spectra

$\frac{10.5 - 10 \text{ keV emission usually mode}}{0.5 - 10 \text{ keV emission.}}$ blackbody (kT \sim 0.5 keV) plus power-

Twisted Magnetospheres – I

- **I** The magnetic field inside a magnetar is "wound up"
- **In The presence of a toroidal component** induces a rotation of the surface layers
- **The crust tensile strength resists**
- A gradual (quasi-plastic ?) deformation of the crust
- \blacksquare The external field twists up (Thompson, Lyutikov & Kulkarni 2002)

Twisted Magnetospheres - II

E TLK02 investigated forcemagnetic equilibria <u> 1976 - JEN</u> \blacksquare A sequence of models label

Twisted Magnetospheres - III

- **The Twisted magnetospheres are threaded by** currents
- **E** Charged particles provide large optical depth to resonant cyclotron scattering
- **Because** \blacksquare \blacksquare and \blacksquare \blacksquare and \blacksquare and law tail expected instead of an absorption line
- \blacksquare and \blacksquare . \blacksquare Both and and increase with the twist angle

A Monte Carlo Approach

Example of Example Set Individually a large sample of photons, treating probabilistically their Preiminary invesugation (ID) by L " Gaunii (2000)
" More detailed modeling by Fernandez & <u>E</u> Thomnson (2007) **New, up-to-dated code (Nobili, T** \blacksquare Zane 2007) work well when we have well when \blacksquare Basic in The Marcock " Sampool" (2007)
Jaw Tun-to-datad coda (Nobili Turolla " Surge to added code" ("")
Sang 2007) Preliminary investigation (1D) by Lyutikov & Gavriil (2006) More detailed modeling by Fernandez & Thompson (2007) New, up-to-dated code (Nobili, Turolla, Zane 2007)

$$
N_{scat}\approx 1
$$

Magnetospheric Currents

nove along the field lines of the field lines. In Spatial distribution velocity, v_{bulk}, and spread to a (Beloborodov & Thomps detailed model as Electron contribution only 1D relativistic Mawellian at T_e centred at

Surface Emission

The star surface is divided into patches by a cos θ – φ grid

Each patch has its own temperature to reproduce different thermal maps

Blackbody (isotropic) emission

Photons in a Magnetized Medium

- **In Magnetized plasma is anisotropic and** birefringent, radiative processes sensitive to polarization state
- **I Two normal, elliptically polarized modes in** the magnetized "vacuum+cold plasma"

! At the modes are almost linearly polarized

The extraordinary (X) and ordinary (O) modes

Scattering Cross Sections - I

velocity before and after scattering $\overline{2}$

Scattering Cross Sections - II

- **Through repeated scatterings photons may gain** enough energy to
	- Violate the condition $\omega << m_{\rm e} c^2/\gamma$
	- Scatter in regions where B \sim B_{OED}
- **Hard tails produced by up-scattering onto high**energy (non-thermal) electrons (Baring & Harding 2007) ?

Complete treatment of magnetic Compton scattering highly desirable

Scattering Cross Sections - III

Nuts and Bolts

Generate uniform deviate R, scatter occurs when $\tau = -\ln R$ Generate second deviate R_1 to decide if polarization switching Generate third deviate R_2 to pick up electron velocity (if $v_{1,2} > 0$) Generate to further deviates R_3 and R_4 to decide photon direction after scattering

Model Spectra

Model parameters: $\Delta\Phi_{N-S}$, B_{pole}, T_e, V_{bulk} Surface emission geometry, geometrical angles (x, ξ)

Phase-averaged spectra ($B_{pole} = 10^{14}$ G)

Spectral Fitting

Model archive with $B_{pole} = 10^{14}$ G completed and implemented in XSPEC (with N.Rea)) Applications to AXPs under way

The Neutron Star Crust & Surface: Observations & Models, Seattle, June 25-29 2006

Conclusions & Future **Developments**

- **Twisted magnetosphere model, within magnetar** scenario, in general agreement with observations
- \blacksquare Resonant scattering of thermal, surface photons produces spectra with correct properties
- **I.** Many issues need to be investigated further
	- Twist of more general external fields
	- Detailed models for magnetospheric currents
	- More accurate treatment of cross section including QED effects and electron recoil (in progress)
	- $-$ 10-100 keV tails: up-scattering by (ultra)relativistic (e^{\pm}) particles ?
	- fit of model spectra to observations (in progress)

Model Spectra - II

Post-Flare Evolution

E After the GF SGR 1806-20 persistent X-ray emission is softer and spindown rate smaller \blacksquare Evidence for an untwisting of the magnetosphere

25-29 2006

SGRs and AXPs X-ray Spectra - II

- \blacksquare kT_{BB} ~ 0.5 keV, does not change much in different sources
- **Photon index** $\Gamma \approx 1 4$ **, AXPs tend to be softer**
- **I.** SGRs and AXPs persistent emission is variable (months/years) ! Variability mostly associated with the non
	- thermal component

Hard X-ray Emission

INTEGRAL revealed

substantial emission in substantial emission in the 20 -100 keV band from SGRs and APXs

Hard power law tails with $\Gamma \approx 1$ -3, hardening wrt soft X-ray emission required in AXPs

Hard emission pulsed

The Neutron Sta Observations & Models, Seattle, June 25-29 2006

