X-ray Spectra from Magnetar Candidates

A Twist in the Field

R Turolla Department of Physics University of Padova, Italy

With L Nobili, S Zane, N. Sartore GL Israel, N Rea

SGRs and AXPs X-ray Spectra

0.5 - 10 keV emission usually mode blackbody (kT ~ 0.5 keV) plus powe

Twisted Magnetospheres – I

- The magnetic field inside a magnetar is "wound up"
- The presence of a toroidal component induces a rotation of the surface layers
- The crust tensile strength resists
- A gradual (quasi-plastic ?) deformation of the crust
- The external field twists up (Thompson, Lyutikov & Kulkarni 2002)

Twisted Magnetospheres - II

TLK02 investigated forcemagnetic equilibria قر الرح – ع الم ال A sequence of models lab

Twisted Magnetospheres - III

- Twisted magnetospheres are threaded by currents
- Charged particles provide large optical depth to resonant cyclotron scattering
- Because Bec
- Both and increase with the twist angle

A Monte Carlo Approach

Follow individually a large sample of photons, treating probabilistically their Preliminary investigation (1D) by Lyutikov & Gavriil (2006)
More detailed modeling by Fernandez & Thompson (2007)
New, up-to-dated code (Nobili, Turolla, Zane 2007)

Magnetospheric Currents

Charges move alo
 Spatial distribution
 Electron contribution only
 Platitistic Mawellian at Particle Model on the Control of the Control

detailed model as

Surface Emission

The star surface is divided into patches by a $\cos \theta - \phi$ grid

Each patch has its own temperature to reproduce different thermal maps

Blackbody (isotropic) emission

Photons in a Magnetized Medium

- Magnetized plasma is anisotropic and birefringent, radiative processes sensitive to polarization state
- Two normal, elliptically polarized modes in the magnetized "vacuum+cold plasma"
 At
 At
 Mathematical and
 Mathematical and

The extraordinary (X) and ordinary (O) modes

Scattering Cross Sections - I

velocity before and after scattering

Scattering Cross Sections - II

- Through repeated scatterings photons may gain enough energy to
 - Violate the condition $\omega << m_e c^2/\gamma$
 - Scatter in regions where $B \sim B_{QED}$
- Hard tails produced by up-scattering onto highenergy (non-thermal) electrons (Baring & Harding 2007)?

Complete treatment of magnetic Compton scattering highly desirable

Scattering Cross Sections - III

Nuts and Bolts

Generate uniform deviate R, scatter occurs when $\tau = -\ln R$ Generate second deviate R₁ to decide if polarization switching Generate third deviate R₂ to pick up electron velocity (if v_{1,2} >0) Generate to further deviates R₃ and R₄ to decide photon direction after scattering

Model Spectra

Model parameters: $\Delta \Phi_{N-S}$, B_{pole} , T_e , v_{bulk} Surface emission geometry, geometrical angles (χ , ξ)

Phase-averaged spectra ($B_{pole} = 10^{14} \text{ G}$)

Spectral Fitting

Model archive with $B_{pole} = 10^{14}$ G completed and implemented in XSPEC (with N.Rea)) Applications to AXPs under way

The Neutron Star Crust & Surface: Observations & Models, Seattle, June 25-29 2006

Conclusions & Future Developments

- Twisted magnetosphere model, within magnetar scenario, in general agreement with observations
- Resonant scattering of thermal, surface photons produces spectra with correct properties
- Many issues need to be investigated further
 - Twist of more general external fields
 - Detailed models for magnetospheric currents
 - More accurate treatment of cross section including QED effects and electron recoil (in progress)
 - 10-100 keV tails: up-scattering by (ultra)relativistic (e[±]) particles ?
 - fit of model spectra to observations (in progress)

Model Spectra - II

Post-Flare Evolution

After the GF SGR 1806-20 persistent X-ray emission is softer and spindown rate smaller Evidence for an untwisting of the magnetosphere

Observations & Models, Seattle, June 25-29 2006

SGRs and AXPs X-ray Spectra - II

- kT_{BB} ~ 0.5 keV, does not change much in different sources
- Photon index $\Gamma \approx 1 4$, AXPs tend to be softer
- SGRs and AXPs persistent emission is variable (months/years)
 Variability mostly associated with the non-thermal component

Hard X-ray Emission

INTEGRAL revealed substantial emission in the 20 -100 keV band from SGRs and APXs

Hard power law tails with $\Gamma \approx 1-3$, hardening wrt soft X-ray emission required in AXPs

Hard emission pulsed

The Neutron Sta Observations & Models, Seattle, June 25-29 2006

