Calvera: An Isolated Compact Object of Indeterminate Type

Bob Rutledge McGill University

Collaborators: Derek Fox and Andrew Shevchuk (PSU)

X-ray Observations of Isolated Compact Objects

- Isolated Compact Objects are presumably remnants of stellar evolution.
- Isolated objects are unaffected by the evolution of a binary companion (such as in LMXBs), and they can provide a "pristine" look at the properties of "neutron stars" -- generically, the compact objects which are the result of supernovae at the end of a massive star's H-burning lifetime.

Observational Approach

- Perform SWIFT X-ray observation of unidentified ROSAT All-Sky Survey Bright Source Catalog X-ray sources.
- Use better localization (5" with XRT, and <1" if there is a UVOT counterpart) to identify UV, optical, or infrared counterpart (in UVOT image, or 2MASS catalog, or DSS).
- X-ray sources with high F_X/F_UVOT, and no 2MASS or DSS counterparts.
- To date, we have observed ~160 X-ray sources, identifying mostly low-mass stars, a few AGN, but also 3 new X-ray clusters.

Observations of Calvera

- First detection (1992) in the ROSAT All-Sky Survey as 1RXS J141256.0 +792204.
- We observed with SWIFT/XRT in August 2006, obtained a 5" error circle which excluded all nearby counterparts (DSS, 2MASS, NVSS). No UVOT counterpart (UVM2>21m).
- In Dec 2006, we obtained deep Gemini-North imaging (DDT time) in g-band (2 hours integration) for a limit of g>26.3 mag (3 sigma).
- In early 2007, Chandra/HRC-S DDT observation (2ksec) localized the X-ray source to an error ellipse which excluded all infra-red objects.

Gemini North Multi-Object Spectrograph.

- Error circles 90% confidence
- Chandra positional uncertainty dominated by statistical uncertainty in off-axis X-ray source, associated with J=9.83 band 2MASS source (3.6" offset?? -- prob=2e-5; Chandra astro-metric calibration uncertain due to recent thermal re-setting).
- FX/F_V > 5100 -- excludes all known source classes other than isolated neutron stars (INSs).

 $L_x = 4\pi R_{\rm bb}^2 \sigma T_{\rm eff}^4$

What Type of Source is Calvera?

- The observational approach (arcsec localization, followed by deep optical imaging, to produce high FX/F_V limit) was chosen to find new INSs, like RX J1856.
- No counter examples of high FX/F_V limit objects selected in this way which are not INSs exist in the literature; but clearly it is possible to find other types of compact objects.
- Basis for comparison: assume blackbody spectra (almost certainly not physically true!) and compare bbody spectral parameters.
- Note: to say *anything* about the properties of the source, one must compare either R_bb or L_x with those of a known class. This directly implies a distance to Calvera.
- For INSs -- assume Rbb are all identical to RXJ 1856, and a distance to RXJ 1856 of 170 pc (see Kaplan et al 2007).

Summary of Properties of SWIFT J1412+7922

Characteristic	Value						
Right Ascension (J2000)	14 ^h 12 ^m 55 ^s 51						
Declination (J2000)	+79°22'06'.7						
Uncertainty ellipse	$5.6^{\prime\prime}\times$ $3.5^{\prime\prime}$ at P.A. 137.9°						
UVOT Limit	$f_{\rm UVM2} < 1.3 \times 10^{-17} \ {\rm erg} \ {\rm cm}^{-2} {\rm s}^{-1}$						
Gemini Limit (3σ)	$g > 26.3 {\rm mag}$						
Blackb	ody Energy Spectrum						
$kT_{\rm eff}$	$220^{+45}_{-40} \text{ eV}$						
Normalization	$5.4^{+2.7}_{-1.9} (R_{\rm km}/D_{10\rm kpc})$						
Corrected X-ray Flux	7.6×10^{-13} (erg cm ⁻² s ⁻¹ ; 0.1-2.4 keV)						
N_H (fixed)	3×10^{20} cm ⁻²						
χ^2_{ν} (dof; prob)	0.09 (2 dof; prob=0.92)						
Power I	Law Energy Spectrum						
Photon Slope α	$3.2_{-0.4}^{+0.5}$						
Corrected X-ray Flux	$7.9 \times 10^{-14} \text{ (erg cm}^{-2} \text{ s}^{-1}; 2-10 \text{ keV})$						
N_H (fixed)	3×10^{20} cm ⁻²						
χ^2_{ν} (dof; prob)	2.71 (2 dof; prob=0.06)						

Table 1. Characteristics of Calvera

Galactic Distribution of X-ray "Dim" Isolated Neutron Stars (INS), if Calvera is like them.

Table 2. Galacto-centric Positions of INSs and Calvera in an INS Interpretation

Source	$kT_{\rm eff}$ (eV)	F_X	(l,b) (deg,deg)	X (kpc)	Y (kpc)	Z (kpc)	d (kpc)	R_c (kpc)	Refs.
1RXS J0420.0-5022	45	5	258, -44	-0.36	8.58	-0.35	0.51	8.59	1
RXJ0720.4-3125	90	100	244, -8	-0.45	8.72	-0.07	0.50	8.73	2
RXJ0806.4-4123	95	2.8	257, -5	-3.29	9.26	-0.30	3.39	9.83	3
1RXS J130848.6+212708	117	45	339, 83	-0.06	8.35	1.29	1.30	8.45	4
Calvera	220	7.6	118, 37	7.82	12.66	6.68	11.10	16.31	present
1RXS J1605.3+3249	91	88	53, 48	0.30	8.27	0.42	0.56	8.29	5
1RXS J185635.1-375433	63.5	210	359, -17	0.00	8.34	-0.05	0.167	8.34	6
1RXS J214303.7+065419	91	87	63, -33	0.42	8.29	-0.31	0.56	8.30	7

Note. — Galactic positions of the seven INSs, plus Calvera, under the assumption all have the same $R_{\rm bb}$ as 1RXS J185635.1–375433 at a distance of 167 pc (see text). Reading across the columns, we give the source name, the measured effective temperature, the X-ray flux in units of 10^{-13} erg cm⁻²s⁻¹ (0.1 – 2.4 keV); the galactic longitude and latitude (l,b); the resulting galactic three dimensional coordinates X, Y, and Z, where (0,0,0) is Galactic Center, and (0,8.5,0) is the Sun's location (Taylor & Cordes 1993); the source's distance from the Sun d; and galacto-centric distance R_c , with the relevant references. These positions are plotted in Fig. 4.

References. — 1, Haberl et al. (2004); 2, Haberl et al. (2006); 3, Haberl et al. (2004); 4, Schwope et al. (1999); 5, Motch et al. (1999); 6, Burwitz et al. (2003); Kaplan et al. (2007); 7, Zampieri et al. (2001)

Galactic Distribution of X-ray "Dim" Isolated Neutron Stars, if Calvera is like them.

R_bb vs. Lx

- R_bb is a function of distance (which is unknown).
- If R_bb is comparable to RX J1856, d=11 kpc, z=6.7 kpc.
- If L_X is comparable to magnetars (1e35 ergs/ sec), d=110 kpc!

kTeff vs. R_bb

- kTeff is lower than CCOs and magnetars.
- kTeff is greater than INSs
- But, comparable to MSPs in 2 47 Tuc.
- Comments on kTeff vs. Rbb for CCOs and Magnetars.

Calvera: Observational Conclusions

- X-ray properties of Calvera are seriously challenging to explain, if the object is an INS (d=11 kpc; Z=6.7 kpc, requires a very high spatial velocity, or very long cooling time).
- X-ray properties are even more challenging to standard-candle magnetars (d=114 kpc), requiring even higher spatial velocity or longer cooling time.
- Could be a Compact Central Object, but without a supernova remnant? So what is a CCO? Simply a Compact object of arbitrary size?
- Object is *most* consistent with being a nearby (150-560 pc) radio pulsar. If it is an MSP, it is third X-ray brightest MSp in the sky, and only the third Northern MSP at <560 pc -- an interesting X-ray target, useful for a radio pulsar timing array, and LIGO.
- If the object is *not* a radio pulsar, then it is highly uncertain what type of compact object this is.